Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. An Overview of the Study Area
2.2. Plot Establishment and Vegetation Survey
2.2.1. Plot Establishment
2.2.2. Vegetation Survey
2.3. Analysis of Dominant Species
2.4. Analysis of Species Diversity
2.5. Soil Sampling and Analysis
2.6. Data Analysis
3. Results
3.1. Changes in Community Composition and Diversity Across Different Forest Types Before and After Girdling
3.1.1. Changes in Community Composition and Diversity of the Tree Layer
3.1.2. Changes in Community Composition and Diversity of the Shrub Layer
3.2. Soil Properties Across Different Forest Types
3.3. Correlation Analysis Between Soil Factors and Plant Diversity
3.4. Dominant Factors Driving Variation in Soil Properties
4. Discussion
4.1. Impact of Girdling Treatment on Community Structure in Different Forest Types
4.2. Regulatory Effects of Forest Types and Treatments on Soil Properties
4.3. Response Relationships Between Soil Properties and Community Diversity
4.4. Mechanisms of Girdling Effects and Management Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Artaxo, P.; Hansson, H.C.; Machado, L.A.T.; Rizzo, L.V. Tropical forests are crucial in regulating the climate on Earth. PLoS Clim. 2022, 1, e0000054. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Gosnell, J.S.; Davis, S.L.; Ahumada, J.; Boundja, P.; Clark, D.B.; Mugerwa, B.; Jansen, P.A.; O’Brien, T.G.; Rovero, F.; et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 2014, 23, 563–573. [Google Scholar] [CrossRef]
- Zong, L.P. The path to effective national park conservation and management: Hainan tropical rainforest National Park System Pilot Area. Int. J. Geoherit. Parks 2020, 8, 225–229. [Google Scholar] [CrossRef]
- Chen, H.H.; Huang, H.; Tian, L.Y.; Wei, J.X.; Yu, X.B.; Wang, X. Changes of vegetation community characteristics of Acacia mangium plantation under natural restoration. J. South Agric. 2024, 55, 2721–2733. [Google Scholar] [CrossRef]
- Liu, Z.J. Protection value and high-quality construction plans in National Park of Hainan Tropical Rainforest. Natl. Park 2023, 1, 250–254. [Google Scholar]
- Yamagawa, H.; Ito, S.; Nakao, T. Restoration of semi-natural forest after clearcutting of conifer plantations in Japan. Landsc. Ecol. Eng. 2010, 6, 109–117. [Google Scholar] [CrossRef]
- Piiroinen, T.; Nyeko, P.; Roininen, H. Natural establishment of indigenous trees under planted nuclei: A study from a clear-felled pine plantation in an afrotropical rain forest. Forest Ecol. Manag. 2015, 345, 21–28. [Google Scholar] [CrossRef]
- Wang, S.J.; Yan, M.H.; Huang, Q.L.; Song, L.; Peng, W.C. Research on girdling: A review. World For. Res. 2023, 36, 38–44. [Google Scholar] [CrossRef]
- Ohlson-Kiehn, C.; Pariona, W.; Fredericksen, T.S. Alternative tree girdling and herbicide treatments for liberation and timber stand improvement in Bolivian tropical forests. Forest Ecol. Manag. 2006, 225, 207–212. [Google Scholar] [CrossRef]
- Reque, J.A.; Bravo, F. Viability of thinning sessile oak stands by girdling. Forestry 2007, 80, 193–199. [Google Scholar] [CrossRef]
