Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (959)

Search Parameters:
Keywords = ada boost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1829 KB  
Proceeding Paper
Machine Learning Based Agricultural Price Forecasting for Major Food Crops in India Using Environmental and Economic Factors
by P. Ankit Krishna, Gurugubelli V. S. Narayana, Siva Krishna Kotha and Debabrata Pattnayak
Biol. Life Sci. Forum 2025, 54(1), 7; https://doi.org/10.3390/blsf2025054007 - 12 Jan 2026
Abstract
The contemporary agricultural market is profoundly volatile, where agricultural prices are based on a complex supply chain, climatic irregularity or unscheduled market demand. Prices of crops need to be predicted in a reliable and timely manner for farmers, policy-makers and other stakeholders to [...] Read more.
The contemporary agricultural market is profoundly volatile, where agricultural prices are based on a complex supply chain, climatic irregularity or unscheduled market demand. Prices of crops need to be predicted in a reliable and timely manner for farmers, policy-makers and other stakeholders to take evidence-based decisions ultimately for the benefit towards sustainable agriculture and economic sustainability. Objective: The objective of this study is to develop and evaluate a comprehensive machine learning model for predicting agricultural prices incorporating logistic, economic and environmental considerations. It is the desire to make agriculture more profitable by building simple and accurate forecasting models. Methods: An assorted dataset was collected, which covers major factors to constitute the dataset of temperature, rainfall, fertiliser use, pest and disease attack level, cost of transportation, market demand-supply ratio and regional competitiveness. The data was subjected to pre-processing and feature extraction for quality control/quality assurance. Several machine learning models (Linear Regression, Support Vector Machines, AdaBoost, Random Forest, and XGBoost) were trained and evaluated using performance metrics such as R2 score, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Results: Out of the model approaches that were analysed, predictive performance was superior for XGBoost (with an R2 Score of 0.94, RMSE of 12.8 and MAE of 8.6). To generate accurate predictions, the ability to account for complex non-linear relationships between market and environmental information was necessary. Conclusions: The forecast model of the XGBoost-based prediction system is reliable, of low complexity and widely applicable to large-scale real-time forecasting of agricultural monitoring. The model substantially reduces the uncertainty of price forecasting, and does so by including multivariate environmental and economic aspects that permit more profitable management practices in a schedule for future sustainable agriculture. Full article
(This article belongs to the Proceedings of The 3rd International Online Conference on Agriculture)
Show Figures

Figure 1

21 pages, 493 KB  
Article
Flexible Target Prediction for Quantitative Trading in the American Stock Market: A Hybrid Framework Integrating Ensemble Models, Fusion Models and Transfer Learning
by Keyue Yan, Zihuan Yue, Chi Chong Wu, Qiqiao He, Jiaming Zhou, Zhihao Hao and Ying Li
Entropy 2026, 28(1), 84; https://doi.org/10.3390/e28010084 - 11 Jan 2026
Abstract
Stock price prediction is a core challenge in quantitative finance. While machine learning has advanced the modeling of complex financial time series, existing methods often rely on single-target predictions, underutilize multidimensional market information, and are disconnected from practical trading systems. To address these [...] Read more.
Stock price prediction is a core challenge in quantitative finance. While machine learning has advanced the modeling of complex financial time series, existing methods often rely on single-target predictions, underutilize multidimensional market information, and are disconnected from practical trading systems. To address these gaps, this research develops a hybrid machine learning framework for flexible target forecasting and systematic trading of major American technology stocks. The framework integrates Ensemble Models (AdaBoost, Decision Tree, LightGBM, Random Forest, XGBoost) with Fusion Models (Voting, Stacking, Blending) and introduces a Transfer Learning method enhanced by Dynamic Time Warping to facilitate knowledge sharing across assets, improving robustness. Focusing on ten key stocks, we forecast three distinct momentum indicators: next-day Closing Price Difference, Moving Average Difference, and Exponential Moving Average Difference. Empirical results demonstrate that the proposed Transfer Learning approach achieves superior predictive performance and trading simulations confirm that strategies based on these predicted momentum signals generate substantial returns. This research demonstrates that the proposed hybrid machine learning framework can mitigate the high information entropy inherent in financial markets, offering a systematic and practical method for integrating machine learning with quantitative trading. Full article
(This article belongs to the Special Issue Entropy, Artificial Intelligence and the Financial Markets)
18 pages, 5050 KB  
Article
Decision Tree-Based Pilot Workload Prediction Through Optimized HRV Features Selection
by Carmelo Rosario Vindigni, Giuseppe Iacolino, Antonio Esposito, Calogero Orlando and Andrea Alaimo
Aerospace 2026, 13(1), 73; https://doi.org/10.3390/aerospace13010073 - 9 Jan 2026
Viewed by 64
Abstract
This research explores the use of physiological signals derived from heart activity to assess mental effort during flight-related tasks. Data were collected through wearable sensors during simulations with varying cognitive demands. Specific indicators related to heart rate variability (HRV) were extracted and tested [...] Read more.
This research explores the use of physiological signals derived from heart activity to assess mental effort during flight-related tasks. Data were collected through wearable sensors during simulations with varying cognitive demands. Specific indicators related to heart rate variability (HRV) were extracted and tested in different combinations to identify those most relevant for distinguishing levels of mental workload (WL). A Random Forest (RF) ensemble method is applied to classify two conditions, and its performance is examined under various settings, including model complexity and data partitioning strategies. Results showed that certain feature pairs significantly enhanced classification accuracy. The best features settings obtained from the RF are then used to train the other two decision trees-based classifiers, namely the AdaBoost and the XGBoost. Moreover, the decision trees models output is compared with predictions from a Kriging spatial interpolation technique, showing superior results in terms of reliability and consistency. This study highlights the potential of using heart-based physiological data and advanced classification techniques for developing intelligent support systems in aviation. Full article
(This article belongs to the Section Aeronautics)
23 pages, 3238 KB  
Article
Agricultural Injury Severity Prediction Using Integrated Data-Driven Analysis: Global Versus Local Explainability Using SHAP
by Omer Mermer, Yanan Liu, Charles A. Jennissen, Milan Sonka and Ibrahim Demir
Safety 2026, 12(1), 6; https://doi.org/10.3390/safety12010006 - 8 Jan 2026
Viewed by 92
Abstract
Despite the agricultural sector’s consistently high injury rates, formal reporting is often limited, leading to sparse national datasets that hinder effective safety interventions. To address this, our study introduces a comprehensive framework leveraging advanced ensemble machine learning (ML) models to predict and interpret [...] Read more.
Despite the agricultural sector’s consistently high injury rates, formal reporting is often limited, leading to sparse national datasets that hinder effective safety interventions. To address this, our study introduces a comprehensive framework leveraging advanced ensemble machine learning (ML) models to predict and interpret the severity of agricultural injuries. We use a unique, manually curated dataset of over 2400 agricultural incidents from AgInjuryNews, a public repository of news reports detailing incidents across the United States. We evaluated six ensemble models, including Gradient Boosting (GB), eXtreme Grading Boosting (XGB), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost), Histogram-based Gradient Boosting Regression Trees (HistGBRT), and Random Forest (RF), for their accuracy in classifying injury outcomes as fatal or non-fatal. A key contribution of our work is the novel integration of explainable artificial intelligence (XAI), specifically SHapley Additive exPlanations (SHAP), to overcome the “black-box” nature of complex ensemble models. The models demonstrated strong predictive performance, with most achieving an accuracy of approximately 0.71 and an F1-score of 0.81. Through global SHAP analysis, we identified key factors influencing injury severity across the dataset, such as the presence of helmet use, victim age, and the type of injury agent. Additionally, our application of local SHAP analysis revealed how specific variables like location and the victim’s role can have varying impacts depending on the context of the incident. These findings provide actionable, context-aware insights for developing targeted policy and safety interventions for a range of stakeholders, from first responders to policymakers, offering a powerful tool for a more proactive approach to agricultural safety. Full article
(This article belongs to the Special Issue Farm Safety, 2nd Edition)
Show Figures

