Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = actomyosin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 465 KB  
Review
Cellular and Molecular Mechanisms of Heart Failure and Sudden Cardiac Death in Hypertrophic Cardiomyopathy and Methods Used for Their Pathogenetic Correction
by Lev Kakturskiy, Yury Belov, Liudmila Mikhaleva, Andrey Lysenko, Zarina Gioeva, Natalia Tikhonova and Nikita Gutyrchik
Biomedicines 2025, 13(12), 2926; https://doi.org/10.3390/biomedicines13122926 - 28 Nov 2025
Viewed by 599
Abstract
Background/Objectives: This paper provides a review of the literature data concerning the cellular and molecular mechanisms of heart failure and sudden cardiac death in hypertrophic cardiomyopathy (HCM), and explores approaches used for their pathogenetic correction. Methods: This study highlights genetically determined targets [...] Read more.
Background/Objectives: This paper provides a review of the literature data concerning the cellular and molecular mechanisms of heart failure and sudden cardiac death in hypertrophic cardiomyopathy (HCM), and explores approaches used for their pathogenetic correction. Methods: This study highlights genetically determined targets of primary damage to the cardiomyocyte ultra-structure—the actomyosin complex of sarcomeres and mitochondria. Results/Conclusions: Damage to these structures leads to heart failure and an increased risk of sudden cardiac death, manifesting against a background of phenotypic features such as cardiac remodeling, asymmetric hypertrophy, left ventricular outflow tract obstruction, myofiber disarray, and atrial fibrillation. Both invasive and non-invasive approaches for the pathogenetic management of these fatal complications are characterized. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

27 pages, 1664 KB  
Review
Actomyosin-Based Nanodevices for Sensing and Actuation: Bridging Biology and Bioengineering
by Nicolas M. Brunet, Peng Xiong and Prescott Bryant Chase
Biosensors 2025, 15(10), 672; https://doi.org/10.3390/bios15100672 - 4 Oct 2025
Viewed by 1965
Abstract
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical [...] Read more.
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical and physical cues and modular adaptability. We begin with a comparative overview of natural and synthetic nanomachines, positioning actomyosin as a uniquely scalable and biocompatible platform. We then discuss experimental advances in controlling actomyosin activity through ATP, calcium, heat, light and electric fields, as well as their integration into in vitro motility assays, soft robotics and neural interface systems. Emphasis is placed on longstanding efforts to harness actomyosin as a biosensing element—capable of converting chemical or environmental signals into measurable mechanical or electrical outputs that can be used to provide valuable clinical and basic science information such as functional consequences of disease-associated genetic variants in cardiovascular genes. We also highlight engineering challenges such as stability, spatial control and upscaling, and examine speculative future directions, including emotion-responsive nanodevices. By bridging cell biology and bioengineering, actomyosin-based systems offer promising avenues for real-time sensing, diagnostics and therapeutic feedback in next-generation biosensors. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

16 pages, 2654 KB  
Article
Differential Sensitivity to MEK Inhibitors Highlights Distinct Entosis Mechanisms in BxPC3 and MCF7 Cells
by Paweł Tyrna, Julia Kostro, Monika Olszanecka, Piotr Szukało and Izabela Młynarczuk-Biały
Cells 2025, 14(19), 1500; https://doi.org/10.3390/cells14191500 - 25 Sep 2025
Viewed by 790
Abstract
Entosis is a form of cell-in-cell interaction observed in epithelial cancers, characterized by the internalization of one cell into another. This process is initiated by cell detachment, cadherin-mediated homotypic adhesion, and the formation of an entotic vacuole. Mechanistically, entosis is driven by Rho/ROCK [...] Read more.
Entosis is a form of cell-in-cell interaction observed in epithelial cancers, characterized by the internalization of one cell into another. This process is initiated by cell detachment, cadherin-mediated homotypic adhesion, and the formation of an entotic vacuole. Mechanistically, entosis is driven by Rho/ROCK signaling and actomyosin contractility in the invading (inner) cell, which becomes stiffer and is pulled into the softer host (outer) cell. A functional assay using differently stained cell populations allows for the assessment of pharmacological interventions on either the inner or outer cell during entosis. In this study, we investigated the impact of MEK pathway inhibition on entosis in two epithelial cancer cell lines, BxPC3 (pancreatic cancer) and MCF7 (breast cancer). BxPC3 cells, which rely on adhesion, exhibited a significant reduction in entotic index upon MEK inhibition. In contrast, MCF7 cells showed no selectivity of entosis to three different MEK inhibitors. These findings suggest cell-type-specific regulation of entosis, potentially linked to differences in protrusion formation mechanisms and upstream Ras signaling pathways previously implicated in cancer cell motility. Full article
(This article belongs to the Topic Kinases in Cancer and Other Diseases, 2nd Edition)
Show Figures

