Repurposing 1,4-Dihydropyridine Scaffold: 4-Imidazo[2,1-b]thiazole-Derivatives from Calcium Entry Blockers to a New Approach for Gut Dysfunctional Motility
Abstract
1. Introduction
2. Results
2.1. Chemistry
2.2. Spasmolitic Activity on K+-Depolarized Guinea Pig Ileum Longitudinal Smooth Muscle
2.2.1. Methyl Esters
2.2.2. Ethyl Esters
2.2.3. Allyl Esters
2.2.4. Comparative Considerations
2.3. Spasmolytic Activity on K+-Depolarized Guinea Pig Colon Longitudinal Smooth Muscle
2.4. Spasmolitic Activity on K+-Depolarized Guinea Pig Ileum and Colon Circular Smooth Muscle
2.5. Activity on Spontaneous Guinea Pig Ileum and Colon Smooth Muscle
2.5.1. Ileum
2.5.2. Colon
2.6. Effect vs. Mixed Cultures of Bifidobacterium and Lactobacillus Species
3. Discussion
4. Materials and Methods
4.1. Synthesis
4.2. Gut In Vitro Tissues Activities
4.2.1. Potassium-Induced Spasmolytic Activity
4.2.2. Spontaneous Contraction
4.2.3. Cardiovascular Activity
4.2.4. Data Analysis
4.3. Activity vs. Probiotics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSMA | Basal Spontaneous Motor Activity |
CNS | Central Nervous System |
DHP | Dihydropyridine |
FFT | Fast Fourier Transform |
GBA | Gut–Brain Axis |
HF | High-Frequency |
IC50 | Half maximal inhibitory concentration |
LF | Low Frequency |
MCA | Mean Contraction Amplitude |
MF | Medium Frequency |
OB | Otilonium Bromide |
PSS | Physiological Salt Solution |
PSD | Power Spectral Density |
SC | Spontaneous Contraction |
SCV | Spontaneous Contraction Variability |
VDCC | Voltage-Dependent Calcium Channel |
References
- Ioan, P.; Carosati, E.; Micucci, M.; Cruciani, G.; Broccatelli, F.; Zhorov, B.S.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine Scaffold in Medicinal Chemistry, the Story so Far and Perspectives (Part 1): Action in Ion Channels and GPCRs. Curr. Med. Chem. 2011, 18, 4901–4922. [Google Scholar] [CrossRef]
- Soni, A.; Sharma, M.; Singh, R.K. Designing 1,4-Dihydropyridines-Based Multitarget Therapeutics: Recent Advances and Future Directions. Curr. Top. Med. Chem. 2025, 25, 2325–2351. [Google Scholar] [CrossRef]
- Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Cruciani, G.; Zhorov, B.S.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine Scaffold in Medicinal Chemistry, the Story so Far and Perspectives (Part 2): Action in Other Targets and Antitargets. Curr. Med. Chem. 2012, 19, 4306–4323. [Google Scholar] [CrossRef] [PubMed]
- Beyder, A.; Farrugia, G. Targeting Ion Channels for the Treatment of Gastrointestinal Motility Disorders. Ther. Adv. Gastroenterol. 2012, 5, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Sinnegger-Brauns, M.J.; Huber, I.G.; Koschak, A.; Wild, C.; Obermair, G.J.; Einzinger, U.; Hoda, J.-C.; Sartori, S.B.; Striessnig, J. Expression and 1,4-Dihydropyridine-Binding Properties of Brain L-Type Calcium Channel Isoforms. Mol. Pharmacol. 2009, 75, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Triggle, D.J. 1,4-Dihydropyridines as Calcium Channel Ligands and Privileged Structures. Cell. Mol. Neurobiol. 2003, 23, 293–303. [Google Scholar] [CrossRef]
- Greenwood-Van Meerveld, B.; Johnson, A.C.; Grundy, D. Gastrointestinal Physiology and Function. In Gastrointestinal Pharmacology; Handbook of Experimental Pharmacology; Springer: Cham, Swizerland, 2017; Volume 239, pp. 1–16. [Google Scholar] [CrossRef]
- Sayuk, G.S.; Gyawali, C.P. Functional Dyspepsia: Diagnostic and Therapeutic Approaches. Drugs 2020, 80, 1319–1336. [Google Scholar] [CrossRef]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016, 150, 1262–1279.E2. [Google Scholar] [CrossRef]
- Traini, C.; Idrizaj, E.; Garella, R.; Faussone-Pellegrini, M.-S.; Baccari, M.C.; Vannucchi, M.G. Otilonium Bromide Treatment Prevents Nitrergic Functional and Morphological Changes Caused by Chronic Stress in the Distal Colon of a Rat IBS Model. J. Cell. Mol. Med. 2021, 25, 6988–7000. [Google Scholar] [CrossRef]
- Tytgat, G.N. Hyoscine Butylbromide: A Review of Its Use in the Treatment of Abdominal Cramping and Pain. Drugs 2007, 67, 1343–1357. [Google Scholar] [CrossRef]
- Marzio, L. Factors Affecting Gallbladder Motility: Drugs. Dig. Liver Dis. 2003, 35, 17–19. [Google Scholar] [CrossRef]
- Grover, M.; Berumen, A.; Peters, S.; Wei, T.; Breen-Lyles, M.; Harmsen, W.S.; Busciglio, I.; Burton, D.; Vazquez Roque, M.; DeVault, K.R.; et al. Intestinal Chemosensitivity in Irritable Bowel Syndrome Associates with Small Intestinal TRPV Channel Expression. Aliment. Pharmacol. Ther. 2021, 54, 1179–1192. [Google Scholar] [CrossRef]
- Wouters, M.M.; Balemans, D.; Van Wanrooy, S.; Dooley, J.; Cibert-Goton, V.; Alpizar, Y.A.; Valdez-Morales, E.E.; Nasser, Y.; Van Veldhoven, P.P.; Vanbrabant, W.; et al. Histamine Receptor H1-Mediated Sensitization of TRPV1 Mediates Visceral Hypersensitivity and Symptoms in Patients With Irritable Bowel Syndrome. Gastroenterology 2016, 150, 875–887.e9. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Boeckxstaens, G. Dietary and Pharmacological Treatment of Abdominal Pain in IBS. Gut 2017, 66, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Pankratov, Y.; Lalo, U. Calcium Permeability of Ligand-Gated Ca2+ Channels. Eur. J. Pharmacol. 2014, 739, 60–73. [Google Scholar] [CrossRef]
- Budriesi, R.; Ioan, P.; Locatelli, A.; Cosconati, S.; Leoni, A.; Ugenti, M.P.; Andreani, A.; Di Toro, R.; Bedini, A.; Spampinato, S.; et al. Imidazo[2,1-b]thiazole System: A Scaffold Endowing Dihydropyridines with Selective Cardiodepressant Activity. J. Med. Chem. 2008, 51, 1592–1600. [Google Scholar] [CrossRef]
- Budriesi, R.; Ioan, P.; Leoni, A.; Pedemonte, N.; Locatelli, A.; Micucci, M.; Chiarini, A.; Galietta, L.J.V. Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines. J. Med. Chem. 2011, 54, 3885–3894. [Google Scholar] [CrossRef] [PubMed]
- Leoni, A.; Frosini, M.; Locatelli, A.; Micucci, M.; Carotenuto, C.; Durante, M.; Cosconati, S.; Budriesi, R. 4-Imidazo[2,1-b]thiazole-1,4-DHPs and Neuroprotection: Preliminary Study in Hits Searching. Eur. J. Med. Chem. 2019, 169, 89–102. [Google Scholar] [CrossRef]
- Locatelli, A.; Cosconati, S.; Micucci, M.; Leoni, A.; Marinelli, L.; Bedini, A.; Ioan, P.; Spampinato, S.M.; Novellino, E.; Chiarini, A.; et al. Ligand Based Approach to L-Type Calcium Channel by Imidazo[2,1-b]thiazole-1,4-dihydropyridines: From Heart Activity to Brain Affinity. J. Med. Chem. 2013, 56, 3866–3877. [Google Scholar] [CrossRef]
- Toal, C.B.; Meredith, P.A.; Elliott, H.L. Long-Acting Dihydropyridine Calcium-Channel Blockers and Sympathetic Nervous System Activity in Hypertension: A Literature Review Comparing Amlodipine and Nifedipine GITS. Blood Press. 2012, 21, 3–10. [Google Scholar] [CrossRef]
- Koruth, S.; Qi, X. Digestive System: System Recent Advances; IntechOpen: London, UK, 2020; ISBN 978-1-83968-390-9. [Google Scholar]
- Patel, K.S.; Thavamani, A. Physiology, Peristalsis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Andreani, A.; Leoni, A.; Rambaldi, M.; Locatelli, A.; Bossa, R.; Galatulas, I.; Chiericozzi, M.; Bissoli, M. Dihydropyridines Bearing an Imidazo[2,1-b]thiazole System. Eur. J. Med. Chem. 1997, 32, 151–157. [Google Scholar] [CrossRef]
- Phillips, A.P. Hantzsch’s Pyridine Synthesis. J. Am. Chem. Soc. 1949, 71, 4003–4007. [Google Scholar] [CrossRef]
- Tallarida, R.J.; Murray, R.B. Manual of Pharmacologic Calculations with Computer Programs, 2nd ed.; Springer: New York, NY, USA, 1987. [Google Scholar]
- Tang, L.; Gamal El-Din, T.M.; Swanson, T.M.; Pryde, D.C.; Scheuer, T.; Zheng, N.; Catterall, W.A. Structural Basis for Inhibition of a Voltage-Gated Ca2+ Channel by Ca2+ Antagonist Drugs. Nature 2016, 537, 117–121. [Google Scholar] [CrossRef]
- de Fátima Silva Lago, A.; de Benedicto, D.F.; da Silva, L.; Thomasi, S.S. 1,4-Dihydropyridine Derivatives: An Overview of Synthesis Conditions and Biological Tests. Curr. Org. Chem. 2023, 27, 1567–1610. [Google Scholar] [CrossRef]
- Browning, K.N.; Travagli, R.A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 2014, 4, 1339–1368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palsson, O.S.; Whitehead, W.E.; van Tilburg, M.A.L.; Chang, L.; Chey, W.; Crowell, M.D.; Keefer, L.; Lembo, A.J.; Parkman, H.P.; Rao, S.S.; et al. Rome IV Diagnostic Questionnaires and Tables for Investigators and Clinicians. Gastroenterology 2016, 150, 1481–1491. [Google Scholar] [CrossRef]
- Kunze, W.A.; Furness, J.B. The Enteric Nervous System and Regulation of Intestinal Motility. Annu. Rev. Physiol. 1999, 61, 117–142. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Koh, S.D.; Ro, S.; Ward, S.M. Regulation of Gastrointestinal Motility--Insights from Smooth Muscle Biology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, S. Quaternary Ammonium Derivatives as Spasmolytics for Irritable Bowel Syndrome. Curr. Pharm. Des. 2004, 10, 3561–3568. [Google Scholar] [CrossRef]
- Carbone, F.; Van den Houte, K.; Besard, L.; Tack, C.; Arts, J.; Caenepeel, P.; Piessevaux, H.; Vandenberghe, A.; Matthys, C.; Biesiekierski, J.; et al. Diet or Medication in Primary Care Patients with IBS: The DOMINO Study—A Randomised Trial Supported by the Belgian Health Care Knowledge Centre (KCE Trials Programme) and the Rome Foundation Research Institute. Gut 2022, 71, 2226–2232. [Google Scholar] [CrossRef]
- Kim, S.E.; Chung, G.; Kim, S.K. Phytochemical-Based Therapeutics from Traditional Eastern Medicine: Analgesic Effects and Ion Channel Modulation. Front. Pain Res. 2025, 6, 1537154. [Google Scholar] [CrossRef] [PubMed]
- Brodmann, T.; Endo, A.; Gueimonde, M.; Vinderola, G.; Kneifel, W.; de Vos, W.M.; Salminen, S.; Gómez-Gallego, C. Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Front. Microbiol. 2017, 8, 1725. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yao, G.; Yang, Z.; Huang, T.; Kwok, L.-Y.; Zhang, H. Untargeted Metabolomic Analysis Uncovers Metabolic Variability of Four Bifidobacterial Strains for Probiotic Development. Front. Microbiol. 2025, 16, 1522036. [Google Scholar] [CrossRef]
- Grimm, V.; Westermann, C.; Riedel, C.U. Bifidobacteria-Host Interactions—An Update on Colonisation Factors. Biomed. Res. Int. 2014, 2014, 960826. [Google Scholar] [CrossRef]
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal Microbiota in Human Health and Disease: The Impact of Probiotics. Genes. Nutr. 2011, 6, 209–240. [Google Scholar] [CrossRef] [PubMed]
- Kyei-Baffour, V.O.; Vijaya, A.K.; Burokas, A.; Daliri, E.B.-M. Psychobiotics and the Gut-Brain Axis: Advances in Metabolite Quantification and Their Implications for Mental Health. Crit. Rev. Food Sci. Nutr. 2025. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Arráez-Román, D.; Segura-Carretero, A. Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023, 15, 449. [Google Scholar] [CrossRef]
- Yan, X.; Shi, L.; Zhu, X.; Zhao, Y.; Luo, J.; Li, Q.; Xu, Z.; Zhao, J. From Microbial Homeostasis to Systemic Pathogenesis: A Narrative Review on Gut Flora’s Role in Neuropsychiatric, Metabolic, and Cancer Disorders. J. Inflamm. Res. 2025, 18, 8851–8873. [Google Scholar] [CrossRef]
- Camarda, L.; Mattioli, L.B.; Corazza, I.; Marzetti, C.; Budriesi, R. Targeting the Gut-Brain Axis with Plant-Derived Essential Oils: Phytocannabinoids and Beyond. Nutrients 2025, 17, 1578. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Silva, J.B.A.; Silva, N.B.S.; Félix, P.C.A.; Dos Santos, D.A.; de Oliveira, A.M.; Martins, C.H.G.; Magalhães, L.G.; Crotti, A.E.M. Antibacterial and Antileishmanial Activity of 1,4-Dihydropyridine Derivatives. Chem. Biodivers. 2025, 22, e202401300. [Google Scholar] [CrossRef]
- Kumar, S.R.; Idhayadhulla, A.; Nasser, A.J.A.; Selvin, J. Synthesis and Antimicrobial Activity of a New Series 1,4-Dihydropyridine Derivatives. J. Serbian Chem. Soc. 2011, 76, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Qian, M.; Liu, J.; Pan, C.; Zhang, X.; Duan, X.; Zhang, Y.; Jia, W.; Wang, L. Amlodipine, an Anti-Hypertensive Drug, Alleviates Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota. Br. J. Pharmacol. 2022, 179, 2054–2077. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.-H.; Xie, R.-Y.; Liu, X.-L.; Chen, S.; Tang, H.-D. Mechanisms of Short-Chain Fatty Acids Derived from Gut Microbiota in Alzheimer’s Disease. Aging Dis. 2022, 13, 1252–1266. [Google Scholar] [CrossRef]
- Morigi, R.; Vitali, B.; Prata, C.; Palomino, R.A.N.; Graziadio, A.; Locatelli, A.; Rambaldi, M.; Leoni, A. Investigation on the Effects of Antimicrobial Imidazo[2,1-b]thiazole Derivatives on the Genitourinary Microflora. Med. Chem. 2018, 14, 311–319. [Google Scholar] [CrossRef]
- Bosheva, M.; Tokodi, I.; Krasnow, A.; Pedersen, H.K.; Lukjancenko, O.; Eklund, A.C.; Grathwohl, D.; Sprenger, N.; Berger, B.; Cercamondi, C.I.; et al. Infant Formula With a Specific Blend of Five Human Milk Oligosaccharides Drives the Gut Microbiota Development and Improves Gut Maturation Markers: A Randomized Controlled Trial. Front. Nutr. 2022, 9, 920362. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, Z.; Wang, W.; Liu, X. Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J. Immunol. Res. 2021, 2021, 8030297. [Google Scholar] [CrossRef]
- Kim, C.-S.; Cha, L.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.-M. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 32–40. [Google Scholar] [CrossRef]
- Dabous, A.; Stellavato, A.; Cimini, D.; Vassallo, V.; D’Agostino, M.; Schiraldi, C. A Probiotic Multi-Strain Mixture Combined with Hydroxyectoine Improves Intestinal Barrier Function by Alleviating Inflammation in Lipopolysaccharide Stimulated Differentiated Caco-2 Cells. Food Funct. 2024, 15, 11578–11589. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, X.; Hao, H.; Liu, Q.; Zhou, Z.; Liang, X.; Liu, T.; Gong, P.; Zhang, L.; Zhai, Z.; et al. Lactobacillus Rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients 2021, 13, 3319. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, D.; Zhao, L.; Liu, X.; Guan, K.; Ma, Y.; Wang, R.; Li, Q. PYY-Mediated Appetite Control and Obesity Alleviation through Short-Chain Fatty Acid-Driven Gut-Brain Axis Modulation by Lacticaseibacillus Rhamnosus HF01 Isolated from Qula. J. Dairy Sci. 2025, 108, 7960–7978. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Kim, W.-K.; Han, D.H.; Lee, K.; Ko, G. Lactobacillus Fermentum Species Ameliorate Dextran Sulfate Sodium-Induced Colitis by Regulating the Immune Response and Altering Gut Microbiota. Gut Microbes 2019, 10, 696–711. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, X.; Yang, H.; Liu, H.; Yang, X.; Liu, Q.; Tian, H.; Xue, Y.; Ren, P.; Kuang, X.; et al. Lactobacillus Acidophilus Ameliorates Obesity in Mice through Modulation of Gut Microbiota Dysbiosis and Intestinal Permeability. Pharmacol. Res. 2022, 175, 106020. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z. Editorial: Innate Immunity and Cross-Talk with Microflora in the Regulation of Immune Recognition and Polarization during Immune-Related Diseases. Front. Immunol. 2023, 14, 1335238. [Google Scholar] [CrossRef]
- Wang, W.; Dang, G.; Hao, W.; Li, A.; Zhang, H.; Guan, S.; Ma, T. Dietary Supplementation of Compound Probiotics Improves Intestinal Health by Modulated Microbiota and Its SCFA Products as Alternatives to In-Feed Antibiotics. Probiotics Antimicrob. Proteins 2024, 17, 1969–1984. [Google Scholar] [CrossRef]
- Mattioli, L.B.; Budriesi, R.; Camarda, L.; Nardi, E.; Rossi, P.L.; Bondioli, L.; Corazza, I. Biomechanical Characterization of Spontaneous and Induced Motility in Small Animals’ Gastrointestinal Tissue for Human Nutraceutical and Pharmaceutical Purposes. J. Mech. Med. Biol. 2025. [Google Scholar] [CrossRef]
- Mattioli, L.B.; Frosini, M.; Amoroso, R.; Maccallini, C.; Chiano, E.; Aldini, R.; Urso, F.; Corazza, I.; Micucci, M.; Budriesi, R. Olea Europea L. Leaves and Hibiscus Sabdariffa L. Petals Extracts: Herbal Mix from Cardiovascular Network Target to Gut Motility Dysfunction Application. Nutrients 2022, 14, 463. [Google Scholar] [CrossRef] [PubMed]
- Panaro, M.A.; Budriesi, R.; Calvello, R.; Cianciulli, A.; Mattioli, L.B.; Corazza, I.; Rotondo, N.P.; Porro, C.; Lamonaca, A.; Ferraro, V.; et al. Lentil Waste Extracts for Inflammatory Bowel Disease (IBD) Symptoms Control: Anti-Inflammatory and Spasmolytic Effects. Nutrients 2024, 16, 3327. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, L.B.; Corazza, I.; Budriesi, R.; Hrelia, S.; Malaguti, M.; Caliceti, C.; Amoroso, R.; Maccallini, C.; Crupi, P.; Clodoveo, M.L.; et al. From Waste to Health: Olive Mill Wastewater for Cardiovascular Disease Prevention. Nutrients 2024, 16, 2986. [Google Scholar] [CrossRef] [PubMed]
- Motulsky, H.J. Prism 5.0 Statistics Guide; GraphPad Software Inc.: San Diego, CA, USA, 2007; pp. 31, 39–42. Available online: https://cdn.graphpad.com/faq/2/file/Prism_v5_Statistics_Guide.pdf (accessed on 7 July 2025).
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: New York, NY, USA, 2004; ISBN 978-0-19-517179-2. [Google Scholar]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary Fiber Intervention on Gut Microbiota Composition in Healthy Adults: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef]
- Ahn, S.; Lee, Y.; Park, J.; Lee, J.; Shin, S.Y.; Lee, Y.H.; Koh, D.; Lim, Y. Synthetic Diethyl 2,6-Dimethyl-1,4-Dihydropyridine-3,5-Dicarboxylates Induce Apoptosis. Med. Chem. 2018, 14, 851–862. [Google Scholar] [CrossRef] [PubMed]
Compound | Ileum Longitudinal Smooth Muscle | Cardiovascular System # | |||||
---|---|---|---|---|---|---|---|
R | IA f (M ± SEM) | IC50 g (μM) | 95% Conf Lim (μM) | IC50 INO h | IC50 CHRONO i | IC50 VR j | |
NIF | 70 ± 0.36 k | 0.0015 | 0.0011–0.0022 | 0.26 (0.19–0.36) | 0.039 (0.031–0.051) | 0.009 (0.003–0.020) | |
OB | 90 ± 3.0 | 8.52 | 7.14–10.11 | 0.037 (0.034–0.039) | --- | --- | |
1 a | 94 ± 3.2 l | 1.12 | 0.93–1.36 | 84 ± 2.7 s 2.17 (1.55–3.02) | 48 ± 1.2 t --- | 30 ± 1.7 s --- | |
2 b | 70 ± 1.3 | 8.83 | 5.53–10.41 | --- | --- | --- | |
3 b | 96 ± 3.3 l | 0.55 | 0.19–0.93 | 0.13 (0.079–0.20) | |||
4 b | 93 ± 0.5 | 2.06 | 1.55–2.73 | 0.056 (0.041–0.076) | --- | --- | |
5 b | 97 ± 0.6 l | 0.51 | 0.39–0.62 | 0.10 (0.08–0.15) | --- | --- | |
6 b | 78 ± 1.2 | 0.32 | 0.24–0.41 | 0.081 (0.056–0.11) | --- | --- | |
7 b | 60 ± 1.4 m | 0.68 | 0.55–0.84 | 0.18 (0.13–0.23) | --- | --- | |
8 a | 90 ± 1.4 l | 1.17 | 0.87–1.88 | 84 ± 2.3 t 0.68 (0.45–1.04) | 15 ± 0.7 t --- | 15 ± 0.9 s --- | |
9 b | 70 ± 2.3 n | 0.21 | 0.14–0.31 | 0.071 (0.021–0.14) | 0.86 (0.74–1.01) | --- | |
10 b | 92 ± 1.4 m | 0.095 | 0.072–0.13 | --- | --- | --- | |
11 c | 80 ± 1.1 m | 0.26 | 0.20–0.33 | 0.39 (0.26–0.61) | 8.63 (5.93–10.25) | --- | |
12 b | 98 ± 1.9 | 1.04 | 0.88–1.32 | 0.83 (0.55–1.21) | 1.18 (0.86–1.43) | --- | |
13 b | 98 ± 1.6l | 0.35 | 0.14–0.83 | 1.96 (1.67–2.35) | 4.16 (3.25–5.34) | --- | |
14 b | 74 ± 3.8 | 2.96 | 2.24–3.92 | 0.59 (0.43–0.81) | 0.66 (0.51–0.85) | --- | |
15 b | 92 ± 1.5 | 1.66 | 1.36–2.05 | 0.093 (0.068–0.12) | --- | --- | |
16 b | 96 ± 1.0 l | 0.036 | 0.028–0.046 | 0.31 (0.22–0.42) | 3.76 (2.92–4.85) | --- | |
17 c | 69 ± 3.6 o | 0.0046 | 0.0036–0.0058 | 0.12 (0.082–0.17) | --- | --- | |
18 a | 73 ± 0.8p | 0.026 | 0.022–0.031 | 88 ± 3.2s 0.59 (0.41–0.88) | 84 ± 3.4m 0.41 (0.19–0.79) | 38 ± 1.4l --- | |
19 b | 51 ± 2.4 q | 0.083 | 0.066–0.10 | 1.90 (1.65–2.27) | 1.36 (0.97–1.70) | --- | |
20 b | 88 ± 2.2 l | 0.86 | 0.64–1.02 | 1.97 (1.71–2.31) | 4.89 (3.50–6.83) | --- | |
21 c | 73 ± 3.2 o | 0.0033 | 0.0025–0.0042 | 2.33 (1.90–2.66) | --- | 0.016 (0.012–0.025) | |
22 b | 76 ± 1.3 p | 0.018 | 0.010–0.097 | 0.83 (0.60–1.04) | 2.41 (1.85–3.15) | --- | |
23 b | 81 ± 3.2 l | 1.95 | 1.54–2.47 | 0.075 (0.050–0.093) | --- | --- | |
24 b | 90 ± 2.3 m | 0.45 | 0.10–0.91 | 2.64 (2.03–3.01) | 3.01 (2.41–3.76) | --- | |
25 d | 93 ± 2.5 l | 1.18 | 0.97–1.43 | 0.30 (0.27–0.39) | 1.67 (1.35–1.98) | --- | |
26 b | 51 ± 0.6 | 12.35 | 8.56–17.80 | 0.44 (0.29–0.65) | --- | --- | |
27 b | 74 ± 1.4 | 4.89 | 3.74–6.40 | 1.43 (1.02–1.94) | 6.62 (4.37–10.02) | ||
28 b | 92 ± 1.1 | 2.16 | 1.03–2.94 | 2.24 (1.85–2.43) | 1.59 (1.26–2.02) | --- | |
29 b | 91 ± 2.3 n | 1.14 | 0.73–1.85 | 0.90 (0.56–1.44) | 0.98 (0.73–1.33) | --- | |
30 b | 89 ± 3.5 r | 0.055 | 0.043–0.070 | --- | 1.38 (1.08–1.78) | --- | |
31 b | 64 ± 2.6 m | 0.55 | 0.43–0.69 | --- | --- | --- | |
32 b | 86 ± 5.2 s | 11.04 | 8.18–14.90 | 0.36 (0.25–0.51) | --- | --- | |
33 b | 67 ± 3.2 l | 1.84 | 1.49–2.26 | 0.093 (0.063–0.14) | --- | --- | |
34 b | 89 ± 2.4 s | 12.81 | 10.00–16.41 | 0.039 (0.030–0.051) | --- | --- | |
35 b | 88 ± 1.4 | 1.83 | 1.44–2.33 | --- | 18.52 (14.19–22.16) | --- | |
36 b | 97 ± 1.4 | 2.56 | 1.90–3.11 | 0.054 (0.036–0.079) | 6.08 (5.19–7.12) | --- | |
37 b | 94 ± 3.5 m | 0.24 | 0.19–0.29 | 0.026 (0.018–0.036) | 3.59 (2.71–4.76) | --- | |
38 b | 94 ± 1.4 s | 2.56 | 1.90–3.11 | 0.36 (0.22–0.59) | 0.69 (0.51–0.95) | --- | |
39 b | 65 ± 1.2l | 2.36 | 1.75–3.19 | 1.24 (0.93–1.48) | 8.60 (7.47–9.90) | --- | |
40 b | 86 ± 1.3 n | 11.43 | 8.78–14.87 | 1.34 (0.94–1.88) | 12.37 (10.00–15.32) | --- | |
41 e | 87 ± 2.4 | 2.57 | 1.97–3.35 | 0.54 (0.36–0.79) | 24.39 (18.50–29.21) | --- | |
42 e | 91 ± 0.4 | 3.55 | 2.05–6.16 | --- | 28.44 (21.38–36.96) | --- | |
43 e | 90 ± 2.1 l | 0.96 | 0.74–1.06 | --- | --- | --- | |
44 e | 97 ± 0.5 s | 9.69 | 7.61–12.35 | --- | 7.49 (3.52–9.91) | --- | |
45 e | 83 ± 2.5 n | 15.96 | 10.93–20.10 | --- | 12.46 (9-67–16.10) | --- | |
46 e | 78 ± 2.1 | 2.81 | 2.20–3.57 | --- | 39.91 (32.71–45.72) | --- | |
47 e | 91 ± 0.3 r | 0.11 | 0.086–0.13 | --- | 1.30 (1.04–1.62) | --- | |
48 e | 85 ± 1.7 q | 0.0023 | 0.0018–0.0030 | --- | 1.06 (0.80–1.41) | --- | |
49 e | 81 ± 2.3 l | 1.37 | 1.08–1.72 | --- | 40.50 (31.62–48.87) | --- | |
50 e | 74 ± 2.6 | 3.52 | 2.68–4.61 | --- | 2.30 (1.74–3.04) | --- | |
51 e | 95 ± 2.6 r | 0.18 | 0.10–0.31 | 0.046 (0.032–0.064) | 2.16 (1.83–2.55) | --- | |
52 e | 87 ± 1.1 | 3.23 | 2.39–4.36 | 0.31 (0.093–0.81) | --- | --- |
Compound | Ileum Longitudinal Smooth Muscle | Cardiovascular System | |||||
---|---|---|---|---|---|---|---|
R | IA d (M ± SEM) | IC50 e (μM) | 95% Conf Lim (μM) | IC50 INO f | IC50 CHRONO g | IC50 VR h | |
NIF | 70 ± 0.36 i | 0.0015 | 0.0011–0.0022 | 0.26 (0.19–0.36) | 0.039 (0.031–0.051) | 0.009 (0.003–0.020) | |
OB | 90 ± 3.0 | 8.52 | 7.14–10.11 | 0.037 (0.034–0.039) | --- | --- | |
53 a | 94 ± 1.4 j | 0.057 | 0.043–0.076 | 0.031 (0.024–0.039) | --- | --- | |
54 a | 90 ± 1.4 k | 0.014 | 0.010–0.018 | 1.07 (0.76–1.46) | --- | --- | |
55 a | 83 ± 2.4 l | 0.25 | 0.19–0.32 | --- | 7.15 (4.30–11.88) | --- | |
56 a | 83 ± 1.3 k | 0.00088 | 0.00021–0.0017 | 0.033 (0.026–0.044) | 0.15 (0.071–0.67) | --- | |
57 a | 77 ± 0.2 l | 0.038 | 0.029–0.050 | 0.43 (0.31–0.57) | 0.61 (0.41–0.89) | --- | |
58 b | 85 ± 2.3 m | 0.046 | 0.029–0.071 | 1.16 (0.85–1.68) | --- | ||
59 c | 92 ± 2.2 | 1.17 | 0.91–1.50 | 0.25 (0.18–0.36) | 4.81 (4.01–5.03) | --- | |
60 c | 93 ± 0.5 k | 0.015 | 0.011–0.019 | 0.064 (0.046–0.088) | 1.65 (1.36–2.00) | --- | |
61 c | 99 ± 0.1 | 0.47 | 0.36–0.64 | 5.15 (3.27–8.09) | 0.98 (0.53–1.80) | --- | |
62 c | 92 ± 1.4 | 1.92 | 1.54–2.39 | --- | --- | --- | |
63 c | 90 ± 0.8 | 1.63 | 1.12–2.19 | --- | 0.023 (0.0091–0.043) | --- | |
64 c | 94 ± 2.2 j | 0.36 | 0.26–0.51 | 0.049 (0.031–0.077) | 1.73 (1.31–2.30) | --- | |
65 c | 97 ± 0.9 j | 0.62 | 0.48–0.77 | --- | --- | --- | |
66 c | 94 ± 2.6 j | 0.32 | 0.24–0.42 | 0.16 (0.11–0.23) | 1.24 (1.06–1.45) | 5.57 (3.94–7.83) | |
67 c | 97 ± 1.1 m | 0.018 | 0.013–0.024 | 0.021 (0.016–0.027) | 0.10 (0.085–0.12) | --- | |
68 c | 97 ± 3.3 n | 0.0023 | 0.0017–0.0029 | 0.097 (0.048–0.19) | --- | --- | |
69 c | 82 ± 3.2 l | 0.21 | 0.16–0.26 | 3.50 (2.70–4.52) | 1.73 (1.17–2.54) | --- | |
70 c | 90 ± 3.5 p | 0.44 | 0.31–0.63 | 1.37 (0.98–1.93) | --- | --- | |
71 c | 90 ± 1.7 m | 0.058 | 0.042–0.082 | 0.024 (0.018–0.030) | --- | --- | |
72 c | 98 ± 1.0 j | 0.35 | 0.27–0.46 | 0.19 (0.14–0.26) | 8.48 (6.73–10.04) | --- | |
73 c | 99 ± 0.1 | 0.33 | 0.26–0.40 | 0.033 (0.025–0.041) | --- | --- | |
74 c | 97 ± 2.3 o | 0.28 | 0.19–0.41 | 0.081 (0.056–0.11) | --- | --- | |
75 c | 93 ± 1.5 j | 0.45 | 0.32–0.65 | --- | 0.31 (0.25–0.38) | --- | |
76 c | 85 ± 3.7 l | 0.31 | 0.25–0.39 | 0.026 (0.017–0.041) | 0.12 (0.097–0.15) | --- | |
77 c | 89 ± 3.2 | 1.00 | 0.77–1.30 | 0.025 (0.019–0.031) | 0.64 (0.50–0.81) | --- | |
78 c | 87 ± 2.4 j | 1.00 | 0.85–1.17 | 0.093 (0.062–0.13) | --- | --- | |
79 c | 98 ± 1.2 p | 0.0011 | 0.00083–0.0025 | 1.27 (0.92–1.76) | 0.0043 (0.0039–0.0067) | --- |
Compound | Ileum Longitudinal Smooth Muscle | Cardiovascular System | |||||
---|---|---|---|---|---|---|---|
R | IA c (M ± SEM) | IC50 d (μM) | 95% Conf Lim (μM) | IC50 INO e | IC50 CHRONO f | IC50 VR g | |
NIF | 70 ± 0.36 h | 0.0015 | 0.0011–0.0022 | 0.26 (0.19–0.36) | 0.039 (0.031–0.051) | 0.009 (0.003–0.020) | |
OB | 90 ± 3.0 | 8.52 | 7.14–10.11 | 0.037 (0.034–0.039) | --- | --- | |
80 a | 72 ± 2.3 i | 0.46 | 0.36–0.61 | 0.27 (0.21–0.36) | 8.96 (7.65–10.50) | --- | |
81 a | 90 ± 3.4 j | 0.0053 | 0.0038–0.0073 | 0.73 (0.51–1.01) | 1.97 (1.01–3.54) | --- | |
82 a | 96 ± 2.5 k | 0.32 | 0.24–0.42 | 0.34 (0.23–0.48) | --- | --- | |
83 b | 95 ± 0.7 | 1.08 | 0.84–1.41 | 0.025 (0.019–0.032) | 2.38 (1.92–2.83) | --- |
Compound | IA a (M ± SEM) | IC50 b (μM) | 95% Conf Lim (μM) |
---|---|---|---|
NIF | 94 ± 1.6 c | 0.0019 | 0.0015–0.0024 |
OB | 90 ± 2.3 d | 3.43 | 2.65–4.44 |
2 | 97 ± 2.4 | 0.20 | 0.15–0.26 |
10 | 89 ± 1.7 | 2.46 | 1.94–3.14 |
31 | 64 ± 2.3 e | 0.30 | 0.23–0.37 |
43 | 82 ± 2.4 e | 0.10 | 0.08–0.13 |
62 | 78 ± 2.4 f | 1.75 | 1.39–2.20 |
65 | 96 ± 1.3 g | 0.049 | 0.035–0.068 |
Compound | IA a (M ± SEM) | IC50 b (μM) | 95% Conf Lim (μM) | IA a (M ± SEM) | IC50 b (μM) | 95% Conf Lim (μM) |
---|---|---|---|---|---|---|
NIF | 84 ± 1.3 c | 0.00028 | 0.00020–0.00041 | 60 ± 2.4 d | 0.11 | 0.079–0.16 |
OB | 3 ± 0.2 d | 10 ± 0.3 d | ||||
2 | 98 ± 2.1 e | 0.067 | 0.018–0.025 | 33 ± 1.6 e | ||
10 | 72 ± 1.6 | 2.64 | 2.09–3.32 | 59 ± 2.2 | 1.68 | 1.15–2.47 |
31 | 78 ± 2.1 f | 2.68 | 2.10–3.22 | 67 ± 1.4 | 1.20 | 0.89–1.40 |
43 | 83 ± 2.2 g | 0.013 | 0.010–0.017 | 63 ± 1.8 | 0.50 | 0.35–0.77 |
62 | 15 ± 0.3 f | 44 ± 1.9 | ||||
65 | 2 ± 0.1 | 41 ± 1.6 |
Compound | Conc. (µM) | Transit Speed Variation % | Pain % | Mixing % | Fragmentation % | Longitudinal Contraction Variation % | Circular Contraction Variation % |
---|---|---|---|---|---|---|---|
NIF | 0.01 | = | = | − | = | − | + |
0.05 | = | = | − | = | − | − | |
0.1 | = | = | − | − | − | − | |
0.5 | = | = | − | = | − | − | |
1 | − | = | − | − | − | − | |
5 | − | − | − | − | − | − | |
10 | − | − | − | = | − | − | |
OB | 0.01 | = | = | + | + | − − | + |
0.05 | = | = | = | + | − − | − | |
0.1 | = | − | = | + | −–− | − | |
0.5 | = | − | = | + | −–− | − | |
1 | = | − | + | + | −–− | − | |
5 | − | − | + | + | −–− − | − | |
10 | − | − | + | − | −–− − | − | |
62 | 0.01 | = | = | = | = | = | + |
0.05 | = | = | = | = | + | − | |
0.1 | = | = | = | = | + | − | |
0.5 | = | = | = | = | − | − | |
1 | − | − | = | − | −–− | − | |
5 | − | − | = | − | −–− | − | |
10 | − | − | − | − | −–− | − | |
65 | 0.01 | = | = | = | = | = | + |
0.05 | = | = | − | = | = | − | |
0.1 | = | = | = | = | = | − | |
0.5 | = | = | = | = | − | − | |
1 | − | − | = | = | − | − | |
5 | − | = | = | = | − | − | |
10 | − | − | = | = | − | − |
Compound | Conc. (µM) | Transit Speed Variation % | Pain % | Mixing % | Fragmentation % | Longitudinal Contraction Variation % | Circular Contraction Variation % |
---|---|---|---|---|---|---|---|
NIF | 0.01 | = | = | = | = | − | − |
0.05 | = | = | − | = | − | − | |
0.1 | = | = | − | − | − | − | |
0.5 | = | = | − | = | − | − | |
1 | = | = | = | = | − | − | |
5 | = | = | − | − | − | − | |
10 | = | = | / | / | / | / | |
OB | 0.01 | = | = | = | + | = | = |
0.05 | = | = | = | = | = | = | |
0.1 | = | = | = | = | = | = | |
0.5 | = | = | = | = | = | = | |
1 | = | = | = | = | = | = | |
5 | = | = | = | = | − | = | |
10 | = | = | − | − | − | = | |
62 | 0.01 | ++ | + | + | + | − | + |
0.05 | = | = | + | + | − − | + | |
0.1 | = | ++ | = | = | − − | + | |
0.5 | = | + | − | = | − − | + | |
1 | = | + | = | = | −–− | + | |
5 | + | + | − | − | −–− | + | |
10 | ++ | + | − | − | −–− − | + | |
65 | 0.01 | = | = | = | = | − | − |
0.05 | = | = | = | − | − | − | |
0.1 | = | = | = | − | − | − | |
0.5 | − | = | − | − | − − | − | |
1 | − | = | − | − | − − | − | |
5 | − | = | − | − | −–− | − | |
10 | − | = | − | = | −–− | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camarda, L.; Corazza, I.; Locatelli, A.; Leoni, A.; Frosini, M.; Budriesi, R.; Carosati, E.; Santini, A.; Montagnani, M.; Marzetti, C.; et al. Repurposing 1,4-Dihydropyridine Scaffold: 4-Imidazo[2,1-b]thiazole-Derivatives from Calcium Entry Blockers to a New Approach for Gut Dysfunctional Motility. Pharmaceuticals 2025, 18, 1476. https://doi.org/10.3390/ph18101476
Camarda L, Corazza I, Locatelli A, Leoni A, Frosini M, Budriesi R, Carosati E, Santini A, Montagnani M, Marzetti C, et al. Repurposing 1,4-Dihydropyridine Scaffold: 4-Imidazo[2,1-b]thiazole-Derivatives from Calcium Entry Blockers to a New Approach for Gut Dysfunctional Motility. Pharmaceuticals. 2025; 18(10):1476. https://doi.org/10.3390/ph18101476
Chicago/Turabian StyleCamarda, Luca, Ivan Corazza, Alessandra Locatelli, Alberto Leoni, Maria Frosini, Roberta Budriesi, Emanuele Carosati, Alberto Santini, Marco Montagnani, Carla Marzetti, and et al. 2025. "Repurposing 1,4-Dihydropyridine Scaffold: 4-Imidazo[2,1-b]thiazole-Derivatives from Calcium Entry Blockers to a New Approach for Gut Dysfunctional Motility" Pharmaceuticals 18, no. 10: 1476. https://doi.org/10.3390/ph18101476
APA StyleCamarda, L., Corazza, I., Locatelli, A., Leoni, A., Frosini, M., Budriesi, R., Carosati, E., Santini, A., Montagnani, M., Marzetti, C., & Mattioli, L. B. (2025). Repurposing 1,4-Dihydropyridine Scaffold: 4-Imidazo[2,1-b]thiazole-Derivatives from Calcium Entry Blockers to a New Approach for Gut Dysfunctional Motility. Pharmaceuticals, 18(10), 1476. https://doi.org/10.3390/ph18101476