Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = actuator line (AL) model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 41978 KiB  
Article
Integrating Temperature History into Inherent Strain Methodology for Improved Distortion Prediction in Laser Powder Bed Fusion
by Iñaki Setien, Michele Chiumenti, Maria San Sebastian, Carlos A. Moreira and Manuel A. Caicedo
Metals 2025, 15(2), 143; https://doi.org/10.3390/met15020143 - 30 Jan 2025
Viewed by 1069
Abstract
Powder bed fusion–laser beam (PBF-LB) additive manufacturing enables the production of intricate, lightweight metal components aligned with Industry 4.0 and sustainable principles. However, residual stresses and distortions challenge the dimensional accuracy and reliability of parts. Inherent strain methods (ISMs) provide a computationally efficient [...] Read more.
Powder bed fusion–laser beam (PBF-LB) additive manufacturing enables the production of intricate, lightweight metal components aligned with Industry 4.0 and sustainable principles. However, residual stresses and distortions challenge the dimensional accuracy and reliability of parts. Inherent strain methods (ISMs) provide a computationally efficient approach to predicting these issues but often overlook transient thermal histories, limiting their accuracy. This paper introduces an enhanced inherent strain method (EISM) for PBF-LB, integrating macro-scale temperature histories into the inherent strain framework. By incorporating temperature-dependent adjustments to the precomputed inherent strain tensor, EISM improves the prediction of residual stresses and distortions, addressing the limitations of the original ISM. Validation was conducted on two Ti-6Al-4V geometries—a non-symmetric bridge and a complex structure (steady blowing actuator)—through comparisons with experimental measurements of temperature, distortion, and residual stress. Results demonstrate improved accuracy, particularly in capturing localized thermal and mechanical effects. Sensitivity analyses emphasize the need for adaptive layer lumping and mesh refinement in regions with abrupt stiffness changes, such as shrink lines. While EISM slightly increases computational cost, it remains feasible for industrial-scale applications. This work bridges the gap between simplified inherent strain models and high-fidelity simulations, offering a robust tool for simulation-driven optimisation. Full article
(This article belongs to the Special Issue Advances in 3D Printing Technologies of Metals—2nd Edition)
Show Figures

Figure 1

36 pages, 9661 KiB  
Article
Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging
by Tianran Ma, Michael Fahrbach and Erwin Peiner
Sensors 2025, 25(2), 332; https://doi.org/10.3390/s25020332 - 8 Jan 2025
Cited by 2 | Viewed by 2209
Abstract
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted “forest of peaks” observed at large travel speed [...] Read more.
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted “forest of peaks” observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process. Moreover, a new substrate contact has been added in the new design for an AC voltage supply for the Wheatstone bridge to reduce parasitic signal influence via the EAM (Electromechanical Amplitude Modulation) in our homemade CRI system. Measurements on a bulk Al sample show the expected force dependence of the CR frequency. Meanwhile, fitting of the measured contact-resonance spectra was applied based on a Fano-type line shape to reveal the material-specific signature of a single harmonic resonator. However, noise is greatly increased with the bending mode and contact force increasing on viscoelastic samples. Then, to avoid unspecific peaks remaining in the spectra of soft samples, cantilevers with integrated piezoelectric actuators (PEAs) were designed. The numbers and positions of the actuators were optimized for specific CR vibration modes using analytical modeling of the cantilever bending based on the transfer-matrix method and Hertzian contact mechanics. To confirm the design of the PCM with a PEA, finite element analysis (FEA) of CR probing of a sample with a Young’s modulus of 10 GPa was performed. Close agreement was achieved by Fano-type line shape fitting of amplitude and phase of the first four vertical bending modes of the cantilever. As an important structure of the PCM with a PEA, the piezoresistive Wheatstone bridge had to have suitable doping parameters adapted to the boundary conditions of the manufacturing process of the newly designed PCM. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

25 pages, 1253 KiB  
Article
Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes
by Victor P. Stein and Hans-Jakob Kaltenbach
Energies 2022, 15(7), 2579; https://doi.org/10.3390/en15072579 - 1 Apr 2022
Cited by 5 | Viewed by 2247
Abstract
The ability of high-fidelity computational fluid mechanics simulation to quantitatively predict the influence of ground roughness on the evolution of the wake of a three-bladed horizontal axis wind turbine model is tested by comparison with wind tunnel measurements. The approach consists of the [...] Read more.
The ability of high-fidelity computational fluid mechanics simulation to quantitatively predict the influence of ground roughness on the evolution of the wake of a three-bladed horizontal axis wind turbine model is tested by comparison with wind tunnel measurements. The approach consists of the implicit approximate deconvolution large-eddy simulation formulation of Hickel et al., (2006), that is, for the first time, combined with a wall-stress model for flow over rough surfaces and with the actuator line approach (ALM) for modeling of the rotor. A recycling technique is used for the generation of turbulent inflow that matches shear exponents α=0.16 (medium roughness) and α=0.32 (high roughness) and turbulence level of the reference experiments at hub height. Satisfactory agreement of the spectral content in simulation and experiment is achieved for a grid resolution of 27 cells per rotor radius. Except for minor differences due to neglecting nacelle and tower in the simulation the LES reproduces the shapes of mean flow and Reynolds stress profiles in the wake. The deviations between measurement and simulation are more prominent in a vertical cut plane through the rotor center than in a horizontal cut plane. Simulation and experiment deviate with respect to the roughness influence on the development of the wake width; however, the relative change of the maximum wake deficit and of the vertical wake center position due to changes in ground roughness is reproduced very well. Full article
Show Figures

Figure 1

43 pages, 13154 KiB  
Article
Investigating the Level of Fidelity of an Actuator Line Model in Predicting Loads and Deflections of Rotating Blades under Uniform Free-Stream Flow
by Nikos Spyropoulos, George Papadakis, John M. Prospathopoulos and Vasilis A. Riziotis
Appl. Sci. 2021, 11(24), 12097; https://doi.org/10.3390/app112412097 - 19 Dec 2021
Cited by 12 | Viewed by 5091
Abstract
In this paper, the accuracy of an in-house Actuator Line (AL) model is tested on aeroelastic simulations of a Wind Turbine (WT) rotor and a helicopter Main Rotor (MR) under uniform free-stream flow. For the scope of aeroelastic analyses, the AL model is [...] Read more.
In this paper, the accuracy of an in-house Actuator Line (AL) model is tested on aeroelastic simulations of a Wind Turbine (WT) rotor and a helicopter Main Rotor (MR) under uniform free-stream flow. For the scope of aeroelastic analyses, the AL model is coupled with an in-house multibody dynamics code in which the blades are modeled as beams. The advantage from the introduction of CFD analysis in rotorcraft aeroelasticity is related to its capability to account in detail for the interaction of the rotor wake with the boundary layer developed on the surrounding bodies. This has proven to be of great importance in order to accurately estimate the aerodynamic forces and thus the corresponding structural loads and deflections of the blades. In wind turbine applications, a good example of the above is the rotor/ground interaction. In helicopter configurations, the interaction of MR with the ground or the fuselage and the interaction of tail rotor with the duct in fenestron configurations are typical examples. Furthermore, CFD aerodynamic analysis is an obvious modeling option in which the above mentioned asset can be combined with the consideration of the mutual interaction of the rotor with the ambient turbulence. A WT rotor operating inside the atmospheric boundary layer under turbulent free-stream flow is such a case. In the paper, AL results are compared against Blade Element Momentum (BEM) and Lifting Line (LL) model results in the case of the WT, whereas LL and measured data are considered in the helicopter cases. Blade loads and deflections are mainly compared as azimuthal variations. In the helicopter MR cases, where comparison is made against experimental data, harmonic analysis of structural loads is shown as well. Overall, AL proves to be as reliable as LL in the canonical cases addressed in this paper in terms of loads and deflections predictions. Therefore, it can be trusted in more complex flow conditions where viscous effects are pronounced. Full article
(This article belongs to the Special Issue Aerodynamic Aeroelasticity and Aeroacoustics of Rotorcraft)
Show Figures