Figure 1

14 pages, 1545 KB  
Article
CAR Intrinsic Design Pre-Shapes Transcriptional and Metabolic Networks in CAR T Cells
by Didem Agac Cobanoglu, Samantha Franklin, Yue Hu, Devon J. Boland and Xiaotong Song
Metabolites 2026, 16(1), 52; https://doi.org/10.3390/metabo16010052 - 7 Jan 2026
Viewed by 101
Abstract
Background/Objectives: Chimeric antigen receptor (CAR) T cells are a powerful cancer therapy, but their function depends heavily on internal signaling domains and metabolic adaptability. Most studies evaluate CAR behavior upon antigen exposure, yet intrinsic signaling properties may pre-program CAR T cell states even [...] Read more.
Background/Objectives: Chimeric antigen receptor (CAR) T cells are a powerful cancer therapy, but their function depends heavily on internal signaling domains and metabolic adaptability. Most studies evaluate CAR behavior upon antigen exposure, yet intrinsic signaling properties may pre-program CAR T cell states even in the absence of stimulation. This study investigates how CAR design and metabolic support shape baseline transcriptional programs, focusing on tonic signaling and NF-κB-related pathways. Methods: We engineered CAR T cells targeting HER2 or GPC3 antigens, incorporating either 4-1BB or CD28 co-stimulatory domains, respectively. A subset of cells was further modified with adenosine deaminase 1 (ADA1) and CD26 to degrade extracellular adenosine and supply inosine, a metabolic strategy termed metabolic refueling (MR). Bulk RNA-seq was performed on resting T cells without antigen stimulation. We analyzed differential gene expression, gene set enrichment (GO, KEGG, Hallmarks), and transcription factor activity (DoRothEA) to assess the impact of CAR design and MR on T cell programming. Results: All CAR T cells exhibited activation of NF-κB–centered inflammatory programs at baseline, indicating tonic signaling. GPC3 CAR T cells showed stronger baseline activation than HER2 CAR T cells. Metabolic refueling amplified these programs without altering their directionality, enhancing inflammatory, survival, and effector modules. Transcription factor activity scores mirrored these trends, highlighting RELA, FOS, and STATs as key regulatory nodes. Conclusions: CAR-intrinsic features, notably co-stimulatory domain choice, define the tonic NF-κB activation tone in resting CAR T cells. Metabolic refueling boosts these baseline states without overstimulation, suggesting it may be especially valuable for weaker CAR constructs. These findings provide a framework for tuning CAR T cell function through combinatorial design strategies targeting signaling and metabolism. Full article
Show Figures

Figure 1

22 pages, 1021 KB  
Article
A Multiclass Machine Learning Framework for Detecting Routing Attacks in RPL-Based IoT Networks Using a Novel Simulation-Driven Dataset
by Niharika Panda and Supriya Muthuraman
Future Internet 2026, 18(1), 35; https://doi.org/10.3390/fi18010035 - 7 Jan 2026
Viewed by 169
Abstract
The use of resource-constrained Low-Power and Lossy Networks (LLNs), where the IPv6 Routing Protocol for LLNs (RPL) is the de facto routing standard, has increased due to the Internet of Things’ (IoT) explosive growth. Because of the dynamic nature of IoT deployments and [...] Read more.
The use of resource-constrained Low-Power and Lossy Networks (LLNs), where the IPv6 Routing Protocol for LLNs (RPL) is the de facto routing standard, has increased due to the Internet of Things’ (IoT) explosive growth. Because of the dynamic nature of IoT deployments and the lack of in-protocol security, RPL is still quite susceptible to routing-layer attacks like Blackhole, Lowered Rank, version number manipulation, and Flooding despite its lightweight architecture. Lightweight, data-driven intrusion detection methods are necessary since traditional cryptographic countermeasures are frequently unfeasible for LLNs. However, the lack of RPL-specific control-plane semantics in current cybersecurity datasets restricts the use of machine learning (ML) for practical anomaly identification. In order to close this gap, this work models both static and mobile networks under benign and adversarial settings by creating a novel, large-scale multiclass RPL attack dataset using Contiki-NG’s Cooja simulator. To record detailed packet-level and control-plane activity including DODAG Information Object (DIO), DODAG Information Solicitation (DIS), and Destination Advertisement Object (DAO) message statistics along with forwarding and dropping patterns and objective-function fluctuations, a protocol-aware feature extraction pipeline is developed. This dataset is used to evaluate fifteen classifiers, including Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), k-Nearest Neighbors (KNN), Random Forest (RF), Extra Trees (ET), Gradient Boosting (GB), AdaBoost (AB), and XGBoost (XGB) and several ensemble strategies like soft/hard voting, stacking, and bagging, as part of a comprehensive ML-based detection system. Numerous tests show that ensemble approaches offer better generalization and prediction performance. With overfitting gaps less than 0.006 and low cross-validation variance, the Soft Voting Classifier obtains the greatest accuracy of 99.47%, closely followed by XGBoost with 99.45% and Random Forest with 99.44%. Full article
Show Figures