- Binkley, D.; Stape, J.L.; Takahashi, E.N.; Ryan, M.G. Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia 2006, 148, 447–454. [Google Scholar] [CrossRef]
- Wasli, M.E.; Ambun, D.B.; Kalu, M.; Sidi, M.; Nahrawi, H.; Elias, H. Assessment on the growth performance of planted Dryobalanops beccarii at reforestation sites after implementation of selective girdling. Biodiversitas 2020, 21, 1880–1889. [Google Scholar] [CrossRef]
- Basri, E.; Yuniarti, K.; Wahyudi, I.; Saefudin; Damayanti, R. Effects of girdling on wood properties and drying characteristics of Acacia mangium. J. Trop. For. Sci. 2015, 27, 498–505. [Google Scholar]
- Wang, S.J.; Yan, M.H.; Huang, Q.L.; Peng, W.C.; Liao, L.G.; Huang, S.Q.; Song, L. Experimental effect of trunk girdling on the semi-natural forest of Cunninghamia lanceolata in Hainan Tropical Rainforest National Park. Acta Ecol. Sin. 2025, 45, 2996–3005. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Widyati, E.; Nuroniah, H.S.; Tata, H.L.; Mindawati, N.; Lisnawati, Y.; Darwo; Abdulah, L.; Lelana, N.E.; Mawazin; Octavia, D.; et al. Soil degradation due to conversion from natural to plantation forests in Indonesia. Forests 2022, 13, 1913. [Google Scholar] [CrossRef]
- Fang, J.Y. Exploring altitudinal patterns of plant diversity of China’s mountains. Biodivers. Sci. 2004, 1, 1–4. [Google Scholar] [CrossRef]
- Patrick, R. A proposed biological measure of stream conditions, based on a survey of the Conestoga Basin, Lancaster County, Pennsylvania. Proc. Acad. Nat. Sci. Phila. 1949, 101, 277–341. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Ma, K.P. Measurement of biotic community diversity I α diversity (Part 1). Biodivers. Sci. 1994, 2, 162–168. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Yang, W.Q.; Wang, K.Y. Advances in forest soil enzymology. Sci. Silvae Sin. 2004, 40, 152–159. [Google Scholar]
- Merceron, N.R.; Lamarque, L.J.; Delzon, S.; Porté, A.J. Killing it softly: Girdling as an efficient eco-friendly method to locally remove invasive Acer negundo. Ecol. Restor. 2016, 34, 297–305. [Google Scholar] [CrossRef]
- Cabin, R.J.; Weller, S.G.; Lorence, D.H.; Cordell, S.; Hadway, L.J.; Montgomery, R.; Goo, D.; Urakami, A. Effects of light, alien grass, and native species additions on Hawaiian dry forest restoration. Ecol. Appl. 2002, 12, 1595–1610. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Jagodziński, A.M. Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests 2019, 10, 951. [Google Scholar] [CrossRef]
- Rajeev, J.; Kumar, K.C.J.; Prasad, D.P.; Utpal, D. Exploring the impact of thinning operations on forest ecosystems in tropical and temperate regions worldwide: A comprehensive review. J. Resour. Ecol. 2023, 14, 1227–1242. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Fonseca, T.F. Influence management and disturbances on the regeneration of forest stands. Front. For. Glob. Change 2023, 6, 1123215. [Google Scholar] [CrossRef]
