Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,234)

Search Parameters:
Keywords = ad hoc networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3465 KB  
Article
Transmitting Images in Difficult Environments Using Acoustics, SDR and GNU Radio Applications
by Michael Alldritt and Robin Braun
Electronics 2026, 15(3), 678; https://doi.org/10.3390/electronics15030678 - 4 Feb 2026
Abstract
This paper explores the feasibility of using acoustic wave propagation, particularly in the ultrasonic range, as a solution for data transmission in environments where traditional radio frequency (RF) communication is ineffective due to signal attenuation—such as in liquids or dense media like metal [...] Read more.
This paper explores the feasibility of using acoustic wave propagation, particularly in the ultrasonic range, as a solution for data transmission in environments where traditional radio frequency (RF) communication is ineffective due to signal attenuation—such as in liquids or dense media like metal or stone. Leveraging GNU Radio and commercially available audio hardware, a low-cost, SDR (Software Defined Radio) system was developed to transmit data blocks (e.g., images, text, and audio) through various substances. The system employs BFSK (Binary Frequency Shift Keying) and BPSK (Binary Phase Shift Keying), operates at ultrasonic frequencies (typically 40 kHz), and has performance validated under real-world conditions, including water, viscous substances, and flammable liquids such as hydrocarbon fuels. Experimental results demonstrate reliable, continuous communication at Nyquist–Shannon sampling rates, with effective demodulation and file reconstruction. The methodology builds on concepts originally developed for Ad Hoc Sensor Networks in shipping containers, extending their applicability to submerged and RF-hostile environments. The modularity and flexibility of the GNU Radio platform allow for rapid adaptation across different media and deployment contexts. This work provides a reproducible and scalable communication solution for scenarios where RF transmission is impractical, offering potential applications in underwater sensing, industrial monitoring, railways, and enclosed infrastructure diagnostics. Across controlled laboratory experiments, the system achieved 100% successful reconstruction of transmitted image files up to 100 kB and sustained packet delivery success exceeding 98% under stable coupling conditions. Full article
42 pages, 7319 KB  
Review
A Comprehensive Survey on VANET–IoT Integration Toward the Internet of Vehicles: Architectures, Communications, and System Challenges
by Khalid Kandali, Said Nouh, Lamyae Bennis and Hamid Bennis
Future Transp. 2026, 6(1), 32; https://doi.org/10.3390/futuretransp6010032 - 31 Jan 2026
Viewed by 134
Abstract
The convergence of Vehicular Ad Hoc Networks (VANETs) and the Internet of Things (IoT) is giving rise to the Internet of Vehicles (IoV), a key enabler of next-generation intelligent transportation systems. This survey provides a comprehensive analysis of the architectural, communication, and computing [...] Read more.
The convergence of Vehicular Ad Hoc Networks (VANETs) and the Internet of Things (IoT) is giving rise to the Internet of Vehicles (IoV), a key enabler of next-generation intelligent transportation systems. This survey provides a comprehensive analysis of the architectural, communication, and computing foundations that support VANET–IoT integration. We examine the roles of cloud, edge, and in-vehicle computing, and compare major V2X and IoT communication technologies, including DSRC, C-V2X, MQTT, and CoAP. The survey highlights how sensing, communication, and distributed intelligence interact to support applications such as collision avoidance, cooperative perception, and smart traffic management. We identify four central challenges—security, scalability, interoperability, and energy constraints—and discuss how these issues shape system design across the network stack. In addition, we review emerging directions including 6G-enabled joint communication and sensing, reconfigurable surfaces, digital twins, and quantum-assisted optimization. The survey concludes by outlining open research questions and providing guidance for the development of reliable, efficient, and secure VANET–IoT systems capable of supporting future transportation networks. Full article
28 pages, 3862 KB  
Review
A Review of Wireless Charging Solutions for FANETs in IoT-Enabled Smart Environments
by Nelofar Aslam, Hongyu Wang, Hamada Esmaiel, Naveed Ur Rehman Junejo and Adel Agamy
Sensors 2026, 26(3), 912; https://doi.org/10.3390/s26030912 - 30 Jan 2026
Viewed by 173
Abstract
Unmanned Aerial Vehicles (UAVs) are emerging as a fundamental part of Flying Ad Hoc Networks (FANETs). However, owing to the limited energy capacity of UAV batteries, wireless power transfer (WPT) technologies have recently gained interest from researchers, offering recharging possibilities for FANETs. Based [...] Read more.
Unmanned Aerial Vehicles (UAVs) are emerging as a fundamental part of Flying Ad Hoc Networks (FANETs). However, owing to the limited energy capacity of UAV batteries, wireless power transfer (WPT) technologies have recently gained interest from researchers, offering recharging possibilities for FANETs. Based on this background, this study highlights the need for wireless charging to enhance the operational endurance of FANETs in Internet-of-Things (IoT) environments. This review investigates WPT power replenishment to explore the dynamic usage of UAVs in two ways. The former is for using a UAV as a mobile charger to recharge the ground nodes, whereas the latter is for WPT applications in in-flight (UAV-to-UAV) charging. For the two research domains, we describe the different methods of WPT and its latest advancements through the academic and industrial research literature. We categorized the results based on the power transfer range, efficiency, wireless charger topology (ground or in-flight), coordination among multiple UAVs, and trajectory optimization formulation. A crucial finding is that in-flight UAV charging can extend the endurance by three times compared to using standalone batteries. Furthermore, the integration of IoT for the deployment of a clan of UAVs as a FANET is rigorously emphasized. Our data findings also indicate the present and future forecasting graphs of UAVs and IoT-integrating UAVs in the global market. Existing systems have scalability issues beyond 20 UAVs; therefore, future research requires edge computing for WPT scheduling and blockchains for energy trading. Full article
(This article belongs to the Special Issue Security and Privacy Challenges in IoT-Driven Smart Environments)
Show Figures

Figure 1

17 pages, 2836 KB  
Article
Co-Design of Battery-Aware UAV Mobility and Extended PRoPHET Routing for Reliable DTN-Based FANETs in Disaster Areas
by Masaki Miyata and Tomofumi Matsuzawa
Electronics 2026, 15(3), 591; https://doi.org/10.3390/electronics15030591 - 29 Jan 2026
Viewed by 113
Abstract
In recent years, flying ad hoc networks (FANETs) have attracted attention as aerial communication platforms for large-scale disasters. In wide, city-scale disaster zones, survivors’ devices often form multiple isolated clusters, while battery-powered unmanned aerial vehicles (UAVs) must periodically return to a ground station [...] Read more.
In recent years, flying ad hoc networks (FANETs) have attracted attention as aerial communication platforms for large-scale disasters. In wide, city-scale disaster zones, survivors’ devices often form multiple isolated clusters, while battery-powered unmanned aerial vehicles (UAVs) must periodically return to a ground station (GS). Under such conditions, conventional delay/disruption-tolerant networking (DTN) routing (e.g., PRoPHET) often traps bundles in clusters or UAVs, degrading the bundle delivery ratio (BDR) to the GS. This study proposes a DTN-based FANET architecture that integrates (i) a mobility model assigning UAVs to information–exploration UAVs that randomly patrol the disaster area and GS–relay UAVs that follow spoke-like routes to periodically visit the GS, and (ii) an extended PRoPHET-based routing protocol that exploits exogenous information on GS visits to bias delivery predictabilities toward GS–relay UAVs and UAVs returning for recharging. Simulations with The ONE in a 10 km × 10 km scenario with multiple clusters show that the proposed method suppresses BDR degradation by up to 41% relative to PRoPHET, raising the BDR from 0.27 to 0.39 in the five-cluster case and increasing the proportion of bundles delivered with lower delay. These results indicate that the proposed method is well-suited for relaying critical disaster-related information. Full article
Show Figures

Figure 1

18 pages, 386 KB  
Article
ICT Infrastructure in Early Childhood and Primary Education Centers: Availability and Types According to the Perception of Preservice Teachers on Internship
by Lucia Yuste, Azahara Casanova-Piston and Noelia Martinez-Hervas
Educ. Sci. 2026, 16(2), 205; https://doi.org/10.3390/educsci16020205 - 29 Jan 2026
Viewed by 216
Abstract
This study analyzes the ICT infrastructure in teaching practice centers from the perspective of students enrolled in early childhood and primary education degree programs at a Spanish university during the 2024–2025 academic year. A quantitative, cross-sectional design was employed. A questionnaire was distributed [...] Read more.
This study analyzes the ICT infrastructure in teaching practice centers from the perspective of students enrolled in early childhood and primary education degree programs at a Spanish university during the 2024–2025 academic year. A quantitative, cross-sectional design was employed. A questionnaire was distributed to all first- to fourth-year students via the university platform, with a sample of 556 participants. The data collection instrument consisted of an ad hoc adaptation and extension of the validated EdSocEval_V2 questionnaire, ensuring factorial validity. It was used to examine the availability of technological resources for communication and digital management, together with personal and contextual variables to support data classification. Results indicate high availability of basic digital resources, including projectors, Wi-Fi, interactive whiteboards, printers, alongside limited access to robotics, digital tablets, and classrooms of the future. High homogeneity was observed in communication and digital management resources, such as websites, virtual learning environments and corporate email. MANOVA analyses revealed that students perceive ICT infrastructure to be more integrated at higher levels of primary education, with no significant differences based on school ownership. Binary logistic regressions showed that school ownership predicts the availability of certain ICT resources, with private schools exhibiting lower network presence. Full article
(This article belongs to the Section Technology Enhanced Education)
Show Figures

Figure 1

18 pages, 1408 KB  
Article
Joint Effect of Signal Strength, Bitrate, and Topology on Video Playback Delays of 802.11ax Gigabit Wi-Fi
by Nurul I. Sarkar and Sonia Gul
Electronics 2026, 15(3), 531; https://doi.org/10.3390/electronics15030531 - 26 Jan 2026
Viewed by 137
Abstract
This paper presents a performance evaluation of IEEE 802.11ax (Wi-Fi 6) networks using a combination of real-world testbed measurements and simulation-based analysis. The paper investigates the combined effect of received signal strength (RSSI), application bitrate, and network topology on video playback delays of [...] Read more.
This paper presents a performance evaluation of IEEE 802.11ax (Wi-Fi 6) networks using a combination of real-world testbed measurements and simulation-based analysis. The paper investigates the combined effect of received signal strength (RSSI), application bitrate, and network topology on video playback delays of 802.11ax. The effect of frequency band and client density on system performance is also investigated. Testbed measurements and field experiments were conducted in indoor environments using dual-band (2.4 GHz and 5 GHz) ad hoc and infrastructure network configurations. OMNeT++ based simulations are conducted to explore scalability by increasing the number of wireless clients. The results obtained show that the infrastructure-based deployments provide more stable video playback than the ad hoc network, particularly under varying RSSI conditions. While the 5 GHz band delivers higher throughput at a short range, the 2.4 GHz band offers improved coverage at reduced system performance. The simulation results further demonstrate significant degradation in throughput and latency as client density increases. To contextualize the observed performance, a baseline comparison with 802.11ac is incorporated, highlighting the relative improvements and remaining limitations of 802.11ax within the evaluated signal and load conditions. The findings provide practical deployment insights for video-centric wireless networks and inform the optimization of next-generation Wi-Fi deployments. Full article
Show Figures

Figure 1

26 pages, 2427 KB  
Article
Alternating Optimization-Based Joint Power and Phase Design for RIS-Empowered FANETs
by Muhammad Shoaib Ayub, Renata Lopes Rosa and Insoo Koo
Drones 2026, 10(1), 66; https://doi.org/10.3390/drones10010066 - 19 Jan 2026
Viewed by 180
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with flying ad hoc networks (FANETs) offers new opportunities to enhance performance in aerial communications. This paper proposes a novel FANET architecture in which each unmanned aerial vehicle (UAV) or drone is equipped with an RIS [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with flying ad hoc networks (FANETs) offers new opportunities to enhance performance in aerial communications. This paper proposes a novel FANET architecture in which each unmanned aerial vehicle (UAV) or drone is equipped with an RIS comprising M passive elements, enabling dynamic manipulation of the wireless propagation environment. We address the joint power allocation and RIS configuration problem to maximize the sum spectral efficiency, subject to constraints on maximum transmit power and unit-modulus phase shifts. The formulated optimization problem is non-convex due to coupled variables and interference. We develop an alternating optimization-based joint power and phase shift (AO-JPPS) algorithm that decomposes the problem into two subproblems: power allocation via successive convex approximation and phase optimization via Riemannian manifold optimization. A key contribution is addressing the RIS coupling effect, where the configuration of each RIS simultaneously influences multiple communication links. Complexity analysis reveals polynomial-time scalability, while derived performance bounds provide theoretical insights. Numerical simulations demonstrate that our approach achieves significant spectral efficiency gains over conventional FANETs, establishing the effectiveness of RIS-assisted drone networks for future wireless applications. Full article
Show Figures

Figure 1

44 pages, 996 KB  
Article
Adaptive Hybrid Consensus Engine for V2X Blockchain: Real-Time Entropy-Driven Control for High Energy Efficiency and Sub-100 ms Latency
by Rubén Juárez and Fernando Rodríguez-Sela
Electronics 2026, 15(2), 417; https://doi.org/10.3390/electronics15020417 - 17 Jan 2026
Viewed by 195
Abstract
We present an adaptive governance engine for blockchain-enabled Vehicular Ad Hoc Networks (VANETs) that regulates the latency–energy–coherence trade-off under rapid topology changes. The core contribution is an Ideal Information Cycle (an operational abstraction of information injection/validation) and a modular VANET Engine implemented as [...] Read more.
We present an adaptive governance engine for blockchain-enabled Vehicular Ad Hoc Networks (VANETs) that regulates the latency–energy–coherence trade-off under rapid topology changes. The core contribution is an Ideal Information Cycle (an operational abstraction of information injection/validation) and a modular VANET Engine implemented as a real-time control loop in NS-3.35. At runtime, the Engine monitors normalized Shannon entropies—informational entropy S over active transactions and spatial entropy Hspatial over occupancy bins (both on [0,1])—and adapts the consensus mode (latency-feasible PoW versus signature/quorum-based modes such as PoS/FBA) together with rigor parameters via calibrated policy maps. Governance is formulated as a constrained operational objective that trades per-block resource expenditure (radio + cryptography) against a Quality-of-Information (QoI) proxy derived from delay/error tiers, while maintaining timeliness and ledger-coherence pressure. Cryptographic cost is traced through counted operations, Ecrypto=ehnhash+esignsig, and coherence is tracked using the LCP-normalized definition Dledger(t) computed from the longest common prefix (LCP) length across nodes. We evaluate the framework under urban/highway mobility, scheduled partitions, and bounded adversarial stressors (Sybil identities and Byzantine proposers), using 600 s runs with 30 matched random seeds per configuration and 95% bias-corrected and accelerated (BCa) bootstrap confidence intervals. In high-disorder regimes (S0.8), the Engine reduces total per-block energy (radio + cryptography) by more than 90% relative to a fixed-parameter PoW baseline tuned to the same agreement latency target. A consensus-first triggering policy further lowers agreement latency and improves throughput compared with broadcast-first baselines. In the emphasized urban setting under high mobility (v=30 m/s), the Engine keeps agreement/commit latency in the sub-100 ms range while maintaining finality typically within sub-150 ms ranges, bounds orphaning (≤10%), and reduces average ledger divergence below 0.07 at high spatial disorder. The main evaluation is limited to N100 vehicles under full PHY/MAC fidelity. PoW targets are intentionally latency-feasible and are not intended to provide cryptocurrency-grade majority-hash security; operational security assumptions and mode transition safeguards are discussed in the manuscript. Full article
(This article belongs to the Special Issue Intelligent Technologies for Vehicular Networks, 2nd Edition)
Show Figures

Figure 1

22 pages, 2627 KB  
Article
FANET Routing Protocol for Prioritizing Data Transmission to the Ground Station
by Kaoru Takabatake and Tomofumi Matsuzawa
Network 2026, 6(1), 7; https://doi.org/10.3390/network6010007 - 14 Jan 2026
Viewed by 263
Abstract
In recent years, with the improvement of unmanned aerial vehicle (UAV) performance, various applications have been explored. In environments such as disaster areas, where existing infrastructure may be damaged, alternative uplink communication for transmitting observation data from UAVs to the ground station (GS) [...] Read more.
In recent years, with the improvement of unmanned aerial vehicle (UAV) performance, various applications have been explored. In environments such as disaster areas, where existing infrastructure may be damaged, alternative uplink communication for transmitting observation data from UAVs to the ground station (GS) is critical. However, conventional mobile ad hoc network (MANET) routing protocols do not sufficiently account for GS-oriented traffic or the highly mobile UAV topology. This study proposed a flying ad hoc network (FANET) routing protocol that introduces a control option called GS flood, where the GS periodically disseminates routing information, enabling each UAV to efficiently acquire fresh source routes to the GS. Evaluation using NS-3 in a disaster scenario confirmed that the proposed method achieves a higher packet delivery ratio and practical latency compared to the representative MANET routing protocols, namely DSR, AODV, and OLSR, while operating with fewer control IP packets than existing methods. Furthermore, although the multihop throughput between UAVs and the GS in the proposed method plateaued at approximately 40% of the physical-layer maximum, it demonstrated performance exceeding realistic satellite uplink capacities ranging from several hundred kbps to several Mbps. Full article
Show Figures

Figure 1

39 pages, 2940 KB  
Article
Trustworthy AI-IoT for Citizen-Centric Smart Cities: The IMTPS Framework for Intelligent Multimodal Crowd Sensing
by Wei Li, Ke Li, Zixuan Xu, Mengjie Wu, Yang Wu, Yang Xiong, Shijie Huang, Yijie Yin, Yiping Ma and Haitao Zhang
Sensors 2026, 26(2), 500; https://doi.org/10.3390/s26020500 - 12 Jan 2026
Viewed by 311
Abstract
The fusion of Artificial Intelligence and the Internet of Things (AI-IoT, also widely referred to as AIoT) offers transformative potential for smart cities, yet presents a critical challenge: how to process heterogeneous data streams from intelligent sensing—particularly crowd sensing data derived from citizen [...] Read more.
The fusion of Artificial Intelligence and the Internet of Things (AI-IoT, also widely referred to as AIoT) offers transformative potential for smart cities, yet presents a critical challenge: how to process heterogeneous data streams from intelligent sensing—particularly crowd sensing data derived from citizen interactions like text, voice, and system logs—into reliable intelligence for sustainable urban governance. To address this challenge, we introduce the Intelligent Multimodal Ticket Processing System (IMTPS), a novel AI-IoT smart system. Unlike ad hoc solutions, the novelty of IMTPS resides in its theoretically grounded architecture, which orchestrates Information Theory and Game Theory for efficient, verifiable extraction, and employs Causal Inference and Meta-Learning for robust reasoning, thereby synergistically converting noisy, heterogeneous data streams into reliable governance intelligence. This principled design endows IMTPS with four foundational capabilities essential for modern smart city applications: Sustainable and Efficient AI-IoT Operations: Guided by Information Theory, the IMTPS compression module achieves provably efficient semantic-preserving compression, drastically reducing data storage and energy costs. Trustworthy Data Extraction: A Game Theory-based adversarial verification network ensures high reliability in extracting critical information, mitigating the risk of model hallucination in high-stakes citizen services. Robust Multimodal Fusion: The fusion engine leverages Causal Inference to distinguish true causality from spurious correlations, enabling trustworthy integration of complex, multi-source urban data. Adaptive Intelligent System: A Meta-Learning-based retrieval mechanism allows the system to rapidly adapt to new and evolving query patterns, ensuring long-term effectiveness in dynamic urban environments. We validate IMTPS on a large-scale, publicly released benchmark dataset of 14,230 multimodal records. IMTPS demonstrates state-of-the-art performance, achieving a 96.9% reduction in storage footprint and a 47% decrease in critical data extraction errors. By open-sourcing our implementation, we aim to provide a replicable blueprint for building the next generation of trustworthy and sustainable AI-IoT systems for citizen-centric smart cities. Full article
(This article belongs to the Special Issue AI-IoT for New Challenges in Smart Cities)
Show Figures

Figure 1

33 pages, 4575 KB  
Article
Evaluation of Connectivity Reliability in MANETs Considering Link Communication Quality and Channel Capacity
by Yunlong Bian, Junhai Cao, Chengming He, Xiying Huang, Ying Shen and Jia Wang
Electronics 2026, 15(2), 264; https://doi.org/10.3390/electronics15020264 - 7 Jan 2026
Viewed by 209
Abstract
Mobile Ad Hoc Networks (MANETs) exhibit diverse deployment forms, such as unmanned swarms, mobile wireless sensor networks (MWSNs), and Vehicular Ad Hoc Networks (VANETs). While providing significant social application value, MANETs also face the challenge of accurately and efficiently evaluating connectivity reliability. Building [...] Read more.
Mobile Ad Hoc Networks (MANETs) exhibit diverse deployment forms, such as unmanned swarms, mobile wireless sensor networks (MWSNs), and Vehicular Ad Hoc Networks (VANETs). While providing significant social application value, MANETs also face the challenge of accurately and efficiently evaluating connectivity reliability. Building on existing studies—which mostly rely on the assumptions of imperfect nodes and perfect links—this paper comprehensively considers link communication quality and channel capacity, and extends the imperfect link assumption to analyze and evaluate the connectivity reliability of MANETs. The Couzin-leader model is used to characterize the ordered swarm movement of MANETs, while various probability models are employed to depict the multiple actual failure modes of network nodes. Additionally, the Free-Space-Two-Ray Ground (FS-TRG) model is introduced to quantify link quality and reliability, and the probability of successful routing path information transmission is derived under the condition that channel capacity follows a truncated normal distribution. Finally, a simulation-based algorithm for solving the connectivity reliability of MANETs is proposed, which comprehensively considers node characteristics and link states. Simulation experiments are conducted using MATLAB R2023b to verify the effectiveness and validity of the proposed algorithm. Furthermore, the distinct impacts of link communication quality and channel capacity on the connectivity reliability of MANETs are identified, particularly in terms of transmission quality and network lifetime. Full article
(This article belongs to the Special Issue Advanced Technologies for Intelligent Vehicular Networks)
Show Figures

Figure 1

18 pages, 2484 KB  
Article
FDSDS: A Fuzzy-Based Driver Stress Detection System for VANETs Considering Interval Type-2 Fuzzy Logic and Its Performance Evaluation
by Shunya Higashi, Paboth Kraikritayakul, Yi Liu, Makoto Ikeda, Keita Matsuo and Leonard Barolli
Information 2026, 17(1), 50; https://doi.org/10.3390/info17010050 - 5 Jan 2026
Viewed by 317
Abstract
Vehicular Ad Hoc Networks (VANETs) enable Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications for enhancing road safety. However, reliable driver stress assessment remains challenging due to noisy sensing, inter-driver variability, and context dynamics. This paper proposes a Fuzzy-based Driver Stress Detection System (FDSDS) that [...] Read more.
Vehicular Ad Hoc Networks (VANETs) enable Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications for enhancing road safety. However, reliable driver stress assessment remains challenging due to noisy sensing, inter-driver variability, and context dynamics. This paper proposes a Fuzzy-based Driver Stress Detection System (FDSDS) that employs an Interval Type-2 Fuzzy Logic System (IT2FLS) to model uncertainty. The FDSDS considers four complementary inputs—Heart Rate Variability (HRV), Galvanic Skin Response (GSR), Steering Angle Variation (SAV), and Traffic Density (TD)—to estimate Driver Stress Level (DSL). Extensive simulations (14,641 test points) show monotonic associations between DSL and the inputs, which reveal that physiological indicators dominate average influence (finite-difference sensitivity: GSR 0.357, SAV 0.239, TD 0.239, HRV 0.235). Under severe physiological conditions (HRV = 0.1, GSR = 0.9), the system consistently outputs high stress (mean DSL = 0.813; range 0.622–0.958), while favorable physiological conditions (HRV = 0.9, GSR = 0.1) yield low stress even in challenging traffic (range 0.044–0.512). The IT2FLS uncertainty bands widen for intermediate conditions, aligning with the inherent ambiguity of moderate stress states. These results indicate that combining physiological, behavioral, and environmental factors with IT2FLS yields interpreted, uncertainty-aware stress estimates suitable for real-time VANET applications. Full article
(This article belongs to the Special Issue Feature Papers in Information in 2024–2025)
Show Figures

Figure 1

22 pages, 4277 KB  
Article
TGN-MCDS: A Temporal Graph Network-Based Algorithm for Cluster-Head Optimization in Large-Scale FANETs
by Xiangrui Fan, Yuxuan Yang, Shuo Zhang and Wenlong Cai
Sensors 2026, 26(1), 347; https://doi.org/10.3390/s26010347 - 5 Jan 2026
Viewed by 326
Abstract
With the growing deployment of Flying Ad hoc Networks (FANETs) in military and civilian applications, constructing a stable and efficient communication backbone has become a critical challenge. This paper tackles the Cluster Head (CH) optimization problem in large-scale and highly dynamic FANETs by [...] Read more.
With the growing deployment of Flying Ad hoc Networks (FANETs) in military and civilian applications, constructing a stable and efficient communication backbone has become a critical challenge. This paper tackles the Cluster Head (CH) optimization problem in large-scale and highly dynamic FANETs by formulating it as a Minimum Connected Dominating Set (MCDS) problem. However, since MCDS is NP-complete on general graphs, existing heuristic and exact algorithms suffer from limited coverage, poor connectivity, and high computational cost. To address these issues, we propose TGN-MCDS, a novel algorithm built upon the Temporal Graph Network (TGN) architecture, which leverages graph neural networks for cluster head selection and efficiently learns time-varying network topologies. The algorithm adopts a multi-objective loss function incorporating coverage, connectivity, size control, centrality, edge penalty, temporal smoothness, and information entropy to guide model training. Simulation results demonstrate that TGN-MCDS rapidly achieves near-optimal CH sets with full node coverage and strong connectivity. Compared with Greedy, Integer Linear Programming (ILP), and Branch-and-Bound (BnB) methods, TGN-MCDS produces fewer and more stable CHs, significantly improving cluster stability while maintaining high computational efficiency for real-time operations in large-scale FANETs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

26 pages, 9465 KB  
Article
A Lightweight DTDMA-Assisted MAC Scheme for Ad Hoc Cognitive Radio IIoT Networks
by Bikash Mazumdar and Sanjib Kumar Deka
Electronics 2026, 15(1), 170; https://doi.org/10.3390/electronics15010170 - 30 Dec 2025
Viewed by 167
Abstract
Ad hoc cognitive radio-enabled Industrial Internet of Things (CR-IIoT) networks offer dynamic spectrum access (DSA) to mitigate the spectrum shortage in wireless communication. However, spectrum utilization is limited by the spectrum availability and resource constraints. In the ad hoc CR-IIoT context, this challenge [...] Read more.
Ad hoc cognitive radio-enabled Industrial Internet of Things (CR-IIoT) networks offer dynamic spectrum access (DSA) to mitigate the spectrum shortage in wireless communication. However, spectrum utilization is limited by the spectrum availability and resource constraints. In the ad hoc CR-IIoT context, this challenge is further complicated by bandwidth fragmentation arising from small IIoT packet transmissions within primary user (PU) slots. For resource-constrained ad hoc CR-IIoT networks, a medium access control (MAC) scheme is essential to enable opportunistic channel access with a low computational complexity. This work proposes a lightweight DTDMA-assisted MAC scheme (LDCRM) to minimize the queuing delay and maximize transmission opportunities. LDCRM employs a lightweight channel-selection mechanism, an adaptive minislot duration strategy, and spectrum-energy-aware distributed clustering to optimize both energy and spectrum utilization. DTDMA scheduling was formulated using a multiple knapsack problem (MKP) framework and solved using a greedy heuristic to minimize the queuing delay with a low computational overhead. The simulation results under an ON/OFF PU-sensing model showed that LDCRM outperformed CogLEACH and DPPST achieving up to 89.96% lower queuing delay, maintaining a higher packet delivery ratio (between 58.47 and 92.48%) and achieving near-optimal utilization of the minislot and bandwidth. An experimental evaluation of the clustering stability and fairness indicated a 56.25% extended network lifetime compared to that of E-CogLEACH. These results demonstrate LDCRM’s scalability and robustness for Industry 4.0 deployments. Full article
(This article belongs to the Special Issue Recent Advancements in Sensor Networks and Communication Technologies)
Show Figures

Figure 1

25 pages, 1050 KB  
Review
IoT-Based Approaches to Personnel Health Monitoring in Emergency Response
by Jialin Wu, Yongqi Tang, Feifan He, Zhichao He, Yunting Tsai and Wenguo Weng
Sustainability 2026, 18(1), 365; https://doi.org/10.3390/su18010365 - 30 Dec 2025
Viewed by 461
Abstract
The health and operational continuity of emergency responders are fundamental pillars of sustainable and resilient disaster management systems. These personnel operate in high-risk environments, exposed to intense physical, environmental, and psychological stress. This makes it crucial to monitor their health to safeguard their [...] Read more.
The health and operational continuity of emergency responders are fundamental pillars of sustainable and resilient disaster management systems. These personnel operate in high-risk environments, exposed to intense physical, environmental, and psychological stress. This makes it crucial to monitor their health to safeguard their well-being and performance. Traditional methods, which rely on intermittent, voice-based check-ins, are reactive and create a dangerous information gap regarding a responder’s real-time health and safety. To address this sustainability challenge, the convergence of the Internet of Things (IoT) and wearable biosensors presents a transformative opportunity to shift from reactive to proactive safety monitoring, enabling the continuous capture of high-resolution physiological and environmental data. However, realizing a field-deployable system is a complex “system-of-systems” challenge. This review contributes to the field of sustainable emergency management by analyzing the complete technological chain required to build such a solution, structured along the data workflow from acquisition to action. It examines: (1) foundational health sensing technologies for bioelectrical, biophysical, and biochemical signals; (2) powering strategies, including low-power design and self-powering systems via energy harvesting; (3) ad hoc communication networks (terrestrial, aerial, and space-based) essential for infrastructure-denied disaster zones; (4) data processing architectures, comparing edge, fog, and cloud computing for real-time analytics; and (5) visualization tools, such as augmented reality (AR) and heads-up displays (HUDs), for decision support. The review synthesizes these components by discussing their integrated application in scenarios like firefighting and urban search and rescue. It concludes that a robust system depends not on a single component but on the seamless integration of this entire technological chain, and highlights future research directions crucial for quantifying and maximizing its impact on sustainable development goals (SDGs 3, 9, and 11) related to health, sustainable cities, and resilient infrastructure. Full article
Show Figures

Figure 1

Back to TopTop