Graphical abstract

11 pages, 1541 KB  
Article
Artificial Intelligence and FLIP Panometry—Automated Classification of Esophageal Motility Patterns
by Miguel Mascarenhas, Francisco Mendes, João Rala Cordeiro, Joana Mota, Miguel Martins, Maria João Almeida, Catarina Araujo, Joana Frias, Pedro Cardoso, Ismael El Hajra, António Pinto da Costa, Virginia Matallana, Constanza Ciriza de Los Rios, João Ferreira, Miguel Mascarenhas Saraiva, Guilherme Macedo, Benjamin Niland and Cecilio Santander
J. Clin. Med. 2026, 15(1), 401; https://doi.org/10.3390/jcm15010401 - 5 Jan 2026
Viewed by 169
Abstract
Background/Objectives: Functional lumen imaging probe (FLIP) panometry allows real-time assessment of the esophagogastric junction opening and esophageal body contractile activity during an endoscopic procedure. Despite the development of the Dallas Consensus, FLIP panometry analysis remains complex. Artificial intelligence (AI) models have proven [...] Read more.
Background/Objectives: Functional lumen imaging probe (FLIP) panometry allows real-time assessment of the esophagogastric junction opening and esophageal body contractile activity during an endoscopic procedure. Despite the development of the Dallas Consensus, FLIP panometry analysis remains complex. Artificial intelligence (AI) models have proven their benefit in high-resolution esophageal manometry; however, data on their role in FLIP panometry are scarce. This study aims to develop an AI model for automatic classification of motility patterns during a FLIP panometry exam. Methods: A total of 105 exams from five centers from both the European and American continents were included. Several machine learning models were trained and evaluated for detection of FLIP panometry patterns. Each exam was classified with an expert consensus-based decision according to the Dallas Consensus, with division into a training and testing dataset in a patient-split design. Models’ performance was evaluated through their accuracy and area under the receiver-operating characteristic curve (AUC-ROC). Results: Pathological planimetry patterns were identified by an AdaBoost Classifier with 84.9% accuracy and a mean AUC-ROC of 0.92. Random Forest identified disorders of the esophagogastric junction opening with 86.7% accuracy and an AUC-ROC of 0.973. The Gradient Boosting Classifier identified disorders of the contractile response with 86.0% accuracy and an AUC-ROC of 0.933. Conclusions: In this study, integrating exams with different probe sizes and demographic contexts, a machine learning model accurately classified FLIP panometry exams according to the Dallas Consensus. AI-driven FLIP panometry could revolutionize the approach to this exam during an endoscopic procedure, optimizing exam accuracy, standardization, and accessibility, and transforming patient management. Full article
Show Figures

Figure 1

27 pages, 7522 KB  
Article
Prediction of the Unconfined Compressive Strength of One-Part Geopolymer-Stabilized Soil Under Acidic Erosion: Comparison of Multiple Machine Learning Models
by Jidong Zhang, Guo Hu, Junyi Zhang and Jun Wu
Materials 2026, 19(1), 209; https://doi.org/10.3390/ma19010209 - 5 Jan 2026
Viewed by 132
Abstract
This study employed machine learning to investigate the mechanical behavior of one-part geopolymer (OPG)-stabilized soil subjected to acid erosion. Based on the unconfined compressive strength (UCS) data of acid-eroded OPG-stabilized soil, eight machine learning models, namely, Adaptive Boosting (AdaBoost), Decision Tree (DT), Extra [...] Read more.
This study employed machine learning to investigate the mechanical behavior of one-part geopolymer (OPG)-stabilized soil subjected to acid erosion. Based on the unconfined compressive strength (UCS) data of acid-eroded OPG-stabilized soil, eight machine learning models, namely, Adaptive Boosting (AdaBoost), Decision Tree (DT), Extra Trees (ET), Gradient Boosting (GB), Light Gradient Boosting Machine (LightGBM), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), along with hyper-parameter optimization by Genetic Algorithm (GA), were used to predict the degradation of the UCS of OPG-stabilized soils under different durations of acid erosion. The results showed that GA-SVM (R2 = 0.9960, MAE = 0.0289) and GA-XGBoost (R2 = 0.9961, MAE = 0.0282) achieved the highest prediction accuracy. SHAP analysis further revealed that solution pH was the dominant factor influencing UCS, followed by the FA/GGBFS ratio, acid-erosion duration, and finally, acid type. The 2D PDP combined with SEM images showed that the microstructure of samples eroded by HNO3 was marginally denser than that of samples eroded by H2SO4, yielding a slightly higher UCS. At an FA/GGBFS ratio of 0.25, abundant silica and hydration products formed a dense matrix and markedly improved acid resistance. Further increases in FA content reduced hydration products and caused a sharp drop in UCS. Extending the erosion period from 0 to 120 days and decreasing the pH from 4 to 2 enlarged the pore network and diminished hydration products, resulting in the greatest UCS reduction. The results of the study provide a new idea for applying the ML model in geoengineering to predict the UCS performance of geopolymer-stabilized soils under acidic erosion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 465 KB  
Article
Using QR Codes for Payment Card Fraud Detection
by Rachid Chelouah and Prince Nwaekwu
Information 2026, 17(1), 39; https://doi.org/10.3390/info17010039 - 4 Jan 2026
Viewed by 200
Abstract
Debit and credit card payments have become the preferred method of payment for consumers, replacing paper checks and cash. However, this shift has also led to an increase in concerns regarding identity theft and payment security. To address these challenges, it is crucial [...] Read more.
Debit and credit card payments have become the preferred method of payment for consumers, replacing paper checks and cash. However, this shift has also led to an increase in concerns regarding identity theft and payment security. To address these challenges, it is crucial to develop an effective, secure, and reliable payment system. This research presents a comprehensive study on payment card fraud detection using deep learning techniques. The introduction highlights the significance of a strong financial system supported by a quick and secure payment system. It emphasizes the need for advanced methods to detect fraudulent activities in card transactions. The proposed methodology focuses on the conversion of a comma-separated values (CSV) dataset into quick response (QR) code images, enabling the application of deep neural networks and transfer learning. This representation allows leveraging pre-trained image-based architectures to provide a layer of privacy by encoding numeric transaction attributes into visual patterns. The feature extraction process involves the use of a convolutional neural network, specifically a residual network architecture. The results obtained through the under-sampling dataset balancing method revealed promising performance in terms of precision, accuracy, recall, and F1 score for the traditional models such as K-nearest neighbors (KNN), Decision tree, Random Forest, AdaBoost, Bagging, and Gaussian Naive Bayes. Furthermore, the proposed deep neural network model achieved high precision, indicating its effectiveness in detecting card fraud. The model also achieved high accuracy, recall, and F1 score, showcasing its superior performance compared to traditional machine learning models. In summary, this research contributes to the field of payment card fraud detection by leveraging deep learning techniques. The proposed methodology offers a sophisticated approach to detecting fraudulent activities in card payment systems, addressing the growing concerns of identity theft and payment security. By deploying the trained model in an Android application, real-time fraud detection becomes possible, further enhancing the security of card transactions. The findings of this study provide insights and avenues for future advancements in the field of payment card fraud detection. Full article
(This article belongs to the Section Information Security and Privacy)
Show Figures

Figure 1

32 pages, 1816 KB  
Article
Pragmatic Models for Detection of Hypertension Using Ballistocardiograph Signals and Machine Learning
by Sunil Kumar Prabhakar and Dong-Ok Won
Bioengineering 2026, 13(1), 43; https://doi.org/10.3390/bioengineering13010043 - 30 Dec 2025
Viewed by 224
Abstract
To identify hypertension, Ballistocardiograph (BCG) signals can be primarily utilized. The BCG signal must be thoroughly understood and interpreted so that its application in the classification process could become clearer and more distinct. Various unhealthy habits such as excess consumption of alcohol and [...] Read more.
To identify hypertension, Ballistocardiograph (BCG) signals can be primarily utilized. The BCG signal must be thoroughly understood and interpreted so that its application in the classification process could become clearer and more distinct. Various unhealthy habits such as excess consumption of alcohol and tobacco, accompanied by a lack of good diet and a sedentary lifestyle, lead to hypertension. Common symptoms of hypertension include chest pain, shortness of breath, blurred vision, mood swings, frequent urination, etc. In this work, two pragmatic models are proposed for the detection of hypertension using BCG signals and machine learning models. The first model uses K-means clustering, the maximum overlap discrete wavelet transform (MODWT) and the Empirical Wavelet Transform (EWT) techniques for feature extraction, followed by the Binary Tunicate Swarm Algorithm (BTSA) and Information Gain (IG) for feature selection, as well as two efficient hybrid classifiers such as the Hybrid AdaBoost–-Maximum Uncertainty Linear Discriminant Analysis (MULDA) classifier and the Hybrid AdaBoost–Random Forest (RF) classifier for the classification of BCG signals. The second model uses Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA) and the Random Feature Mapping (RFM) technique for feature extraction, followed by IG and the Aquila Optimization Algorithm (AOA) for feature selection, as well as two versatile hybrid classifiers such as the Hybrid AutoRegressive Integrated Moving Average (ARIMA)–AdaBoost classifier and the Time-weighted Hybrid AdaBoost–Support Vector Machine (TW-HASVM) classifier for the classification of BCG signals. The proposed methodology was tested on a publicly available BCG dataset, and the best results were obtained when the KPCA feature extraction technique was used with the AOA feature selection technique and classified using the Hybrid ARIMA–AdaBoost classifier, reporting a good classification accuracy of 96.89%. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

19 pages, 6764 KB  
Article
A Dual-Validation Framework for Temporal Robustness Assessment in Brain–Computer Interfaces for Motor Imagery
by Mohamed A. Hanafy, Saykhun Yusufjonov, Payman SharafianArdakani, Djaykhun Yusufjonov, Madan M. Rayguru and Dan O. Popa
Technologies 2025, 13(12), 595; https://doi.org/10.3390/technologies13120595 - 18 Dec 2025
Viewed by 424
Abstract
Brain–computer interfaces using motor imagery (MI-BCIs) offer a promising noninvasive communication pathway between humans and engineered equipment such as robots. However, for MI-BCIs based on electroencephalography (EEG), the reliability of the interface across recording sessions is limited by temporal non-stationary effects. Overcoming this [...] Read more.
Brain–computer interfaces using motor imagery (MI-BCIs) offer a promising noninvasive communication pathway between humans and engineered equipment such as robots. However, for MI-BCIs based on electroencephalography (EEG), the reliability of the interface across recording sessions is limited by temporal non-stationary effects. Overcoming this barrier is critical to translating MI-BCIs from controlled laboratory environments to practical uses. In this paper, we present a comprehensive dual-validation framework to rigorously evaluate the temporal robustness of EEG signals of an MI-BCI. We collected data from six participants performing four motor imagery tasks (left/right hand and foot). Features were extracted using Common Spatial Patterns, and ten machine learning classifiers were assessed within a unified pipeline. Our method integrates within-session evaluation (stratified K-fold cross-validation) with cross-session testing (bidirectional train/test), complemented by stability metrics and performance heterogeneity assessment. Findings reveal minimal performance loss between conditions, with an average accuracy drop of just 2.5%. The AdaBoost classifier achieved the highest within-session performance (84.0% system accuracy, F1-score: 83.8%/80.9% for hand/foot), while the K-nearest neighbors (KNN) classifier demonstrated the best cross-session robustness (81.2% system accuracy, F1-score: 80.5%/80.2% for hand/foot, 0.663 robustness score). This study shows that robust performance across sessions is attainable for MI-BCI evaluation, supporting the pathway toward reliable, real-world clinical deployment. Full article
(This article belongs to the Collection Selected Papers from the PETRA Conference Series)
Show Figures

Figure 1

19 pages, 376 KB  
Article
Net Rural Migration Classification in Colombia Using Supervised Decision Tree Algorithms
by Juan M. Sánchez, Helbert E. Espitia and Cesar L. González
Algorithms 2025, 18(12), 797; https://doi.org/10.3390/a18120797 - 16 Dec 2025
Viewed by 212
Abstract
This study presents a decision tree model-based approach to classify rural net migration across Colombian departments using sociodemographic and economic variables. In the model formulation, immigration is considered the movement of people to a destination area to settle there, while emigration is the [...] Read more.
This study presents a decision tree model-based approach to classify rural net migration across Colombian departments using sociodemographic and economic variables. In the model formulation, immigration is considered the movement of people to a destination area to settle there, while emigration is the movement of people from that specific area to other places. The target variable was defined as a binary category representing positive (when the immigration is greater than emigration) or negative net migration. Four classification models were trained and evaluated: Decision Tree, Random Forest, AdaBoost, and XGBoost. Data were preprocessed using cleaning techniques, categorical variable encoding, and class balance assessment. Model performance was evaluated using various metrics, including accuracy, precision, sensitivity, F1 score, and the area under the ROC curve. The results show that Random Forest achieves the highest accuracy, precision, sensitivity, and F1 score in the 10-variable and 15-variable settings, while XGBoost is competitive but not dominant. Furthermore, the importance of the model was analyzed to identify key factors influencing migration patterns. This approach allows for a more precise understanding of regional migration dynamics in Colombia and can serve as a basis for designing informed public policies. Full article
(This article belongs to the Special Issue Algorithms in Data Classification (3rd Edition))
Show Figures

Figure 1

16 pages, 2489 KB  
Article
Prediction of Breast Radiation Absorbed Dose Chest CT Examinations Using Machine Learning Techniques
by Sevgi Ünal, Remzi Gürfidan, Merve Gürsoy Bulut and Mustafa Fazıl Gelal
Tomography 2025, 11(12), 142; https://doi.org/10.3390/tomography11120142 - 16 Dec 2025
Viewed by 297
Abstract
Background/Objectives: The breast is a highly radiosensitive organ that is directly exposed to ionizing radiation during chest computed tomography (CT) examinations. Excessive radiation exposure increases the risk of radiation-induced malignancies, highlighting the importance of accurate and patient-specific dose estimation. This study aims [...] Read more.
Background/Objectives: The breast is a highly radiosensitive organ that is directly exposed to ionizing radiation during chest computed tomography (CT) examinations. Excessive radiation exposure increases the risk of radiation-induced malignancies, highlighting the importance of accurate and patient-specific dose estimation. This study aims to estimate the effective radiation dose absorbed by the breast during chest CT examinations using a machine learning (ML)-based personalized prediction approach. Methods: In this retrospective study, a total of 653 female patients who underwent both mammography and chest CT between 2020 and 2024 were included. A structured database was created incorporating demographic and anatomical parameters, including body weight, height, body mass index (BMI), and breast thickness (mm) obtained from mammography, along with dose length product (DLP) values from chest CT scans. Five regression-based ML algorithms—CatBoost, Gradient Boosting, Extra Trees, AdaBoost, and Random Forest—were implemented to predict breast radiation dose. Model performance was evaluated using Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination (R2). Results: Among the evaluated models, the CatBoost algorithm optimized with Particle Swarm Optimization (CatBoostPSO) achieved the best overall predictive performance, yielding the lowest MSE (0.3795), MAE (0.3846), and MAPE (4.37%), along with the highest R2 value (0.9875). CatBoost and Gradient Boosting models demonstrated predictions most closely aligned with ground truth values, indicating that ensemble-based and dynamically optimized models are particularly effective for breast dose estimation. Conclusions: The proposed machine learning framework enables rapid, accurate, and clinically applicable estimation of breast radiation dose during chest CT examinations. This patient-specific approach has strong potential to support personalized radiation dose monitoring and optimization strategies, contributing to improved radiation safety in clinical practice. Full article
Show Figures