- Xu, X.L.; Wang, X.J.; Hu, Y.; Wang, P.; Saeed, S.; Sun, Y.J. Short-term effects of thinning on the development and communities of understory vegetation of Chinese fir plantations in Southeastern China. PeerJ 2020, 8, e8536. [Google Scholar] [CrossRef]
- Rosenfield, M.F.; Jakovac, C.C.; Vieira, D.L.M.; Poorter, L.; Brancalion, P.H.S.; Vieira, I.C.G.; de Almeida, D.R.A.; Massoca, P.; Schietti, J.; Albernaz, A.L.M.; et al. Ecological integrity of tropical secondary forests: Concepts and indicators. Biol. Rev. 2023, 98, 662–676. [Google Scholar] [CrossRef]
- Kerr, G. The use of silvicultural systems to enhance the biological diversity of plantation forests in Britain. Forestry 1999, 72, 191–205. [Google Scholar] [CrossRef]
- Matsushita, M.; Nishikawa, H.; Tamura, A. Effects of girdling intensity, pruning season and thinning on tree growth, crown vigor and wound recovery in Japanese larch. Forests 2022, 13, 449. [Google Scholar] [CrossRef]
- Mendham, D.S.; White, D.A. A review of nutrient, water and organic matter dynamics of tropical acacias on mineral soils for improved management in Southeast Asia. Aust. For. 2019, 82 (Suppl. 1), 45–56. [Google Scholar] [CrossRef]
- Ouyang, S.N.; Tie, L.H.; Rao, X.Q.; Cai, X.A.; Liu, S.P.; Vitali, V.; Wei, L.Y.; Yu, Q.S.; Sun, D.; Lin, Y.B.; et al. Mixed-species Acacia plantation decreases soil organic carbon and total nitrogen concentrations but favors species regeneration and tree growth over monoculture: A thirty-three-year field experiment in Southern China. Forests 2023, 14, 968. [Google Scholar] [CrossRef]
- Vogt, K.A.; Vogt, D.J.; Brown, S.; Tilley, J.P.; Edmonds, R.L.; Silver, W.L.; Siccama, T.G. Dynamics of Forest Floor and Soil Organic Matter Accumulation in Boreal, Temperate, and Tropical Forests; CRC Press: Boca Raton, FL, USA, 1995; pp. 159–178. [Google Scholar] [CrossRef]
- Deng, J.J.; Fang, S.; Fang, X.M.; Jin, Y.Q.; Kuang, Y.W.; Lin, F.M.; Liu, J.Q.; Ma, J.R.; Nie, Y.X.; Ouyang, S.N.; et al. Forest understory vegetation study: Current status and future trends. For. Res. 2023, 3, 6. [Google Scholar] [CrossRef]
- Gliksman, D.; Haenel, S.; Osem, Y.; Yakir, D.; Zangy, E.; Preisler, Y.; Grünzweig, J.M. Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 2018, 422, 317–329. [Google Scholar] [CrossRef]
- Prescott, C.E. The influence of the forest canopy on nutrient cycling. Tree Physiol. 2002, 22, 1193–1200. [Google Scholar] [CrossRef]
- Ndabankulu, K.; Egbewale, S.O.; Tsvuura, Z.; Magadlela, A. Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. Sci. Rep. 2022, 12, 12601. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Long, X.Y.; Liao, Y.Q.; Lin, Y.H.; He, Z.H.; Kong, Q.; Kong, X.S.; He, X.B. Influence of arbuscular mycorrhizal fungi on nitrogen dynamics during Cinnamomum camphora litter decomposition. Microorganisms 2025, 13, 151. [Google Scholar] [CrossRef]
- Lavres, J.; Castro Franco, G.; de Sousa Câmara, G.M. Soybean seed treatment with nickel improves biological nitrogen fixation and urease activity. Front. Environ. Sci. 2016, 4, 37. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef]
- Bayala, J.; Prieto, I. Water acquisition, sharing and redistribution by roots: Applications to agroforestry systems. Plant Soil 2020, 453, 17–28. [Google Scholar] [CrossRef]
- Chen, D.M.; Zhou, L.X.; Wu, J.P.; Hsu, J.; Lin, Y.B.; Fu, S.L. Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations. Appl. Soil Ecol. 2012, 53, 108–115. [Google Scholar] [CrossRef]
- Millard, P.; Sommerkorn, M.; Grelet, G.A. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytol. 2007, 175, 11–28. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, K.; Sanczuk, P.; Meeussen, C.; Depauw, L.; De Lombaerde, E.; Govaert, S.; Vanneste, T.; Brunet, J.; Cousins, S.A.O.; Gasperini, C.; et al. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytol. 2022, 233, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Hai, L.; Qin, F.C.; Liu, L.; Hong, G.Y.; Li, Z.H.; Li, L.; Yue, Y.J.; Dong, X.Y.; He, R.; et al. Effects of micro-topography on soil nutrients and plant diversity of artificial shrub forest in the Mu Us Sandy Land. Plants 2025, 14, 2163. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Fan, F.; Lin, Q.M.; Guo, S.Z.; Li, S.M.; Zhang, Y.P.; Feng, Z.Y.; Wang, X.X.; Rensing, C.; Cao, G.Q.; et al. Effects of different stand densities on the composition and diversity of soil microbiota in a Cunninghamia lanceolata plantation. Plants 2025, 14, 98. [Google Scholar] [CrossRef]
- Xing, G.T.; Wang, X.F.; Jiang, Y.M.; Yang, H.; Mai, S.W.; Xu, W.X.; Hou, E.Q.; Huang, X.Z.; Yang, Q.; Liu, W.J.; et al. Variations and influencing factors of soil organic carbon during the tropical forest succession from plantation to secondary and old–growth forest. Front. Ecol. Evol. 2023, 10, 1104369. [Google Scholar] [CrossRef]
- Iddrisu, A.Q.; Hao, Y.Q.; Issifu, H.; Getnet, A.; Sakib, N.; Yang, X.B.; Abdallah, M.M.; Zhang, P. Effects of stand density on tree growth, diversity of understory vegetation, and soil properties in a Pinus koraiensis plantation. Forests 2024, 15, 1149. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Fu, D.J.; Lu, C.X.; Xu, X.M.; Tang, Q.H. Positive effects of ecological restoration policies on the vegetation dynamics in a typical ecologically vulnerable area of China. Ecol. Eng. 2021, 159, 106087. [Google Scholar] [CrossRef]
- Machado, D.L.; Engel, V.L.; Podadera, D.S.; Sato, L.M.; de Goede, R.G.M.; de Moraes, L.F.D.; Parrotta, J.A. Site and plant community parameters drive the effect of vegetation on litterfall and nutrient inputs in restored tropical forests. Plant Soil 2021, 464, 405–421. [Google Scholar] [CrossRef]
- Wang, C.J.; Lin, W.S.; Jia, S.X.; Chen, S.D.; Xiong, D.C.; Xu, C.; Yang, Z.J.; Liu, X.F.; Yang, Y.S. Effects of litter and root inputs on soil microbial community structure in subtropical natural and plantation forests. Plant Soil 2025, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.P.; Liu, Z.F.; Wang, X.L.; Sun, Y.X.; Zhou, L.X.; Lin, Y.B.; Fu, S.L. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Funct. Ecol. 2011, 25, 921–931. [Google Scholar] [CrossRef]
Forest Type | Treatment | Altitude (m) | Slope (°) | Slope Position | Pre-Girdling (2022) | Post-Girdling (2024) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average Height (m) | Average DBH (cm) | Canopy Density (%) | Average Height (m) | Average DBH (cm) | Canopy Density (%) | |||||||||
Tree | Shrub | Tree | Shrub | Tree | Shrub | Tree | Shrub | |||||||
AM | Natural | 702 | 15 | Southwest | 8.25 | 3.39 | 7.17 | 1.52 | 80 | 8.98 | 3.48 | 7.15 | 1.61 | 80 |
Girdling | 707 | 22 | Southwest | 8.06 | 3.60 | 6.96 | 1.55 | 80 | 8.15 | 3.53 | 5.57 | 1.67 | 70 | |
CL | Natural | 809 | 27 | Southeast | 9.24 | 3.23 | 8.59 | 1.58 | 80 | 9.52 | 3.43 | 8.63 | 1.65 | 80 |
Girdling | 830 | 2 | Southeast | 9.37 | 3.17 | 8.19 | 1.54 | 70 | 7.89 | 3.32 | 5.90 | 1.72 | 65 | |
PC | Natural | 720 | 18 | Southeast | 8.99 | 3.49 | 8.51 | 1.54 | 70 | 9.10 | 3.58 | 8.44 | 1.72 | 70 |
Girdling | 735 | 16 | Southeast | 9.58 | 3.69 | 9.35 | 1.50 | 70 | 8.20 | 3.87 | 6.34 | 1.71 | 65 | |
NSF | Natural | 707.1 | 28 | Southeast | 7.77 | 3.18 | 6.77 | 1.58 | 85 | 7.81 | 3.18 | 6.82 | 1.62 | 85 |
Forest Type | Soil Depth (cm) | pH | SOC (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
AM | 0–20 | 5.09 ± 0.25 aA | 17.04 ± 0.95 aA | 1.46 ± 0.12 aA | 0.22 ± 0.01 aA | 25.8 ± 0.34 aB | 104.67 ± 10.96 aA | 2.70 ± 0.25aA | 207 ± 66.24 aA |
20–40 | 5.24 ± 0.21 aA | 12.02 ± 1.36 bA | 1.06 ± 0.13 bA | 0.19 ± 0.01 bA | 26.92 ± 2.47 aB | 78.58 ± 6.68 bA | 1.08 ± 0.18 bA | 198.51 ± 54.4 aA | |
AM-G | 0–20 | 5.13 ± 0.09 aA | 18.16 ± 1.88 aA | 1.48 ± 0.14 aA | 0.18 ± 0.01 aB | 36.81 ± 2.66 aA | 102.44 ± 10.84 aA | 2.38 ± 0.47 aA | 251.97 ± 37.94 aA |
20–40 | 5.15 ± 0.22 aAB | 12.44 ± 1.96 bA | 1.07 ± 0.15 bA | 0.16 ± 0.02 aB | 36.59 ± 2.63 aA | 91.37 ± 8.83 aA | 1.23 ± 0.31 bA | 230.38 ± 31.31 aA | |
NSF | 0–20 | 4.87 ± 0.32 aA | 15.57 ± 1.21 aA | 1.07 ± 0.11 aB | 0.07 ± 0.01 aC | 2.40 ± 0.79 aC | 89.15 ± 6.19 aA | 0.75 ± 0.1 aB | 47.5 ± 4.01 aB |
20–40 | 4.85 ± 0.15 aB | 12.20 ± 2.16 aA | 0.91 ± 0.09 aA | 0.06 ± 0.01 aC | 2.09 ± 0.49 aC | 77.65 ± 8.50 aA | 0.39 ± 0.17 bB | 42.97 ± 8.49 aB | |
CL | 0–20 | 5.01 ± 0.30 aA | 15.99 ± 1.70 aA | 1.07 ± 0.17 aA | 0.09 ± 0.01 aA | 6.30 ± 0.86 aB | 82.49 ± 7.00 aA | 0.81 ± 0.22 aA | 58.23 ± 12.98 aAB |
20-40 | 4.97 ± 0.14 aA | 11.39 ± 2.22 bA | 0.84 ± 0.17 aA | 0.08 ± 0.01 aAB | 7.39 ± 1.90 aA | 74.23 ± 13.29 aA | 0.14 ± 0.07 bB | 47.08 ± 8.27 aA | |
CL-G | 0–20 | 4.75 ± 0.06 bA | 17.89 ± 0.50 aA | 1.16 ± 0.02 aA | 0.10 ± 0.01 aA | 11.64 ± 2.41 aA | 84.34 ± 4.12 aA | 0.95 ± 0.12 aA | 69.79 ± 10.45 aA |
20–40 | 4.89 ± 0.03 aA | 11.20 ± 1.86 bA | 0.90 ± 0.09 bA | 0.09 ± 0.02 aA | 11.85 ± 4.00 aA | 77.44 ± 11.19 aA | 0.17 ± 0.10 bAB | 62.41 ± 25.27 aA | |
NSF | 0–20 | 4.87 ± 0.32 aA | 15.57 ± 1.21 aA | 1.07 ± 0.11 aA | 0.07 ± 0.01 aB | 2.40 ± 0.79 aC | 89.15 ± 6.19 aA | 0.75 ± 0.10 aA | 47.5 ± 4.01 aB |
20–40 | 4.85 ± 0.15 aA | 12.20 ± 2.16 aA | 0.91 ± 0.09 aA | 0.06 ± 0.01 aB | 2.09 ± 0.49 aB | 77.65 ± 8.50 aA | 0.39 ± 0.17 bA | 42.97 ± 8.49 aA | |
PC | 0–20 | 4.60 ± 0.04 bA | 18.06 ± 0.35 aA | 0.98 ± 0.14 aA | 0.07 ± 0.01 aB | 5.27 ± 2.18 aA | 75.87 ± 8.90 aA | 0.73 ± 0.1 aA | 35.88 ± 8.99 aA |
20–40 | 4.86 ± 0.14 aA | 7.78 ± 1.47 bB | 0.56 ± 0.14 bB | 0.05 ± 0.01 aB | 6.58 ± 3.27 aA | 53.11 ± 12.05 aB | 0.17 ± 0.07 bA | 33.25 ± 10.35 aA | |
PC-G | 0–20 | 4.76 ± 0.14 aA | 19.40 ± 1.69 aA | 1.06 ± 0.04 aA | 0.10 ± 0.01 aA | 4.71 ± 1.47 aA | 77.91 ± 8.59 aA | 0.83 ± 0.12 aA | 57.29 ± 16.63 aA |
20–40 | 4.88 ± 0.08 aA | 9.28 ± 1.31 bAB | 0.68 ± 0.11 bA | 0.09 ± 0.02 aA | 4.57 ± 1.65 aAB | 57.65 ± 7.31 bB | 0.23 ± 0.07 bA | 46.91 ± 11.56 aA | |
NSF | 0–20 | 4.87 ± 0.32 aA | 15.57 ± 1.21 aB | 1.07 ± 0.11 aA | 0.07 ± 0.01 aB | 2.40 ± 0.79 aA | 89.15 ± 6.19 aA | 0.75 ± 0.10 aA | 47.5 ± 4.01 aA |
20–40 | 4.85 ± 0.15 aA | 12.20 ± 2.16 aA | 0.91 ± 0.09 aA | 0.06 ± 0.01 aB | 2.09 ± 0.49 aB | 77.65 ± 8.50 aA | 0.39 ± 0.17 bA | 42.97 ± 8.49 aA |
0–20 cm | 20–40 cm | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Volume of Explanation (%) | Explanation Rate (%) | R2 | p- Value | Variables | Volume of Explanation (%) | Explanation Rate (%) | R2 | p- Value |
Forest type | 44.00 | 49.11 | - | - | Forest type | 43.19 | 53.59 | - | - |
Eshrub | 11.82 | 13.19 | 0.474 | 0.004 | Eshrub | 11.02 | 13.67 | 0.524 | 0.004 |
Hshrub | 11.01 | 12.29 | 0.447 | 0.006 | Dtree | 7.01 | 8.7 | 0.053 | 0.612 |
Dshrub | 7.74 | 8.64 | 0.353 | 0.020 | Hshrub | 6.88 | 8.54 | 0.457 | 0.005 |
Dtree | 4.29 | 4.79 | 0.067 | 0.537 | Dshrub | 6.4 | 7.94 | 0.394 | 0.015 |
Rtree | 4.12 | 4.60 | 0.339 | 0.011 | Etree | 3.53 | 4.38 | 0.145 | 0.250 |
Rshrub | 2.85 | 3.18 | 0.242 | 0.069 | Htree | 1.35 | 1.67 | 0.128 | 0.298 |
Htree | 1.97 | 2.20 | 0.099 | 0.384 | Rtree | 1.31 | 1.63 | 0.325 | 0.032 |
Treatment | 1.10 | 1.23 | - | - | Rshrub | 0.21 | 0.26 | 0.091 | 0.440 |
Etree | 0.66 | 0.74 | 0.052 | 0.634 | Treatment | −0.34 | −0.42 | - | - |
Total | 89.56 | 100.00 | - | - | Total | 80.56 | 100.00 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, R.; Liao, L.; Zhang, B.; Yang, J.; Peng, W.; Lin, F.; Li, X.; Mo, S.; Li, T.; et al. Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China. Forests 2025, 16, 1522. https://doi.org/10.3390/f16101522
Wang X, Wang R, Liao L, Zhang B, Yang J, Peng W, Lin F, Li X, Mo S, Li T, et al. Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China. Forests. 2025; 16(10):1522. https://doi.org/10.3390/f16101522
Chicago/Turabian StyleWang, Xiaoyan, Ru Wang, Liguo Liao, Bijia Zhang, Jia Yang, Wencheng Peng, Fangneng Lin, Xin Li, Shiqin Mo, Tengmin Li, and et al. 2025. "Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China" Forests 16, no. 10: 1522. https://doi.org/10.3390/f16101522
APA StyleWang, X., Wang, R., Liao, L., Zhang, B., Yang, J., Peng, W., Lin, F., Li, X., Mo, S., Li, T., & Lei, J. (2025). Effects of Girdling Treatment on Community Structure and Soil Properties in Tropical Plantations of Hainan, China. Forests, 16(10), 1522. https://doi.org/10.3390/f16101522