Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (945)

Search Parameters:
Keywords = adaptive Kalman filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 703 KB  
Article
A Novel Approach to Day-Ahead Forecasting of Battery Discharge Profiles in Grid Applications Using Historical Daily
by Marek Bobček, Róbert Štefko, Július Šimčák and Zsolt Čonka
Batteries 2025, 11(10), 370; https://doi.org/10.3390/batteries11100370 (registering DOI) - 6 Oct 2025
Abstract
This paper presents a day-ahead forecasting approach for discharge profiles of a 0.5 MW battery energy storage system connected to the power grid, utilizing historical daily discharge profiles collected over one year to capture key operational patterns and variability. Two forecasting techniques are [...] Read more.
This paper presents a day-ahead forecasting approach for discharge profiles of a 0.5 MW battery energy storage system connected to the power grid, utilizing historical daily discharge profiles collected over one year to capture key operational patterns and variability. Two forecasting techniques are employed: a Kalman filter for dynamic state estimation and Holt’s exponential smoothing method enhanced with adaptive alpha to capture trend changes more responsively. These methods are applied to generate next-day discharge forecasts, aiming to support better battery scheduling, improve grid interaction, and enhance overall energy management. The accuracy and robustness of the forecasts are evaluated against real operational data. The results confirm that combining model-based and statistical techniques offers a reliable and flexible solution for short-term battery discharge prediction in real-world grid applications. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System: 3rd Edition)
16 pages, 1669 KB  
Article
An Improved Adaptive Kalman Filter Positioning Method Based on OTFS
by Siqi Xia, Aijun Liu and Xiaohu Liang
Sensors 2025, 25(19), 6157; https://doi.org/10.3390/s25196157 - 4 Oct 2025
Abstract
To mitigate the degradation of positioning accuracy in sixth-generation mobile communication systems under dynamic line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, this paper proposes an improved adaptive Kalman filter positioning method based on Orthogonal Time Frequency Space (OTFS)-modulated signals. Firstly, the distance can be [...] Read more.
To mitigate the degradation of positioning accuracy in sixth-generation mobile communication systems under dynamic line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, this paper proposes an improved adaptive Kalman filter positioning method based on Orthogonal Time Frequency Space (OTFS)-modulated signals. Firstly, the distance can be measured by using the OTFS-modulated signals transmitted between base stations and nodes. Secondly, the distance information is converted into the distance difference information to establish the time difference of arrival (TDOA) positioning equation, which is preliminarily solved using the Chan algorithm. Thirdly, residuals are calculated based on the preliminary positioning results, dividing the complex environment into distinct regions and adaptively determining corresponding genetic factors for each region. Finally, the selected genetic parameters are substituted into the Sage–Husa adaptive Kalman filter equations to estimate positioning results. The simulation analysis demonstrates that in complex environments featuring both line-of-sight and non-line-of-sight conditions, the vehicle motion trajectories estimated using this method more closely approximate actual trajectories. Additionally, both the accuracy and stability of positioning results show significant improvement compared to traditional methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 2204 KB  
Article
Adhesion Control of High-Speed Train Based on Improved Nonlinear Kalman Filter
by Haotian Gan, Song Wang, Junqi Lu and Haoran Ou
Appl. Sci. 2025, 15(19), 10524; https://doi.org/10.3390/app151910524 - 29 Sep 2025
Abstract
In the operation of high-speed trains, the effective transmission of traction force heavily relies on the adhesion between the wheel and the rail. Excessive traction or braking force may exceed the adhesion limit, causing wheel creep or slide, which threatens both equipment and [...] Read more.
In the operation of high-speed trains, the effective transmission of traction force heavily relies on the adhesion between the wheel and the rail. Excessive traction or braking force may exceed the adhesion limit, causing wheel creep or slide, which threatens both equipment and safety. To address this, a state estimation method based on the SVD-ACKF (singular value decomposition adaptive cubature Kalman filter) is proposed for high-precision estimation of train speed. Combined with an extremum-seeking algorithm, a closed-loop adhesion control strategy is developed to maintain train operations near the maximum adhesion point. Simulation results show that the method ensures accurate tracking under varying rail conditions and noise, while the control algorithm maintains adhesion utilization above 90%, thereby meeting operational demands and enhancing railway safety. Full article
Show Figures

Figure 1

22 pages, 1797 KB  
Article
A Novel Hybrid Deep Learning–Probabilistic Framework for Real-Time Crash Detection from Monocular Traffic Video
by Reşat Buğra Erkartal and Atınç Yılmaz
Appl. Sci. 2025, 15(19), 10523; https://doi.org/10.3390/app151910523 - 29 Sep 2025
Abstract
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman [...] Read more.
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman filter (with total-variation prior), a Hidden Markov Model (HMM) for state stabilization, and a lightweight Artificial Neural Network (ANN) for learned temporal refinement, enabling real-time crash detection from monocular video. Evaluated on simulated traffic in CARLA and real-world driving in Istanbul, the full temporal stack achieves the best precision–recall balance, yielding 83.47% F1 offline and 82.57% in real time (corresponding to 94.5% and 91.2% detection accuracy, respectively). Ablations are consistent and interpretable: removing the HMM reduces F1 by 1.85–2.16 percentage points (pp), whereas removing the ANN has a larger impact of 2.94–4.58 pp, indicating that the ANN provides the largest marginal gains—especially under real-time constraints. The transition from offline to real time incurs a modest overall loss (−0.90 pp F1), driven more by recall than precision. Compared to strong single-frame baselines, YOLOv10 attains 82.16% F1 and a real-time Transformer detector reaches 82.41% F1, while our full temporal stack remains slightly ahead in real time and offers a more favorable precision–recall trade-off. Notably, integrating the ANN into the HMM-based pipeline improves accuracy by 2.2%, while the time-variant Kalman configuration reduces detection lag by approximately 0.5 s—an improvement that directly addresses the human reaction time gap. Under identical conditions, the best RCNN-based configuration yields AP@0.50 ≈ 0.79 with an end-to-end latency of 119 ± 21 ms per frame (~8–9 FPS). Overall, coupling deep learning with probabilistic reasoning yields additive temporal benefits and advances deployable, camera-only crash detection that is cost-efficient and scalable for intelligent transportation systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 2325 KB  
Article
Sampling-Based Adaptive Techniques for Reducing Non-Gaussian Position Errors in GNSS/INS Systems
by Yong Hun Kim, Joo Han Lee, Kyeong Wook Seo, Min Ho Lee and Jin Woo Song
Aerospace 2025, 12(10), 863; https://doi.org/10.3390/aerospace12100863 - 24 Sep 2025
Viewed by 51
Abstract
In this paper, we propose a novel method to reduce non-Gaussian errors in measurements using sampling-based distribution estimation. Although non-Gaussian errors are often treated as statistical deviations, they can frequently arise in practical unmanned aerial systems that depend on global navigation satellite systems [...] Read more.
In this paper, we propose a novel method to reduce non-Gaussian errors in measurements using sampling-based distribution estimation. Although non-Gaussian errors are often treated as statistical deviations, they can frequently arise in practical unmanned aerial systems that depend on global navigation satellite systems (GNSS), where position measurements are degraded by multipath effects. However, nonlinear or robust filters have shown limited effectiveness in correcting such errors, particularly when they appear as persistent biases in measurements over time. In such cases, adaptive techniques have often demonstrated greater effectiveness. The proposed method estimates the distribution of observed measurements using a sampling-based approach and derives a reformed measurement from this distribution. By incorporating this reformed measurement into the filter update, the proposed approach achieves lower error levels than traditional adaptive filters. To validate the effectiveness of the method, Kalman filter simulations are conducted for drone GNSS/INS navigation. The results show that the proposed method outperforms conventional non-Gaussian filters in handling measurement bias caused by non-Gaussian errors. Furthermore, it achieves nearly twice the estimation accuracy compared to adaptive approaches. These findings confirm the robustness of the proposed technique in scenarios where measurement accuracy temporarily deteriorates before recovering. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

23 pages, 7271 KB  
Article
A Hybrid ASW-UKF-TRF Algorithm for Efficient Data Classification and Compression in Lithium-Ion Battery Management Systems
by Bowen Huang, Xueyuan Xie, Jiangteng Yi, Qian Yu, Yong Xu and Kai Liu
Electronics 2025, 14(19), 3780; https://doi.org/10.3390/electronics14193780 - 24 Sep 2025
Viewed by 48
Abstract
Electrochemical energy storage technology, primarily lithium-ion batteries, has been widely applied in large-scale energy storage systems. However, differences in assembly structures, manufacturing processes, and operating environments introduce parameter inconsistencies among cells within a pack, producing complex, high-volume datasets with redundant and fragmented charge–discharge [...] Read more.
Electrochemical energy storage technology, primarily lithium-ion batteries, has been widely applied in large-scale energy storage systems. However, differences in assembly structures, manufacturing processes, and operating environments introduce parameter inconsistencies among cells within a pack, producing complex, high-volume datasets with redundant and fragmented charge–discharge records that hinder efficient and accurate system monitoring. To address this challenge, we propose a hybrid ASW-UKF-TRF framework for the classification and compression of battery data collected from energy storage power stations. First, an adaptive sliding-window Unscented Kalman Filter (ASW-UKF) performs online data cleaning, imputation, and smoothing to ensure temporal consistency and recover missing/corrupted samples. Second, a temporally aware TRF segments the time series and applies an importance-weighted, multi-level compression that formally prioritizes diagnostically relevant features while compressing low-information segments. The novelty of this work lies in combining deployment-oriented engineering robustness with methodological innovation: the ASW-UKF provides context-aware, online consistency restoration, while the TRF compression formalizes diagnostic value in its retention objective. This hybrid design preserves transient fault signatures that are frequently removed by conventional smoothing or generic compressors, while also bounding computational overhead to enable online deployment. Experiments on real operational station data demonstrate classification accuracy above 95% and an overall data volume reduction in more than 60%, indicating that the proposed pipeline achieves substantial gains in monitoring reliability and storage efficiency compared to standard denoising-plus-generic-compression baselines. The result is a practical, scalable workflow that bridges algorithmic advances and engineering requirements for large-scale battery energy storage monitoring. Full article
Show Figures

Figure 1

26 pages, 1605 KB  
Article
Variable Bayesian-Based Maximum Correntropy Criterion Cubature Kalman Filter with Application to Target Tracking
by Yu Ma, Guanghua Zhang, Songtao Ye and Dou An
Entropy 2025, 27(10), 997; https://doi.org/10.3390/e27100997 - 24 Sep 2025
Viewed by 115
Abstract
Target tracking in typical radar applications faces critical challenges in complex environments, including nonlinear dynamics, non-Gaussian noise, and sensor outliers. Current robustness-enhanced approaches remain constrained by empirical kernel tuning and computational trade-offs, failing to achieve balanced noise suppression and real-time efficiency. To address [...] Read more.
Target tracking in typical radar applications faces critical challenges in complex environments, including nonlinear dynamics, non-Gaussian noise, and sensor outliers. Current robustness-enhanced approaches remain constrained by empirical kernel tuning and computational trade-offs, failing to achieve balanced noise suppression and real-time efficiency. To address these limitations, this paper proposes the variational Bayesian-based maximum correntropy criterion cubature Kalman filter (VBMCC-CKF), which integrates variational Bayesian inference with CKF to establish a fully adaptive robust filtering framework for nonlinear systems. The core innovation lies in constructing a joint estimation framework of state and kernel size, where the kernel size is modeled as an inverse-gamma distributed random variable. Leveraging the conjugate properties of Gaussian-inverse gamma distributions, the method synchronously optimizes the state posterior distribution and kernel size parameters via variational Bayesian inference, eliminating reliance on manual empirical adjustments inherent to conventional correntropy-based filters. Simulation confirms the robust performance of the VBMCC-CKF framework in both single and multi-target tracking under non-Gaussian noise conditions. For the single-target case, it achieves a reduction in trajectory average root mean square error (Avg-RMSE) by at least 14.33% compared to benchmark methods while maintaining real-time computational efficiency. Integrated with multi-Bernoulli filtering, the method achieves a 40% lower optimal subpattern assignment (OSPA) distance even under 10-fold covariance mutations, accompanied by superior hit rates (HRs) and minimal trajectory position RMSEs in cluttered environments. These results substantiate its precision and adaptability for dynamic tracking scenarios. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

25 pages, 11424 KB  
Article
AI-Based Optimization of a Neural Discrete-Time Sliding Mode Controller via Bayesian, Particle Swarm, and Genetic Algorithms
by Carlos E. Castañeda
Robotics 2025, 14(9), 128; https://doi.org/10.3390/robotics14090128 - 19 Sep 2025
Viewed by 251
Abstract
This work introduces a unified Artificial Intelligence-based framework for the optimal tuning of gains in a neural discrete-time sliding mode controller (SMC) applied to a two-degree-of-freedom robotic manipulator. The novelty lies in combining surrogate-assisted optimization with normalized search spaces to enable a fair [...] Read more.
This work introduces a unified Artificial Intelligence-based framework for the optimal tuning of gains in a neural discrete-time sliding mode controller (SMC) applied to a two-degree-of-freedom robotic manipulator. The novelty lies in combining surrogate-assisted optimization with normalized search spaces to enable a fair comparative analysis of three metaheuristic strategies: Bayesian Optimization (BO), Particle Swarm Optimization (PSO), and Genetic Algorithms (GAs). The manipulator dynamics are identified via a discrete-time recurrent high-order neural network (NN) trained online using an Extended Kalman Filter with adaptive noise covariance updates, allowing the model to accurately capture unmodeled dynamics, nonlinearities, parametric variations, and process/measurement noise. This neural representation serves as the predictive plant for the discrete-time SMC, enabling precise control of joint angular positions under sinusoidal phase-shifted references. To construct the optimization dataset, MATLAB® simulations sweep the controller gains (k0*,k1*) over a bounded physical domain, logging steady-state tracking errors. These are normalized to mitigate scaling effects and improve convergence stability. Optimization is executed in Python® using integrated scikit-learn, DEAP, and scikit-optimize routines. Simulation results reveal that all three algorithms reach high-performance gain configurations. Here, the combined cost is the normalized aggregate objective J˜ constructed from the steady-state tracking errors of both joints. Under identical experimental conditions (shared data loading/normalization and a single Python pipeline), PSO attains the lowest error in Joint 1 (7.36×105 rad) with the shortest runtime (23.44 s); GA yields the lowest error in Joint 2 (8.18×103 rad) at higher computational expense (≈69.7 s including refinement); and BO is competitive in both joints (7.81×105 rad, 8.39×103 rad) with a runtime comparable to PSO (23.65 s) while using only 50 evaluations. Full article
(This article belongs to the Section AI in Robotics)
Show Figures

Figure 1

15 pages, 2280 KB  
Article
An Environment-Adaptive Multi-Channel Ranging Optimization Algorithm Based on a Multi-Objective Evolutionary Model for Multipath Wireless Sensor Networks
by Xuming Fang and Zuqin Ji
Sensors 2025, 25(18), 5851; https://doi.org/10.3390/s25185851 - 19 Sep 2025
Viewed by 203
Abstract
Recently, high-precision WSN (wireless sensor network) ranging and positioning algorithms based on RSSI (Received Signal Strength Indicator) in complex indoor environments have become a popular research topic. This is because RSSI is easy to obtain and more suitable for the large-scale deployment of [...] Read more.
Recently, high-precision WSN (wireless sensor network) ranging and positioning algorithms based on RSSI (Received Signal Strength Indicator) in complex indoor environments have become a popular research topic. This is because RSSI is easy to obtain and more suitable for the large-scale deployment of WSNs. However, WSN ranging and positioning algorithms using RSSI are severely affected by the presence of noise and multipath effects in complex indoor environments. To reduce multipath effects, a multi-channel ranging algorithm was developed. This algorithm must obtain accurate initial parameter values or the target–reference distance in advance; otherwise, it will fall into local optima. We propose an environment-adaptive algorithm for multi-channel ranging optimization based on an innovative evolutionary model with multiple objectives and an existing adaptive extended Kalman filter. This novel model includes a newly created objective function of the relationship between weighted multi-channel RSSI and node distance, which allows it to achieve globally optimal results without requiring extensive training to obtain accurate initial parameter values or the target–reference distance beforehand. Extensive simulations and experiments show that our proposed algorithm always has much higher ranging accuracy than the existing algorithm, regardless of whether the multi-channel RSSI is regular or the number of paths matches. Full article
Show Figures

Figure 1

21 pages, 1526 KB  
Review
Review of Research on Satellite Clock Bias Prediction Models in GNSS
by Yinhong Lv, Zhijun Meng, Guangming Wang, Mingkai Liu and Enqi Yan
Remote Sens. 2025, 17(18), 3177; https://doi.org/10.3390/rs17183177 - 13 Sep 2025
Viewed by 520
Abstract
As foundational infrastructure for spatiotemporal information, the Global Navigation Satellite System (GNSS) delivers high-precision positioning, navigation, and timing (PNT) services worldwide. However, satellite atomic clock drift causes satellite clock bias, degrading PNT service quality. Compared to post-processed clock bias products and real-time estimation, [...] Read more.
As foundational infrastructure for spatiotemporal information, the Global Navigation Satellite System (GNSS) delivers high-precision positioning, navigation, and timing (PNT) services worldwide. However, satellite atomic clock drift causes satellite clock bias, degrading PNT service quality. Compared to post-processed clock bias products and real-time estimation, satellite clock bias prediction offers a key advantage: it provides high-precision real-time clock bias even in scenarios with limited real-time data or poor communication. Through analysis and summarization of error sources in prediction models, this paper proposed generalized modeling frameworks for both classical and AI-based approaches. We reviewed current research on classical mathematical models—including polynomial, grey, Kalman filter, and time series models—and AI-based models such as machine learning (ML), multilayer perceptron (MLP), recurrent neural networks (RNN), and Transformer architectures. Technical characteristics, applicability, and limitations of each model were discussed. While AI-based models demonstrate superior flexibility and adaptability in complex scenarios compared to classical approaches, they require extensive datasets and computational resources. In conclusion, we summarized the advantages, disadvantages, and future research directions, offering insights for developing next-generation real-time high-precision GNSS PNT services. Full article
Show Figures

Figure 1

38 pages, 5009 KB  
Article
An Adaptive Estimation Model for the States and Loads in Electro-Hydraulic Actuation Systems
by Dimitar Dichev, Borislav Georgiev, Iliya Zhelezarov, Tsanko Karadzhov and Hristo Hristov
Actuators 2025, 14(9), 447; https://doi.org/10.3390/act14090447 - 11 Sep 2025
Viewed by 232
Abstract
In this study, we introduce an advanced framework for state estimation in electro-hydraulic systems, utilizing a structurally adapted Kalman filter. The proposed model was designed to enhance estimation accuracy and robustness under dynamic load variations and evolving measurement conditions. A notable feature of [...] Read more.
In this study, we introduce an advanced framework for state estimation in electro-hydraulic systems, utilizing a structurally adapted Kalman filter. The proposed model was designed to enhance estimation accuracy and robustness under dynamic load variations and evolving measurement conditions. A notable feature of the approach is the algebraic resolution of one system state during each iteration, enabling the seamless inclusion of variables that are otherwise difficult to measure, without disrupting the model’s linear formulation. In addition, the dynamics of the load torque are empirically characterized through a regression-based model derived from experimental observations. The framework integrates adaptive mechanisms for updating the model and measurement error covariance matrices, facilitating the real-time accommodation of system nonlinearities and environmental changes. Experimental results are presented in different operating modes, reflecting characteristic dynamic movements. They show that the method reduced the root mean square error (RMSE) when estimating angular velocity between five and more than six times, depending on the mode. When evaluating the load torque, even in modes with a sharply changing load, the RMSE value remains stable below 0.05 Nm, which indicates the absence of systematic drift and high stability of the estimates. This confirms the stable operation of the algorithm in dynamic conditions and its applicability in real systems. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

42 pages, 8013 KB  
Article
Adaptive Neural Network System for Detecting Unauthorised Intrusions Based on Real-Time Traffic Analysis
by Serhii Vladov, Victoria Vysotska, Vasyl Lytvyn, Anatolii Komziuk, Oleksandr Prokudin and Andrii Ostapiuk
Computation 2025, 13(9), 221; https://doi.org/10.3390/computation13090221 - 11 Sep 2025
Viewed by 295
Abstract
This article solves the anomalies’ operational detection in the network traffic problem for cyber police units by developing an adaptive neural network platform combining a variational autoencoder with continuous stochastic dynamics of the latent space (integration according to the Euler–Maruyama scheme), a continuous–discrete [...] Read more.
This article solves the anomalies’ operational detection in the network traffic problem for cyber police units by developing an adaptive neural network platform combining a variational autoencoder with continuous stochastic dynamics of the latent space (integration according to the Euler–Maruyama scheme), a continuous–discrete Kalman filter for latent state estimation, and Hotelling’s T2 statistical criterion for deviation detection. This paper implements an online learning mechanism (“on the fly”) via the Euler Euclidean gradient step. Verification includes variational autoencoder training and validation, ROC/PR and confusion matrix analysis, latent representation projections (PCA), and latency measurements during streaming processing. The model’s stable convergence and anomalies’ precise detection with the metrics precision is ≈0.83, recall is ≈0.83, the F1-score is ≈0.83, and the end-to-end delay of 1.5–6.5 ms under 100–1000 sessions/s load was demonstrated experimentally. The computational estimate for typical model parameters is ≈5152 operations for a forward pass and ≈38,944 operations, taking into account batch updating. At the same time, the main bottleneck, the O(m3) term in the Kalman step, was identified. The obtained results’ practical significance lies in the possibility of the developed adaptive neural network platform integrating into cyber police units (integration with Kafka, Spark, or Flink; exporting incidents to SIEM or SOAR; monitoring via Prometheus or Grafana) and in proposing applied optimisation paths for embedded and high-load systems. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

16 pages, 2826 KB  
Article
Research on Multi-Sensor Fusion Localization for Forklift AGV Based on Adaptive Weight Extended Kalman Filter
by Qiang Wang, Junqi Wu, Yinghua Liao, Bo Huang, Hang Li and Jiajun Zhou
Sensors 2025, 25(18), 5670; https://doi.org/10.3390/s25185670 - 11 Sep 2025
Viewed by 306
Abstract
This study addresses the problem localization deviation caused by cumulative wheel odometry errors in Automated Guided Vehicles (AGVs) operating in complex environments by proposing an adaptive localization method based on multi-sensor fusion. Within an Extended Kalman Filter (EKF) framework, the proposed approach integrates [...] Read more.
This study addresses the problem localization deviation caused by cumulative wheel odometry errors in Automated Guided Vehicles (AGVs) operating in complex environments by proposing an adaptive localization method based on multi-sensor fusion. Within an Extended Kalman Filter (EKF) framework, the proposed approach integrates internal sensor predictions with external positioning data corrections, employing an adaptive weighting algorithm to dynamically adjust the contributions of different sensors. This effectively suppresses errors induced by factors such as ground friction and uneven terrain. The experimental results demonstrate that the method achieves a localization accuracy of 13 mm, and the simulation results show a higher accuracy of 10 mm under idealized conditions. The minor discrepancy is attributed to unmodeled noise and systematic errors in the complex real-world environment, thus validating the robustness of the proposed approach while maintaining robustness against challenges such as Non-Line-of-Sight (NLOS) obstructions and low-light conditions. The synergistic combination of LiDAR and odometry not only ensures data accuracy but also enhances system stability, providing a reliable navigation solution for AGVs in industrial settings. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

18 pages, 2420 KB  
Article
Variational Bayesian Innovation Saturation Kalman Filter for Micro-Electro-Mechanical System–Inertial Navigation System/Polarization Compass Integrated Navigation
by Yu Sun, Xiaojie Liu, Xiaochen Liu, Huijun Zhao, Chenguang Wang, Huiliang Cao and Chong Shen
Micromachines 2025, 16(9), 1036; https://doi.org/10.3390/mi16091036 - 10 Sep 2025
Viewed by 402
Abstract
Aiming at the issue of time-varying measurement noise with heavy-tailed characteristics and outliers generated by the polarization compass (PC) in the micro-electro-mechanical system–inertial navigation system (MEMS-INS) and PC-integrated navigation system when it is subject to internal and external disturbances, an improved Variational Bayesian [...] Read more.
Aiming at the issue of time-varying measurement noise with heavy-tailed characteristics and outliers generated by the polarization compass (PC) in the micro-electro-mechanical system–inertial navigation system (MEMS-INS) and PC-integrated navigation system when it is subject to internal and external disturbances, an improved Variational Bayesian Innovation Saturation Robust Adaptive Kalman filter (VISKF) algorithm is proposed. This algorithm utilizes the variational Bayesian (VB) method based on Student’s t-distribution (STD) to approximately calculate the statistical characteristics of the time-varying measurement noise of the PC, thereby obtaining more accurate measurement noise statistical parameters. Additionally, the algorithm introduces an innovation saturation function and proposes an adaptive update strategy for the saturation boundary. It mitigates the problem of innovation value divergence in PC caused by outliers through a two-layer structure that can track the changes in the innovation value to adaptively adjust the saturation boundary. To verify the effectiveness of the algorithm, static and dynamic experiments were conducted on an unmanned vehicle. The experimental results show that compared with adaptive Kalman filter (AKF), variational Bayesian robust adaptive Kalman filter (VBRAKF), and innovation saturate robust adaptive Kalman filter (ISRAKF), the proposed algorithm improves the dynamic orientation accuracy by 76.89%, 67.23%, and 84.45%, respectively. Moreover, compared with other similar target algorithms, the proposed algorithm also has obvious advantages. Therefore, this method can significantly improve the navigation accuracy and robustness of the INS/PC integrated navigation system in complex environments. Full article
(This article belongs to the Special Issue MEMS Inertial Device, 2nd Edition)
Show Figures

Figure 1

17 pages, 2856 KB  
Article
An Adaptive Grid-Forming Control Strategy Based on Capacitor Energy State Estimation
by Xinghu Liu, Yingying Chen and Yongfeng Fu
Batteries 2025, 11(9), 337; https://doi.org/10.3390/batteries11090337 - 9 Sep 2025
Viewed by 431
Abstract
Conventional grid-forming (GFM) inverter control strategies often rely on fixed parameters and overlook the dynamic variation in energy stored in the DC link capacitor. This limitation can degrade transient performance and stability, particularly under power fluctuations and grid disturbances in renewable energy systems. [...] Read more.
Conventional grid-forming (GFM) inverter control strategies often rely on fixed parameters and overlook the dynamic variation in energy stored in the DC link capacitor. This limitation can degrade transient performance and stability, particularly under power fluctuations and grid disturbances in renewable energy systems. To address this issue, this paper proposes an adaptive GFM control method that integrates real-time estimation of the DC link capacitor energy into the control loop. A Kalman filter-based observer is designed to estimate the capacitor energy state accurately and robustly using only local voltage and current measurements. The estimated energy deviation is then used to dynamically adjust key control parameters, including the virtual inertia and droop coefficients in the virtual synchronous generator (VSG) framework. These adaptive adjustments enhance the inverter’s damping and inertial behavior according to the internal energy buffer, improving performance under variable operating conditions. Simulation results in MATLAB/Simulink R2023b demonstrate that the proposed method significantly reduces power and voltage overshoots, shortens settling time, and improves DC link voltage regulation compared to conventional fixed-parameter control. Full article
Show Figures

Figure 1

Back to TopTop