Figure 1

15 pages, 3366 KiB  
Article
Three-Dimensional LiDAR Wake Measurements in an Offshore Wind Farm and Comparison with Gaussian and AL Wake Models
by Xin Liu, Lailong Li, Shaoping Shi, Xinming Chen, Songhua Wu and Wenxin Lao
Energies 2021, 14(24), 8313; https://doi.org/10.3390/en14248313 - 10 Dec 2021
Cited by 1 | Viewed by 2581
Abstract
Huaneng Rudong 300 MW offshore wind farm project is located in eastern China. The wake effect is one of the major concerns for wind farm operators, as all 70 units are plotted in ranks, and the sea surface roughness is low. This paper [...] Read more.
Huaneng Rudong 300 MW offshore wind farm project is located in eastern China. The wake effect is one of the major concerns for wind farm operators, as all 70 units are plotted in ranks, and the sea surface roughness is low. This paper investigated the wake intensity by combining a field test and a numerical simulation. To carry out further yaw optimization, a Gaussian wake model was adopted. Firstly, a 3D Light Detection and Ranging device (LiDAR) was used to capture the features in both horizontal and vertical directions of the wake. It indicated that Gaussian wake model can precisely predict the characteristics under time average and steady state in the wind farm. The predicted annual energy production (AEP) of the whole wind farm by the Gaussian model is compared with the calculation result of the actuator line (AL)-based LES method, and the difference between the two methods is mostly under 10%. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

19 pages, 18197 KiB  
Article
Development of an Advanced Fluid-Structure-Acoustics Framework for Predicting and Controlling the Noise Emission from a Wind Turbine under Wind Shear and Yaw
by Mingyue Zhou, Matias Sessarego, Hua Yang and Wen Zhong Shen
Appl. Sci. 2020, 10(21), 7610; https://doi.org/10.3390/app10217610 - 28 Oct 2020
Cited by 3 | Viewed by 3851
Abstract
Noise generated from wind turbines is a big challenge for the wind energy industry to develop further onshore wind energy. The traditional way of reducing noise is to design low noise wind turbine airfoils and blades. A wind turbine operating under wind shear [...] Read more.
Noise generated from wind turbines is a big challenge for the wind energy industry to develop further onshore wind energy. The traditional way of reducing noise is to design low noise wind turbine airfoils and blades. A wind turbine operating under wind shear and in yaw produces periodic changes of blade loading, which intensifies the amplitude modulation (AM) of the generated noise, and thus can give more annoyance to the people living nearby. In this paper, the noise emission from a wind turbine under wind shear and yaw is modelled with an advanced fluid-structure-acoustics framework, and then controlled with a pitch control strategy. The numerical tool used in this study is the coupled Navier–Stokes/Actuator Line model EllipSys3D/AL, structure model FLEX5, and noise prediction model (Brooks, Pope and Marcolini: BPM) framework. All simulations and tests were made on the NM80 wind turbine equipped with three blades made by LM Wind Power. The coupled code was first validated against field load measurements under wind shear and yaw, and a fairly good agreement was obtained. The coupled code was then used to study the noise source control of the turbine under wind shear and yaw. Results show that in the case of a moderate wind shear with a shear exponent of 0.3, the pitch control strategy can reduce the mean noise emission about 0.4 dB and reduce slightly the modulation depth that mainly occurs in the low-frequency region. Full article
(This article belongs to the Special Issue Wind Turbine Aerodynamics II)
Show Figures

Figure 1

31 pages, 77185 KiB  
Article
Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain
by Takanori Uchida
Energies 2020, 13(14), 3745; https://doi.org/10.3390/en13143745 - 21 Jul 2020
Cited by 17 | Viewed by 5602
Abstract
The scope of the present study was to understand the wake characteristics of wind-turbines under various inflow shears. First, in order to verify the prediction accuracy of the in-house large-eddy simulation (LES) solver, called RIAM-COMPACT, based on a Cartesian staggered grid, we conducted [...] Read more.
The scope of the present study was to understand the wake characteristics of wind-turbines under various inflow shears. First, in order to verify the prediction accuracy of the in-house large-eddy simulation (LES) solver, called RIAM-COMPACT, based on a Cartesian staggered grid, we conducted a wind-tunnel experiment using a wind-turbine scale model and compared the numerical and experimental results. The total number of grid points in the computational domain was about 235 million. Parallel computation based on a hybrid LES/actuator line (AL) model approach was performed with a new SX-Aurora TSUBASA vector supercomputer. The comparison between wind-tunnel experiment and high-resolution LES results showed that the AL model implemented in the in-house LES solver in this study could accurately reproduce both performances of the wind-turbine scale model and flow characteristics in the wake region. Next, with the LES solver developed in-house, flow past the entire wind-turbine, including the nacelle and the tower, was simulated for a tip-speed ratio (TSR) of 4, the optimal TSR. Three types of inflow shear, N = 4, N = 10, and uniform flow, were set at the inflow boundary. In these calculations, the calculation domain in the streamwise direction was very long, 30.0 D (D being the wind-turbine rotor diameter) from the center of the wind-turbine hub. Long-term integration of t = 0 to 400 R/Uin was performed. Various turbulence statistics were calculated at t = 200 to 400 R/Uin. Here, R is the wind-turbine rotor radius, and Uin is the wind speed at the hub-center height. On the basis of the obtained results, we numerically investigated the effects of inflow shear on the wake characteristics of wind-turbines over a flat terrain. Focusing on the center of the wind-turbine hub, all results showed almost the same behavior regardless of the difference in the three types of inflow shear. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

27 pages, 35941 KiB  
Article
A New Wind Turbine CFD Modeling Method Based on a Porous Disk Approach for Practical Wind Farm Design
by Takanori Uchida, Yoshihiro Taniyama, Yuki Fukatani, Michiko Nakano, Zhiren Bai, Tadasuke Yoshida and Masaki Inui
Energies 2020, 13(12), 3197; https://doi.org/10.3390/en13123197 - 19 Jun 2020
Cited by 25 | Viewed by 7324
Abstract
In this study, the new computational fluid dynamics (CFD) porous disk (PD) wake model was proposed in order to accurately predict the time-averaged wind speed deficits in the wind turbine wake region formed on the downstream side by the 2-MW wind turbine operating [...] Read more.
In this study, the new computational fluid dynamics (CFD) porous disk (PD) wake model was proposed in order to accurately predict the time-averaged wind speed deficits in the wind turbine wake region formed on the downstream side by the 2-MW wind turbine operating at a wind speed of 10 m/s. We use the concept of forest canopy model as a new CFD PD wake model, which has many research results in the meteorological field. In the forest canopy model, an aerodynamic resistance is added as an external force term to all governing equations (Navier–Stokes equations) in the streamwise, spanwise, and vertical directions. Therefore, like the forest model, the aerodynamic resistance is added to the governing equations in the three directions as an external force term in the CFD PD wake model. In addition, we have positioned the newly proposed the LES using the CFD PD wake model approach as an intermediate method between the engineering wake model (empirical/analytical wake model) and the LES combined with actuator disk (AD) or actuator line (AL) models. The newly proposed model is intended for use in large-scale offshore wind farms (WFs) consisting of multiple wind turbines. In order to verify the validity of the new method, the optimal model parameter CRC was estimated by comparison with the time-averaged wind speed database in the wind turbine wake region with fully resolved geometries, combined with unsteady Reynolds-averaged Navier–Stokes (RANS) equations, implemented using the ANSYS(R) CFX(R) software. Here, product names (mentioned herein) may be trademarks of their respective companies. As a result, in the range from x = 5D of the near wake region to x = 10D of the far wake region, by selecting model parameter CRC, it was clarified that it is possible to accurately evaluate the time-averaged wind speed deficits at those separation distances. We also examined the effect of the spatial grid resolution using the CFD PD wake model that is proposed in the present study, clarifying that the spatial grid resolution has little effect on the simulation results shown here. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop