Using QR Codes for Payment Card Fraud Detection
Abstract
1. Introduction
2. Literature Review
3. Materials and Methodology
4. Analysis, Implementation and Results
4.1. Implementation
4.2. Results
4.2.1. Deployment to Mobile Application
4.2.2. Model Performance
4.2.3. Model Comparison
Application of Over-Sampling Data Balancing Technique (SMOTE)
Application of Random Under-Sampling Data Balancing Technique
5. Discussion
5.1. Performance Comparison and Methodological Advantages
5.2. Practical Implications of Error Types
5.3. Comparison with Prior Research
5.4. Limitations and Scope of Inference
5.5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Feature Table
| S/No. | Features | Description |
|---|---|---|
| 1. | Transaction date and time | This shows the date and time the transaction took place |
| 2. | Ccnum | This represents the credit card number |
| 3. | Merchant | This column represents what transaction was made |
| 4. | Category | Category of the purchased item |
| 5. | Amount | Transaction amount |
| 6. | First name | First name of the account holder |
| 7. | Last name | Last name of the account holder |
| 8. | Gender | The sex of the account holder |
| 9. | Street | The address of the street of the account holder |
| 10. | City | The city of the account holder |
| 11. | State | The state of the account holder |
| 12. | Zip | The zip code of the account holder |
| 13. | Latitude | The latitude position of the fraud |
| 14. | Longitude | The longitude position of the fraud |
| 15. | City PoP | Estimated population of the city of residence |
| 16. | Date of Birth | Card holder date of birth |
| 17. | Job | Card holder occupation |
| 18. | Transaction number | Unique transaction identifier |
| 19. | Unix Time | UNIX timestamp of the transaction |
| 20. | Merchant Latitude | Merchant Latitude |
| 21. | Merchant Longitude | Merchant Longitude |
| 22. | Class | Categories present in the dataset |
References
- Sullivan, R.J. The Changing Nature of U.S. Card Payment Fraud: Industry and Public Policy Options. Econ. Rev. Fed. Reserve Bank Kans. City 2010, 95, 101–133. [Google Scholar]
- Scholnick, B.; Massoud, N.; Saunders, A.; Carbo-Valverde, S.; Rodriguez-Fernandez, F. The economics of credit cards, debit cards and atms: A survey and some new evidence. J. Bank. Financ. 2008, 32, 1468–1483. [Google Scholar] [CrossRef]
- B-lach, J. Financial innovations and their role in the modern financial system-identification and systematization of the problem. E-Finans. Financ. Internet Q. 2011, 7, 13–26. [Google Scholar]
- Cavaliere, L.P.L.; Subhash, N.; Rao, P.V.D.; Mittal, P.; Koti, K.; Chakravarthi, M.K.; Duraipandian, R.; Rajest, S.S.; Regin, R. The impact of internet fraud on financial performance of banks. Turk. Online J. Qual. Inq. 2021, 12, 8126–8158. [Google Scholar]
- Vengatesan, K.; Kumar, A.; Yuvraj, S.; Kumar, V.; Sabnis, S. Credit card fraud detection using data analytic techniques. Adv. Math. Sci. J. 2020, 9, 1185–1196. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Jha, S.; Tharakunnel, K.; Westland, J.C. Data mining for credit card fraud: A comparative study. Decis. Support Syst. 2011, 50, 602–613. [Google Scholar] [CrossRef]
- Everett, C. Credit card fraud funds terrorism. Comput. Fraud Secur. 2003, 2003, 1. [Google Scholar] [CrossRef]
- Khatri, S.; Arora, A.; Agrawal, A.P. Supervised machine learning algorithms for credit card fraud detection: A comparison. In Proceedings of the 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 29–31 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 680–683. [Google Scholar] [CrossRef]
- Seera, M.; Lim, C.P.; Kumar, A.; Dhamotharan, L.; Tan, K.H. An intelligent payment card fraud detection system. Ann. Oper. Res. 2021, 334, 445–467. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Xu, W.; Wang, Q. Hoba: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Inf. Sci. 2021, 557, 302–316. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 3 November 2025).
- Luvizon, D. Machine Learning for Human Action Recognition and Pose Estimation Based on 3d Information. Ph.D. Thesis, Cergy Paris Université, Cergy, France, 2019. [Google Scholar]
- Dal Pozzolo, A.; Boracchi, G.; Caelen, O.; Alippi, C.; Bontempi, G. Credit card fraud detection: A realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3784–3797. [Google Scholar] [CrossRef]
- Verdonck, T.; Baesens, B.; Óskarsdóttir, M. Special Issue on Feature Engineering Editorial. Mach. Learn. 2021, 113, 3917–3928. [Google Scholar] [CrossRef]
- Tong, Y.; Lu, W.; Yu, Y.; Shen, Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020, 7, 22. [Google Scholar] [CrossRef]
- Burns, E. What is Artificial Intelligence (AI). TechTarget. Available online: https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence (accessed on 20 February 2023).
- Carcillo, F.; Le Borgne, Y.-A.; Caelen, O.; Kessaci, Y.; Oblé, F.; Bontempi, G. Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection. Inf. Sci. 2021, 557, 317–331. [Google Scholar] [CrossRef]
- Brownlee, J. How to Choose an Activation Function for Deep Learning. Machine Learning Mastery. Available online: https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/ (accessed on 20 February 2023).
- Patidar, R.; Sharma, L. Credit card fraud detection using neural network. Int. J. Soft Comput. Eng. 2011, 1, 32–38. [Google Scholar]
- Patel, R.D.; Singh, D.K. Credit card fraud detection & prevention of fraud using genetic algorithm. Int. J. Soft Comput. Eng. 2013, 2, 292–294. [Google Scholar]
- Heryadi, Y.; Wulandhari, L.A.; Abbas, B.S. Recognizing debit card fraud transaction using chaid and k-nearest neighbor: Indonesian bank case. In Proceedings of the 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia, 10–12 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Abdou, A.E.-H.A.; Mohammed, H.E.; Khalifa, W.; Roushdy, M.I.; Salem, A.-B.M. Machine learning techniques for credit card fraud detection. Futur. Comput. Inform. J. 2019, 4, 98–112. [Google Scholar] [CrossRef]
- Fiore, U.; De Santis, A.; Perla, F.; Zanetti, P.; Palmieri, F. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 2019, 479, 448–455. [Google Scholar] [CrossRef]
- Branco, B.; Abreu, P.; Gomes, A.S.; Almeida, M.S.; Ascensão, J.T.; Bizarro, P. Interleaved sequence RNNs for fraud detection. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’20), Virtual Event, 23–27 August 2020; pp. 3101–3109. [Google Scholar] [CrossRef]
- IBM. What is Deep Learning. IBM. Available online: https://www.ibm.com/cloud/learn/deep-learning (accessed on 20 February 2023).
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kim, P. Convolutional neural network. In MATLAB Deep Learning; Springer: Berlin/Heidelberg, Germany, 2017; pp. 121–147. [Google Scholar]
- IBM. Neural Network. IBM. Available online: https://www.ibm.com/topics/neural-networks (accessed on 20 February 2023).
- Chang, V.; Di Stefano, A.; Sun, Z.; Fortino, G. Digital payment fraud detection methods in digital ages and industry 4.0. Comput. Electr. Eng. 2022, 100, 107734. [Google Scholar] [CrossRef]
- Forough, J.; Momtazi, S. Sequential credit card fraud detection: A joint deep neural network and probabilistic graphical model approach. Expert Syst. 2022, 39, e12795. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]


| Predicted Legitimate (0) | Predicted Fraudulent (1) | |
|---|---|---|
| True Legitimate (0) | 4333 | 166 |
| True Fraudulent (1) | 374 | 4127 |
| Model | Accuracy % | Precision % | Recall % | F1 Score % |
|---|---|---|---|---|
| KNN | 0.99 | 0.99 | 1.00 | 0.99 |
| Decision Tree | 0.98 | 0.98 | 0.99 | 0.98 |
| Random Forest | 0.99 | 0.99 | 1.00 | 0.99 |
| AdaBoost | 0.92 | 0.95 | 0.88 | 0.92 |
| Bagging | 0.99 | 0.99 | 0.99 | 0.99 |
| GaussianNB | 0.85 | 0.96 | 0.74 | 0.83 |
| Proposed Model | 0.94 | 0.96 | 0.92 | 0.94 |
| Predicted Legitimate (0) | Predicted Fraudulent (1) | |
|---|---|---|
| True Legitimate (0) | 1195 | 19 |
| True Fraudulent (1) | 118 | 1068 |
| Model | Accuracy % | Precision % | Recall % | F1 Score % |
|---|---|---|---|---|
| KNN | 0.85 | 0.85 | 0.85 | 0.85 |
| Decision Tree | 0.86 | 0.86 | 0.86 | 0.86 |
| Random Forest | 0.91 | 0.91 | 0.91 | 0.91 |
| AdaBoost | 0.92 | 0.95 | 0.88 | 0.92 |
| Bagging | 0.85 | 0.85 | 0.85 | 0.85 |
| GaussianNB | 0.83 | 0.96 | 0.74 | 0.83 |
| Proposed Model | 0.94 | 0.95 | 0.94 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chelouah, R.; Nwaekwu, P. Using QR Codes for Payment Card Fraud Detection. Information 2026, 17, 39. https://doi.org/10.3390/info17010039
Chelouah R, Nwaekwu P. Using QR Codes for Payment Card Fraud Detection. Information. 2026; 17(1):39. https://doi.org/10.3390/info17010039
Chicago/Turabian StyleChelouah, Rachid, and Prince Nwaekwu. 2026. "Using QR Codes for Payment Card Fraud Detection" Information 17, no. 1: 39. https://doi.org/10.3390/info17010039
APA StyleChelouah, R., & Nwaekwu, P. (2026). Using QR Codes for Payment Card Fraud Detection. Information, 17(1), 39. https://doi.org/10.3390/info17010039