Figure 1

18 pages, 1192 KB  
Review
Active Endothelial Inactivation of Hyperpermeability: The Role of Nitric Oxide-Driven cAMP/Epac1 Signaling
by Mauricio A. Lillo, Pía C. Burboa and Walter N. Durán
J. Cardiovasc. Dev. Dis. 2025, 12(9), 361; https://doi.org/10.3390/jcdd12090361 - 17 Sep 2025
Viewed by 1523
Abstract
Endothelial hyperpermeability is a hallmark of diverse inflammatory and vascular pathologies, including sepsis, acute respiratory distress syndrome (ARDS), ischemia–reperfusion injury, and atherosclerosis. Traditionally considered a passive return to baseline following stimulus withdrawal, barrier recovery is now recognized as an active, endothelial-driven process. Earlier [...] Read more.
Endothelial hyperpermeability is a hallmark of diverse inflammatory and vascular pathologies, including sepsis, acute respiratory distress syndrome (ARDS), ischemia–reperfusion injury, and atherosclerosis. Traditionally considered a passive return to baseline following stimulus withdrawal, barrier recovery is now recognized as an active, endothelial-driven process. Earlier work identified individual components of this restorative phase, such as cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP 1 (Epac1) signaling, Rap1/Rac1 activation, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and targeted cytoskeletal remodeling, as well as kinase pathways involving PKA, PKG, and Src. However, these were often regarded as discrete events lacking a unifying framework. Recent integrative analyses, combining mechanistic insights from multiple groups, reveal that nitric oxide (NO) generated early during hyperpermeability can initiate a delayed cAMP/Epac1 cascade. This axis coordinates Rap1/Rac1-mediated cortical actin polymerization, VASP-driven junctional anchoring, retro-translocation of endothelial nitric oxide synthase (eNOS) to caveolar domains, PP2A-dependent suppression of actomyosin tension, and Krüppel-like factor 2 (KLF2)-driven transcriptional programs that sustain endothelial quiescence. Together, these pathways form a temporally orchestrated, multi-tiered “inactivation” program capable of restoring barrier integrity even in the continued presence of inflammatory stimuli. This conceptual shift reframes NO from solely a barrier-disruptive mediator to the initiating trigger of a coordinated, pro-resolution mechanism. The unified framework integrates cytoskeletal dynamics, junctional reassembly, focal adhesion turnover, and redox/transcriptional control, providing multiple potential intervention points. Therapeutically, Epac1 activation, Rap1/Rac1 enhancement, RhoA/ROCK inhibition, PP2A activation, and KLF2 induction represent strategies to accelerate endothelial sealing in acute microvascular syndromes. Moreover, applying these mechanisms to arterial endothelium could limit low-density lipoprotein (LDL) entry and foam cell formation, offering a novel adjunctive approach for atherosclerosis prevention. In this review, we will discuss both the current understanding of endothelial hyperpermeability mechanisms and the emerging pathways of its active inactivation, integrating molecular, structural, and translational perspectives. Full article
(This article belongs to the Section Electrophysiology and Cardiovascular Physiology)
Show Figures

Figure 1

14 pages, 3088 KB  
Article
CAF-Driven Mechanotransduction via Collagen Remodeling Accelerates Tumor Cell Cycle Progression
by Yating Xiao, Yingying Jiang, Ting Bao, Xin Hu, Xiang Wang, Xiaoning Han and Linhong Deng
Gels 2025, 11(8), 642; https://doi.org/10.3390/gels11080642 - 13 Aug 2025
Cited by 1 | Viewed by 1842
Abstract
Cancer-associated fibroblasts (CAFs) restructure collagen hydrogels via actomyosin-driven fibril bundling and crosslinking, increasing polymer density to generate mechanical stress that accelerates tumor proliferation. Conventional hydrogel models lack spatial heterogeneity, thus obscuring how localized stiffness gradients regulate cell cycle progression. To address this, we [...] Read more.
Cancer-associated fibroblasts (CAFs) restructure collagen hydrogels via actomyosin-driven fibril bundling and crosslinking, increasing polymer density to generate mechanical stress that accelerates tumor proliferation. Conventional hydrogel models lack spatial heterogeneity, thus obscuring how localized stiffness gradients regulate cell cycle progression. To address this, we developed a collagen hydrogel-based microtissue platform integrated with programmable microstrings (single/double tethering), enabling real-time quantification of gel densification mechanics and force transmission efficiency. Using this system combined with FUCCI cell cycle biosensors and molecular perturbations, we demonstrate that CAF-polarized contraction increases hydrogel stiffness (350 → 775 Pa) and reduces pore diameter (5.0 → 1.9 μm), activating YAP/TAZ nuclear translocation via collagen–integrin–actomyosin cascades. This drives a 2.4-fold proliferation increase and accelerates G1/S transition in breast cancer cells. Pharmacological inhibition of YAP (verteporfin), actomyosin (blebbistatin), or collagen disruption (collagenase) reversed mechanotransduction and proliferation. Partial rescue upon CYR61 knockdown revealed compensatory effector networks. Our work establishes CAF-remodeled hydrogels as biomechanical regulators of tumor growth and positions gel-based mechanotherapeutics as promising anti-cancer strategies. Full article
Show Figures

Figure 1

35 pages, 2232 KB  
Article
The Twisting and Untwisting of Actin and Tropomyosin Filaments Are Involved in the Molecular Mechanisms of Muscle Contraction, and Their Disruption Can Result in Muscle Disorders
by Yurii S. Borovikov, Maria V. Tishkova, Stanislava V. Avrova, Vladimir V. Sirenko and Olga E. Karpicheva
Int. J. Mol. Sci. 2025, 26(14), 6705; https://doi.org/10.3390/ijms26146705 - 12 Jul 2025
Viewed by 1785
Abstract
Polarized fluorescence microscopy of “ghost” muscle fibers, containing fluorescently labeled F-actin, tropomyosin, and myosin, has provided new insights into the molecular mechanisms underlying muscle contraction. At low Ca2+, the troponin-induced overtwisting of the actin filament alters the configuration of myosin binding [...] Read more.
Polarized fluorescence microscopy of “ghost” muscle fibers, containing fluorescently labeled F-actin, tropomyosin, and myosin, has provided new insights into the molecular mechanisms underlying muscle contraction. At low Ca2+, the troponin-induced overtwisting of the actin filament alters the configuration of myosin binding sites, preventing actin–myosin interactions. As Ca2+ levels rise, the actin filament undergoes untwisting, while tropomyosin becomes overtwisted, facilitating the binding of myosin to actin. In the weakly bound state, myosin heads greatly increase both the internal twist and the bending stiffness of actin filaments, accompanied by the untwisting of tropomyosin. Following phosphate (Pi) release, myosin induces the untwisting of overtwisted actin filaments, driving thin-filament sliding relative to the thick filament during force generation. Point mutations in tropomyosin significantly alter the ability of actin and tropomyosin filaments to respond to Pi release, with coordinated changes in twist and bending stiffness. These structural effects correlate with changes in actomyosin ATPase activity. Together, these findings support a model in which dynamic filament twisting is involved in the molecular mechanisms of muscle contraction together with the active working stroke in the myosin motor, and suggest that impairment of this ability may cause contractile dysfunction. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Diseases)
Show Figures

Figure 1

14 pages, 2171 KB  
Brief Report
Pulsatile Myofilament Activity in Myotrem Myopathy Associated with Myogenic Tremor
by Jennifer Megan Mariano, Laurin M. Hanft, Suhan Cho, Christopher W. Ward, Kerry S. McDonald and Aikaterini Kontrogianni-Konstantopoulos
Int. J. Mol. Sci. 2025, 26(11), 5252; https://doi.org/10.3390/ijms26115252 - 30 May 2025
Viewed by 1008
Abstract
Myosin-binding protein C (MyBP-C) comprises a family of myofilament proteins that maintain sarcomeric structure and regulate actomyosin crossbridge cycling. Pathogenic variants in MYBPC1, the gene encoding the slow skeletal isoform (sMyBP-C), lead to a dominant congenital myopathy, termed Myotrem, characterized by muscle [...] Read more.
Myosin-binding protein C (MyBP-C) comprises a family of myofilament proteins that maintain sarcomeric structure and regulate actomyosin crossbridge cycling. Pathogenic variants in MYBPC1, the gene encoding the slow skeletal isoform (sMyBP-C), lead to a dominant congenital myopathy, termed Myotrem, characterized by muscle weakness, hypotonia, and a distinctive tremor of myogenic origin, in the absence of neuropathy. However, the molecular mechanism(s) of myogenic tremorgenesis is largely unknown. One potential mechanism is aberrant myofilament stretch activation, which is defined as a delayed increase in force after a rapid stretch. We utilized the Myotrem murine model harboring the pathogenic MYBPC1 E248K variant to test the hypothesis that stretch activation is augmented in permeabilized Myotrem E248K soleus fibers. We found that stretch activation was significantly increased in E248K soleus muscle fibers. Interestingly, once submaximally Ca2+ activated, a subpopulation of slow-twitch E248K fibers exhibited spontaneous pulsatile sarcomere oscillations. This pulsing behavior generated a sinusoidal waveform pattern in sarcomere length, which often persisted on a timescale of minutes. These results align with sMyBP-C as key regulator of the synchronous activation of myofilaments by dampening both spontaneous oscillatory activity and stretch-dependent activation. We propose that the presence of sMyBP-C-E248K disrupts this regulation, thereby driving pathogenic myogenic tremors. Full article
(This article belongs to the Special Issue Sarcomeric Proteins in Health and Disease: 3rd Edition)
Show Figures

Figure 1

22 pages, 14596 KB  
Article
The Minute Virus of Canines (MVC) Activates the RhoA/ROCK1/MLC2 Signal Transduction Pathway Resulting in the Dissociation of Tight Junctions and Facilitating Occludin-Mediated Viral Infection
by Xiang Ren, Zhiping Hei, Kai Ji, Yan Yan, Chuchu Tian, Yin Wei and Yuning Sun
Microorganisms 2025, 13(3), 695; https://doi.org/10.3390/microorganisms13030695 - 20 Mar 2025
Cited by 1 | Viewed by 986
Abstract
The Minute Virus of Canines (MVC), belonging to the genus Bocaparvovirus within the family Parvoviridae, is associated with enteritis and embryonic infection in neonatal canines. Viral attachment to host cells is a critical step in infection, and viral protein 2 (VP2) as [...] Read more.
The Minute Virus of Canines (MVC), belonging to the genus Bocaparvovirus within the family Parvoviridae, is associated with enteritis and embryonic infection in neonatal canines. Viral attachment to host cells is a critical step in infection, and viral protein 2 (VP2) as an important structural protein of MVC influences host selection and infection severity. Nevertheless, little is known about the interaction between VP2 protein and host cells. In this study, we identified that VP2 directly interacts with the kinase domain of RhoA-associated protein kinase 1 (ROCK1) by using mass spectrometry and immunoprecipitation approach and demonstrated that the RhoA/ROCK1/myosin light chain 2 (MLC2) signaling pathway was activated during the early stage of MVC infection in Walter Reed canine cell/3873D (WRD) cells. Further studies indicated that RhoA/ROCK1-mediated phosphorylation of MLC2 triggers the contraction of the actomyosin ring, disrupts tight junctions, and exposes the tight junction protein Occludin, which facilitates the interaction between VP2 and Occludin. Specific inhibitors of RhoA and ROCK1 restored the MVC-induced intracellular translocation of Occludin and the increase in cell membrane permeability. Moreover, the two inhibitors significantly reduced viral protein expression and genomic copy number. Collectively, our study provides the first evidence that there is a direct interaction between the structural protein VP2 of MVC and ROCK1, and that the tight junction protein Occludin can serve as a potential co-receptor for MVC infection, which may offer new targets for anti-MVC strategies. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

31 pages, 2670 KB  
Review
Molecular Motors in Blood–Brain Barrier Maintenance by Astrocytes
by Ana Filipa Sobral, Inês Costa, Vanessa Teixeira, Renata Silva and Daniel José Barbosa
Brain Sci. 2025, 15(3), 279; https://doi.org/10.3390/brainsci15030279 - 6 Mar 2025
Cited by 7 | Viewed by 4735
Abstract
The blood–brain barrier (BBB) comprises distinct cell types, including endothelial cells, pericytes, and astrocytes, and is essential for central nervous system (CNS) homeostasis by selectively regulating molecular transport and maintaining integrity. In particular, astrocytes are essential for BBB function, as they maintain BBB [...] Read more.
The blood–brain barrier (BBB) comprises distinct cell types, including endothelial cells, pericytes, and astrocytes, and is essential for central nervous system (CNS) homeostasis by selectively regulating molecular transport and maintaining integrity. In particular, astrocytes are essential for BBB function, as they maintain BBB integrity through their end-feet, which form a physical and biochemical interface that enhances endothelial cell function and barrier selectivity. Moreover, they secrete growth factors like vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), which regulate tight junction (TJ) proteins (e.g., claudins and occludins) crucial for limiting paracellular permeability. Molecular motors like kinesins, dynein, and myosins are essential for these astrocyte functions. By facilitating vesicular trafficking and protein transport, they are essential for various functions, including trafficking of junctional proteins to support BBB integrity, the proper mitochondria localization within astrocyte processes for efficient energy supply, the polarized distribution of aquaporin (AQP)-4 at astrocyte end-feet for regulating water homeostasis across the BBB, and the modulation of neuroinflammatory responses. Moreover, myosin motors modulate actomyosin dynamics to regulate astrocyte process outgrowth, adhesion, migration, and morphology, facilitating their functional roles. Thus, motor protein dysregulation in astrocytes can compromise BBB function and integrity, increasing the risk of neurodegeneration. This review explores the complex interplay between astrocytes and molecular motors in regulating BBB homeostasis, which represents an attractive but poorly explored area of research. Full article
Show Figures

Figure 1

22 pages, 3897 KB  
Article
Purification and Characterization of Transglutaminase Isolated from Sardine (Sardina pilchardus) Flesh Waste
by Imen Zaghbib, Johar Amin Ahmed Abdullah, Mnasser Hassouna and Alberto Romero
Polymers 2025, 17(4), 510; https://doi.org/10.3390/polym17040510 - 16 Feb 2025
Cited by 1 | Viewed by 2117
Abstract
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions by creating covalent cross-links between protein molecules and has been used to improve the physical and functional properties of protein-based foods. The objectives of this study were the extraction, purification, and biochemical characterization [...] Read more.
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions by creating covalent cross-links between protein molecules and has been used to improve the physical and functional properties of protein-based foods. The objectives of this study were the extraction, purification, and biochemical characterization of TGase from sardine (Sardina pilchardus) flesh in order to provide a suitable TGase enzyme for food industry applications. The results showed a specific activity, yield, and purification fold of 357.14 U/mg protein, 36.74%, and 183.15, respectively. The enzyme exhibited maximal activity at 40 °C and pH 8.0, with a molecular weight of around 57 kDa. The effect of time on TGase thermal stability at 40 °C showed a gradual decrease in its catalytic activity during the incubation time until the enzyme was completely inactivated at 60 min. Additionally, the sardine TGase was found to be calcium-dependent. However, Mg2+ and Ba2+ ions were found to be effective in its activation to some extent and a total inhibition was shown by Zn2+ and Sr2+ ions. The TGase activity was affected markedly by NaCl and EDTA, and lost, respectively, about 80.7% and 36.49% from its activity by increasing the concentration (1.5 M NaCl and 20 mM EDTA). Based on the surface hydrophobicity and solubility results, the cross-linking of natural actomyosin mediated by TGase increased to a greater extent. The results revealed that sardine TGase possessed attractive qualities, making it a potential alternative to other TGase sources for food industry applications. Full article
Show Figures

Figure 1

18 pages, 5437 KB  
Article
Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration
by Anastasia Alexandrova, Elizaveta Kontareva, Margarita Pustovalova, Sergey Leonov and Yulia Merkher
Life 2025, 15(1), 127; https://doi.org/10.3390/life15010127 - 19 Jan 2025
Viewed by 2384
Abstract
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by “cellular leaders”. These leader cells generate forces through actomyosin-mediated protrusion and contractility. The [...] Read more.
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by “cellular leaders”. These leader cells generate forces through actomyosin-mediated protrusion and contractility. The cytoskeletal mechanisms employed by metastatic cells during the migration process closely resemble the use of the actin cytoskeleton in endocytosis. In our previous work, we revealed that tumor cells exhibiting high metastatic potential (MP) are more adept at encapsulating 100–200 nm nanoparticles than those with lower MP. The objective of this study was to investigate whether nanoparticle encapsulation could effectively differentiate leader tumor cells during their CCM. To achieve our objectives, we employed a two-dimensional CCM model grounded in the wound-healing (“scratch”) assay, utilizing two breast cancer cell lines, MCF7 and MDA-MB-231, which display low and high migratory potential, respectively. We conducted calibration experiments to identify the “optimal time” at which cells exhibit peak speed during wound closure. Furthermore, we carried out experiments to assess nanoparticle uptake, calculating the colocalization coefficient, and employed phalloidin staining to analyze the anisotropy and orientation of actin filaments. The highest activity for low-MP cells was achieved at 2.6 h during the calibration experiments, whereas high-MP cells were maximally active at 3.9 h, resulting in 8% and 11% reductions in wound area, respectively. We observed a significant difference in encapsulation efficiency between leader and peripheral cells for both high-MP (p < 0.013) and low-MP (p < 0.02) cells. Moreover, leader cells demonstrated a considerably higher anisotropy coefficient (p < 0.029), indicating a more organized, directional structure of actin filaments compared to peripheral cells. Thus, nanoparticle encapsulation offers a groundbreaking approach to identifying the most aggressive and invasive leader cells during the CCM process in breast cancer. Detecting these cells is crucial for developing targeted therapies that can effectively curb metastasis and improve patient outcomes. Full article
(This article belongs to the Special Issue Advancing Nanotechnology in Cancer Theranostics)
Show Figures

Figure 1

22 pages, 1508 KB  
Review
Hypertrophic Cardiomyopathy with Special Focus on Mavacamten and Its Future in Cardiology
by Ewelina Młynarska, Ewa Radzioch, Bartłomiej Dąbek, Klaudia Leszto, Alicja Witkowska, Witold Czarnik, Weronika Jędraszak, Jacek Rysz and Beata Franczyk
Biomedicines 2024, 12(12), 2675; https://doi.org/10.3390/biomedicines12122675 - 24 Nov 2024
Cited by 1 | Viewed by 4246
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous group of heart muscle disorders that affects millions, with an incidence from 1 in 500 to 1 in 200. Factors such as genetics, age, gender, comorbidities, and environmental factors may contribute to the course of this disease. [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a heterogeneous group of heart muscle disorders that affects millions, with an incidence from 1 in 500 to 1 in 200. Factors such as genetics, age, gender, comorbidities, and environmental factors may contribute to the course of this disease. Diagnosis of HCM has improved significantly in the past few decades from simple echocardiographic evaluations to a more complex, multimodal approach embracing advanced imaging, genetic, and biomarker studies. This review focuses on Mavacamten, a selective allosteric inhibitor of cardiac myosin, as a pharmacological treatment for HCM. Patients with HCM experience pathological actomyosin interactions, leading to impaired relaxation and increased energy expenditure. Mavacamten decreases available myosin heads, reducing actomyosin cross-bridges during systole and diastole. By reducing the number of bridges left ventricular outflow tract pressure is normalized and cardiac cavities are filled. This mechanism enhances patient performance and alleviates symptoms such as chest pain and dyspnea. The results suggest the potential for Mavacamten to transform the treatment of obstructive hypertrophic cardiomyopathy. Studies to date have shown significant improvement in exercise capacity, symptom relief, and a reduction in the need for invasive procedures such as septal myectomy. Further studies are needed to confirm the clinical results. Full article
Show Figures

Figure 1

22 pages, 1236 KB  
Review
Research Progress on the Mechanism of the Impact of Myofibrillar Protein Oxidation on the Flavor of Meat Products
by Lingping Zhang, Dongsong Yang, Ruiming Luo, Yulong Luo and Yanru Hou
Foods 2024, 13(20), 3268; https://doi.org/10.3390/foods13203268 - 15 Oct 2024
Cited by 22 | Viewed by 4669
Abstract
Myofibrillar proteins primarily consist of myosin, actin, myogenin, and actomyosin. These proteins form complex networks within muscle fibers and are crucial to the physical and chemical properties of meat. Additionally, myofibrillar proteins serve as significant substrates for the adsorption of volatile flavor compounds, [...] Read more.
Myofibrillar proteins primarily consist of myosin, actin, myogenin, and actomyosin. These proteins form complex networks within muscle fibers and are crucial to the physical and chemical properties of meat. Additionally, myofibrillar proteins serve as significant substrates for the adsorption of volatile flavor compounds, including aldehydes, alcohols, ketones, and sulfur and nitrogen compounds, which contribute to the overall flavor profile of meat products. A series of chemical reactions occur during the processing, storage, and transportation of meat products. Oxidation is one of the most significant reactions. Oxidative modification can alter the physical and chemical properties of proteins, ultimately impacting the sensory quality of meat products, including flavor, taste, and color. In recent years, considerable attention has been focused on the effects of protein oxidation on meat quality and its regulation. This study investigates the impact of myofibrillar protein oxidation on the sensory attributes of meat products by analyzing the oxidation processes and the factors that initiate myofibrillar protein oxidation. Additionally, it explores the control of myofibrillar protein oxidation and its implications on the sensory properties of meat products, providing theoretical insights relevant to meat processing methods and quality control procedures. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

21 pages, 3959 KB  
Review
Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast
by Magdalena Foltman and Alberto Sanchez-Diaz
J. Fungi 2024, 10(9), 662; https://doi.org/10.3390/jof10090662 - 21 Sep 2024
Cited by 4 | Viewed by 2870
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and [...] Read more.
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

17 pages, 2230 KB  
Article
Myosin Isoform-Dependent Effect of Omecamtiv Mecarbil on the Regulation of Force Generation in Human Cardiac Muscle
by Beatrice Scellini, Nicoletta Piroddi, Marica Dente, J. Manuel Pioner, Cecilia Ferrantini, Corrado Poggesi and Chiara Tesi
Int. J. Mol. Sci. 2024, 25(18), 9784; https://doi.org/10.3390/ijms25189784 - 10 Sep 2024
Cited by 4 | Viewed by 1747
Abstract
Omecamtiv mecarbil (OM) is a small molecule that has been shown to improve the function of the slow human ventricular myosin (MyHC) motor through a complex perturbation of the thin/thick filament regulatory state of the sarcomere mediated by binding to myosin allosteric sites [...] Read more.
Omecamtiv mecarbil (OM) is a small molecule that has been shown to improve the function of the slow human ventricular myosin (MyHC) motor through a complex perturbation of the thin/thick filament regulatory state of the sarcomere mediated by binding to myosin allosteric sites coupled to inorganic phosphate (Pi) release. Here, myofibrils from samples of human left ventricle (β-slow MyHC-7) and left atrium (α-fast MyHC-6) from healthy donors were used to study the differential effects of μmolar [OM] on isometric force in relaxing conditions (pCa 9.0) and at maximal (pCa 4.5) or half-maximal (pCa 5.75) calcium activation, both under control conditions (15 °C; equimolar DMSO; contaminant inorganic phosphate [Pi] ~170 μM) and in the presence of 5 mM [Pi]. The activation state and OM concentration within the contractile lattice were rapidly altered by fast solution switching, demonstrating that the effect of OM was rapid and fully reversible with dose-dependent and myosin isoform-dependent features. In MyHC-7 ventricular myofibrils, OM increased submaximal and maximal Ca2+-activated isometric force with a complex dose-dependent effect peaking (40% increase) at 0.5 μM, whereas in MyHC-6 atrial myofibrils, it had no effect or—at concentrations above 5 µM—decreased the maximum Ca2+-activated force. In both ventricular and atrial myofibrils, OM strongly depressed the kinetics of force development and relaxation up to 90% at 10 μM [OM] and reduced the inhibition of force by inorganic phosphate. Interestingly, in the ventricle, but not in the atrium, OM induced a large dose-dependent Ca2+-independent force development and an increase in basal ATPase that were abolished by the presence of millimolar inorganic phosphate, consistent with the hypothesis that the widely reported Ca2+-sensitising effect of OM may be coupled to a change in the state of the thick filaments that resembles the on–off regulation of thin filaments by Ca2+. The complexity of this scenario may help to understand the disappointing results of clinical trials testing OM as inotropic support in systolic heart failure compared with currently available inotropic drugs that alter the calcium signalling cascade. Full article
(This article belongs to the Special Issue Molecular Motors: Mechanical Properties and Regulation)
Show Figures

Figure 1

Back to TopTop