Figure 1

7 pages, 1511 KB  
Brief Report
Machine Learning Prediction of Recurrent Vasovagal Syncope in Children Using Heart Rate Variability and Anthropometric Data—A Pilot Study
by Piotr Wieniawski, Jakub S. Gąsior, Maciej Rosoł, Marcel Młyńczak, Ewa Smereczyńska-Wierzbicka, Anna Piórecka-Makuła and Radosław Pietrzak
Mach. Learn. Knowl. Extr. 2025, 7(4), 166; https://doi.org/10.3390/make7040166 - 15 Dec 2025
Viewed by 413
Abstract
Vasovagal syncope (VVS) affects 17% of children, significantly impairing quality of life. Machine learning (ML) models achieve high predictive accuracy of VVS in adults using blood pressure (BP) monitoring, but pediatric implementation remains challenging. The aim of the study was to evaluate whether [...] Read more.
Vasovagal syncope (VVS) affects 17% of children, significantly impairing quality of life. Machine learning (ML) models achieve high predictive accuracy of VVS in adults using blood pressure (BP) monitoring, but pediatric implementation remains challenging. The aim of the study was to evaluate whether ML models incorporating anthropometric data and heart rate variability (HRV) can predict VVS without BP monitoring in children with prior syncope or suspected VVS. We analyzed 87 participants (7–18 years) with VVS history. HRV indices (time-domain, frequency-domain, and nonlinear) were extracted from 5 min supine and standing ECG recordings using NeuroKit2. Multiple algorithms were tested with 10-fold cross-validation; SHAP analysis identified feature importance. AdaBoost achieved the performance of 71.0% accuracy, 76.3% sensitivity, and 63.3% specificity—78% of adult BP-dependent algorithm sensitivity. Weight, multifractal detrended fluctuation analysis during standing, and normalized low-frequency power were most influential. Alterations in symbolic dynamics and multiscale entropy indicated compromised autonomic complexity. ML models with anthropometric and HRV data show potential as an adjunctive screening tool to identify children at higher risk for syncope recurrence, requiring clinical confirmation. Full article
Show Figures

Figure 1

29 pages, 8414 KB  
Article
Optimized Explainable Machine Learning Protocol for Battery State-of-Health Prediction Based on Electrochemical Impedance Spectra
by Lamia Akther, Md Shafiul Alam, Mohammad Ali, Mohammed A. AlAqil, Tahmida Khanam and Md. Feroz Ali
Electronics 2025, 14(24), 4869; https://doi.org/10.3390/electronics14244869 - 10 Dec 2025
Viewed by 507
Abstract
Monitoring the battery state of health (SOH) has become increasingly important for electric vehicles (EVs), renewable storage systems, and consumer gadgets. It indicates the residual usable capacity and performance of a battery in relation to its original specifications. This information is crucial for [...] Read more.
Monitoring the battery state of health (SOH) has become increasingly important for electric vehicles (EVs), renewable storage systems, and consumer gadgets. It indicates the residual usable capacity and performance of a battery in relation to its original specifications. This information is crucial for the safety and performance enhancement of the overall system. This paper develops an explainable machine learning protocol with Bayesian optimization techniques trained on electrochemical impedance spectroscopy (EIS) data to predict battery SOH. Various robust ensemble algorithms, including HistGradientBoosting (HGB), Random Forest, AdaBoost, Extra Trees, Bagging, CatBoost, Decision Tree, LightGBM, Gradient Boost, and XGB, have been developed and fine-tuned for predicting battery health. Eight comprehensive metrics are employed to estimate the model’s performance rigorously: coefficient of determination (R2), mean squared error (MSE), median absolute error (medae), mean absolute error (MAE), correlation coefficient (R), Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), and root mean squared error (RMSE). Bayesian optimization techniques were developed to optimize hyperparameters across all models, ensuring optimal implementation of each algorithm. Feature importance analysis was performed to thoroughly evaluate the models and assess the features with the most influence on battery health degradation. The comparison indicated that the GradientBoosting model outperformed others, achieving an MAE of 0.1041 and an R2 of 0.9996. The findings suggest that Bayesian-optimized tree-based ensemble methods, particularly gradient boosting, excel at forecasting battery health status from electrochemical impedance spectroscopy data. This result offers an excellent opportunity for practical use in battery management systems that employ diverse industrial state-of-health assessment techniques to enhance battery longevity, contributing to sustainability initiatives for second-life lithium-ion batteries. This capability enables the recycling of vehicle batteries for application in static storage systems, which is environmentally advantageous and ensures continuity. Full article
(This article belongs to the Special Issue Advanced Control and Power Electronics for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop