Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (59,748)

Search Parameters:
Keywords = activator protein-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 986 KB  
Article
Systemic Inflammatory and Oxidative–Metabolic Alterations in Rosacea: A Cross-Sectional Case–Control Study
by Mustafa Esen, Abdullah Demirbaş, Esin Diremsizoglu and Revşa Evin Canpolat Erkan
Diagnostics 2026, 16(2), 246; https://doi.org/10.3390/diagnostics16020246 (registering DOI) - 12 Jan 2026
Abstract
Background/Objectives: Rosacea increasingly appears to involve systemic immune and metabolic disturbances rather than isolated cutaneous inflammation. To evaluate inflammatory, platelet, and oxidative–metabolic biomarkers in rosacea and explore their interrelations. Methods: 90 patients with rosacea and 90 healthy controls were evaluated for hematologic inflammatory [...] Read more.
Background/Objectives: Rosacea increasingly appears to involve systemic immune and metabolic disturbances rather than isolated cutaneous inflammation. To evaluate inflammatory, platelet, and oxidative–metabolic biomarkers in rosacea and explore their interrelations. Methods: 90 patients with rosacea and 90 healthy controls were evaluated for hematologic inflammatory indices—neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune–inflammation index (SII), pan-immune–inflammation value (PIV), mean platelet volume (MPV), and C-reactive protein (CRP)—along with oxidative–metabolic regulators including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), visfatin, and irisin. Logistic regression and receiver operating characteristic (ROC) analyses were used to identify independent predictors of rosacea, while inter-marker associations were evaluated using Spearman’s rank correlation. Results: Rosacea patients showed higher NLR, PLR, SII, PIV, MPV, CRP, and LDL cholesterol (p < 0.05) and lower SIRT1, SIRT3, visfatin, and irisin (p < 0.01). MPV independently predicted rosacea (OR = 7.24; AUC = 0.827), whereas SIRT1 inversely correlated with disease risk. SIRT1, SIRT3, and visfatin showed inverse correlations with HbA1c and waist-to-height ratio, while fasting glucose and HOMA-IR remained within normal ranges. Conclusions: Rosacea exhibits dual systemic activation, an inflammatory–platelet and an oxidative–metabolic axis bridging immune dysregulation, mitochondrial stress, and vascular dysfunction. Recognition of these pathways highlights the potential of redox-targeted and metabolic interventions beyond symptomatic treatment. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

24 pages, 1356 KB  
Article
Prediction of Targets and Mechanisms of Top Ten Core “Food–Medicine Homologous Traditional Chinese Medicines” in Delaying Vascular Aging: An Integrative Computational Study
by Yiling Bai, Qian Liu, Qing Zhou, Pengyang Xiao and Lina Xia
Pharmaceuticals 2026, 19(1), 131; https://doi.org/10.3390/ph19010131 (registering DOI) - 12 Jan 2026
Abstract
Background and Objectives: Many “food–medicine homologous traditional Chinese medicines (TCMs)” have been shown to delay vascular aging. In this study, we will select “food–medicine homologous TCMs” with the most potential to delay human-origin vascular aging and predict their core targets and mechanisms. [...] Read more.
Background and Objectives: Many “food–medicine homologous traditional Chinese medicines (TCMs)” have been shown to delay vascular aging. In this study, we will select “food–medicine homologous TCMs” with the most potential to delay human-origin vascular aging and predict their core targets and mechanisms. Methods: Human-origin vascular-aging-related genes were screened from the NCBI and Aging Atlas databases. Candidate “food–medicine homologous TCMs” were initially filtered by constructing a protein–protein interaction network, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Key targets were validated in the Gene Expression Omnibus database and further screened by least absolute shrinkage and a selection operator. Finally, molecular docking and molecular dynamics simulations identified core targets. Results: Ten core “food–medicine homologous TCMs” with potential to delay human-derived vascular aging were identified: Crocus Sativus L., Glycyrrhiza uralensis Fisch., Chrysanthemum morifolium Ramat., Astragalus membranaceus (Fisch.) Bunge, Sophora japonica L., Hippophae rhamnoides L., Portulaca oleracea L., Lonicera japonica Thunb., Citrus aurantium L. var. amara Engl., and Morus alba L. Further analysis indicated that β-Carotene within these core “food–medicine homologous TCMs” may represent a potential active component targeting matrix metalloproteinase-1, with its action potentially linked to the interleukin-17 signaling pathway. The present study highlights the new hypothesis that immunosenescence (Th17/IL-17) is involved in vascular aging, suggesting that the top ten core “food–medicine homologous TCMs” may delay vascular aging by regulating immune cell function. Conclusions: The top ten “food–medicine homologous TCMs” provide potential candidates for functional products that delay vascular aging and provide computationally predicted mechanistic insights and a scientific basis for novel therapies. Full article
23 pages, 14514 KB  
Article
Preparation, Separation, and Identification of Low-Bitter ACE-Inhibitory Peptides from Sesame (Sesamum indicum L.) Protein
by Xin Lu, Cong Jia, Lixia Zhang, Xiaojing Sun, Guohui Song, Qiang Sun and Jinian Huang
Foods 2026, 15(2), 279; https://doi.org/10.3390/foods15020279 (registering DOI) - 12 Jan 2026
Abstract
To prepare and characterize low-bitter angiotensin-converting enzyme (ACE)-inhibitory peptides from sesame protein, a triple-enzyme hydrolysis system was optimized using mixture design and response surface methodology. The resulting hydrolysate was separated by ultrafiltration and medium-pressure chromatography, followed by identification through nano-liquid chromatography–electrospray ionization-tandem mass [...] Read more.
To prepare and characterize low-bitter angiotensin-converting enzyme (ACE)-inhibitory peptides from sesame protein, a triple-enzyme hydrolysis system was optimized using mixture design and response surface methodology. The resulting hydrolysate was separated by ultrafiltration and medium-pressure chromatography, followed by identification through nano-liquid chromatography–electrospray ionization-tandem mass spectrometry. Finally, the mechanism of typical low-bitter ACE-inhibitory peptides was elucidated by molecular docking and molecular dynamics simulation. Results showed that the optimal enzyme activity ratio of 1:0.94:1.07 for Alcalase, trypsin, and Flavourzyme, combined with optimized hydrolysis conditions (E/S ratio of 126,793.03 nkat/g, pH 8.40, 4.82 h hydrolysis time, and 45 °C), resulted in a peptide yield of 93.19 ± 0.14%, ACE-inhibitory rate of 95.92 ± 0.23%, and bitter value of 3.15 ± 0.09. APQLGR and APWLR exhibited high ACE-inhibitory activity and minimal bitterness among the seventeen identified peptides. Although both peptides bound to the S1 pocket and Zn2+ catalytic site of ACE, APWLR exhibited an additional interaction with the S2 pocket. Both peptides were predicted to antagonize the bitter taste receptor T2R14 by forming stable complexes with key residues, but two complexes exhibited distinct mechanisms of stabilization. This work demonstrates a method for producing dual-functional peptides from sesame protein, paving the way for their application in functional foods. Full article
Show Figures

Graphical abstract

15 pages, 11629 KB  
Article
The Effect of Whey Peptides and Micronutrients on Improving Exercise Performance in Mice
by Yitong Cheng, Chenxuan Wang, Jack Yang, Ziyue Wang, Haoran Xing, Wenbin Wu, Ting Yang, Hanfu Xian, Sitong Wan, Dongyuan Zhang, Na Li, Junjie Luo, Yongting Luo, Wanfeng Yang and Peng An
Nutrients 2026, 18(2), 237; https://doi.org/10.3390/nu18020237 (registering DOI) - 12 Jan 2026
Abstract
Background: Durative exercise-induced fatigue influences muscle structure and exercise performance. Dietary supplements combining bioavailable proteins with essential vitamins and minerals may help reduce fatigue. Compared with proteins, whey peptides, as easily absorbed energy sources, are regarded as better promoting the utilization of [...] Read more.
Background: Durative exercise-induced fatigue influences muscle structure and exercise performance. Dietary supplements combining bioavailable proteins with essential vitamins and minerals may help reduce fatigue. Compared with proteins, whey peptides, as easily absorbed energy sources, are regarded as better promoting the utilization of vitamins and minerals. This study investigated whether the combination of whey peptides and micronutrients could synergistically improve exercise-induced fatigue and exercise performance. Methods: Four-week-old male C57BL/6J mice were forced to exercise using a treadmill for four weeks to evaluate the supplemental effects of whey peptides and/or micronutrients on exercise performance. Results: Compared with mice receiving whey peptides or micronutrients alone, mice receiving a combination of whey peptides and micronutrients displayed increased muscle mass, muscle fiber cross-sectional area, muscle strength, and exercise performance, including running exhausting time and swimming exhausting time. Consistent results were obtained in detecting fatigue-associated serum metabolites and markers reflecting muscle injury. To elucidate the anti-fatigue mechanisms of whey peptides and micronutrients, RNA transcriptome in the muscle tissues were analyzed. Enrichment analysis results suggest that micronutrients and/or whey protein alleviate exercise-induced fatigue, not only via reducing oxidative stress but also repressing excessive immune activation in muscle tissue, thereby decreasing the tissue injury caused by strenuous exercise. Conclusions: Overall, the current study indicates that the combination of whey peptides and micronutrients produces a synergistic effect on promoting exercise performance. Our findings provide scientific evidence for the development of novel and efficient anti-fatigue functional foods using whey peptides and micronutrients. Full article
Show Figures

Figure 1

16 pages, 713 KB  
Article
Adding a Yeast Blend to the Diet of Holstein Females Minimizes the Negative Impacts of Ingesting Feed Naturally Contaminated with Aflatoxin B1
by Mario Augusto Torteli, Andrei Lucas Rebelatto Brunetto, Emeline P. Mello, Guilherme Luiz Deolindo, Luisa Nora, Tainara Letícia dos Santos, Luiz Eduardo Lobo e Silva, Roger Wagner and Aleksandro Schafer da Silva
Animals 2026, 16(2), 219; https://doi.org/10.3390/ani16020219 (registering DOI) - 12 Jan 2026
Abstract
Although a yeast-based additive was initially employed as a performance enhancer, subsequent analysis revealed high aflatoxin B1 levels in the corn silage. Therefore, the objective of this study is to determine if the use of a yeast blend in the diet of Holstein [...] Read more.
Although a yeast-based additive was initially employed as a performance enhancer, subsequent analysis revealed high aflatoxin B1 levels in the corn silage. Therefore, the objective of this study is to determine if the use of a yeast blend in the diet of Holstein calves that consumed feed naturally contaminated with high levels of aflatoxin can minimize the negative impacts of mycotoxins on animal health, contributing to improved performance. For this, we used 24 Holstein calves (6 months old) divided into two groups: Control (n = 12; no additive) and Treatment (n = 12; 5 g additive/animal/day). During the 100-day experiment, animals were weighed, feed intake was measured, blood samples were collected to assess health, and ruminal fluid was analyzed for ruminal fermentation. We observed greater weight gain and better feed efficiency in cattle that consumed the yeast-based additive compared to the control group. Yeast ingestion increased the concentration of propionic acid in the experimental environment, as well as increasing the protozoan count. Higher lymphocyte counts combined with higher levels of immunoglobulin G in the blood of females that consumed the additive were observed. Lower activity of enzymes that are biomarkers of liver damage, as well as markers of oxidative stress, was observed when animals consumed the yeast blend compared to the control group. Lower levels of ceruloplasmin (positive acute phase protein) and higher levels of transferrin (negative acute phase protein) are indicative of an anti-inflammatory response to the additive. The results preliminarily suggest that the consumption of the yeast blend is a nutritional tool capable of acting as a performance enhancer, even under challenging conditions, such as diets contaminated with aflatoxin at levels exceeding international limits. Full article
Show Figures

Figure 1

17 pages, 2282 KB  
Article
Fisetin Suppresses the Proliferative and Migratory Behavior of HeLa Cells by Modulating Aberrant Epigenetic Marks (Writers and Erasers)
by Nazia Afroze, Reham I. Alagal, Lujain A. Almousa, Ritu Raina, Prathap Bava, Lizna Mohamed Ali, Tarique Noorul Hasan and Arif Hussain
Epigenomes 2026, 10(1), 3; https://doi.org/10.3390/epigenomes10010003 (registering DOI) - 12 Jan 2026
Abstract
Purpose: The reversible deviant in epigenomic modulations is the highlight of developing new anti-cancer drugs, necessitating the use of fisetin as an epigenetic modifier in the study. Methods: In silico and molecular studies were performed to analyze the modulatory effect of fisetin on [...] Read more.
Purpose: The reversible deviant in epigenomic modulations is the highlight of developing new anti-cancer drugs, necessitating the use of fisetin as an epigenetic modifier in the study. Methods: In silico and molecular studies were performed to analyze the modulatory effect of fisetin on various writers and erasers. Further, whole genome DNA methylation sequencing and expression studies were performed. Global DNA methylation-LINE 1 kit was used to check global DNA methylation. Additionally, the effect of fisetin on migration was evaluated by colony, scratch, and invasion assays and qPCR and protein expression studies of migration-related genes were carried out on HeLa cells. Results: In silico studies have supported that fisetin interacts with writers and erasers in their catalytic site and the simulation studies showed minimum fluctuations in energy and temperature over a 10 ns timescale indicating that these complexes are likely to remain stable. Fisetin (20–50 µM) dose-dependently inhibited DNA methyltransferases (DNMT), histone deacetyl transferases (HDAC), histone acetyl transferases (HAT), and histone methyltransferases (HMT) activities at 48 h, with inhibition ranging from 24 to 72% compared to the control. The expression and enzymatic activity of these proteins, along with various H4 and H3 modification marks, were observed to be altered following fisetin treatment at 48 h. Fisetin treatment reduced promoter methylation in various tumor suppressor genes ranging from 15.29% to 76.23% and leading to the corresponding reactivation of important tumor suppressor genes; however, it did not lead to any alteration in the global DNA methylation compared to untreated controls linked with the anti-migratory properties of fisetin as the percentage of migrated cells dropped from ~40% to ~8%. Conclusions: This study gives a mechanistic insight of fisetin as a potential epigenetic modifier in HeLa cells. Full article
(This article belongs to the Collection Epigenetic Regulation of Cellular Differentiation)
Show Figures

Figure 1

25 pages, 18702 KB  
Article
Monopolar Radiofrequency for Facial Hyperpigmentation Treatment: An Integrated Retrospective Clinical Trial and Ex Vivo Study
by Yujin Baek, Ngoc Ha Nguyen, Seoyoon Ham, Wanjin Kim, Ju Hee Lee and Young In Lee
Int. J. Mol. Sci. 2026, 27(2), 761; https://doi.org/10.3390/ijms27020761 (registering DOI) - 12 Jan 2026
Abstract
Aging-associated facial hyperpigmentation is driven not only by enhanced melanogenesis but also by dermal senescence and deterioration of the dermal–epidermal junction. The purpose of this study was to evaluate whether monopolar radiofrequency (MRF) monotherapy can improve aging-related facial hyperpigmentation by simultaneously suppressing melanogenic [...] Read more.
Aging-associated facial hyperpigmentation is driven not only by enhanced melanogenesis but also by dermal senescence and deterioration of the dermal–epidermal junction. The purpose of this study was to evaluate whether monopolar radiofrequency (MRF) monotherapy can improve aging-related facial hyperpigmentation by simultaneously suppressing melanogenic signaling and restoring senescence-associated dermal alterations. We assumed that deep dermal heating induced by MRF would modulate fibroblast senescence and basement membrane integrity, thereby indirectly regulating melanocyte activity. In a retrospective review of 26 Asian women, MRF treatment significantly decreased multiple pigmentation parameters, including melanin level, hyperconcentration, and Hemi Melasma Area and Severity Index (hemi-MASI) scores, while concurrently reducing wrinkles, pores, and enhanced overall skin texture without inducing inflammation. Complementary ex vivo experiments using ultraviolet B (UVB)-irradiated human skin demonstrated that MRF markedly reduced pro-melanogenic markers (α-MSH, MC1R, MITF, TYR, TRP1/2), restored collagen type IV expression at the basement membrane, decreased senescence-associated genes (p16, p21), and upregulated protective heat shock proteins (HSP70/47). Together, these findings suggest that MRF improves aging-associated hyperpigmentation by both suppressing melanogenesis and rejuvenating the senescent dermal microenvironment. MRF may serve as an effective non-invasive treatment option for pigmentation disorders in aging skin. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Biology)
15 pages, 11276 KB  
Article
Investigation of BECN1-Mediated Autophagy Mechanisms Triggered by External Stimuli in Clinical Mastitis of Dairy Cows
by Nong Cai, Bohao Zhang, Na Chen, Jiayu Yue, Jianfu Li, Weitao Dong, Yong Zhang, Xingxu Zhao and Quanwei Zhang
Biomolecules 2026, 16(1), 133; https://doi.org/10.3390/biom16010133 - 12 Jan 2026
Abstract
Disruption of the blood–milk barrier and inhibition of enzymatic activity caused by abnormal external stimuli, accompanied by the occurrence of autophagy, are among the major factors contributing to the onset of clinical mastitis (CM) in dairy cows. However, the molecular mechanisms through which [...] Read more.
Disruption of the blood–milk barrier and inhibition of enzymatic activity caused by abnormal external stimuli, accompanied by the occurrence of autophagy, are among the major factors contributing to the onset of clinical mastitis (CM) in dairy cows. However, the molecular mechanisms through which external stimuli and autophagy regulate CM in dairy cows are not fully understood. This study examined mammary gland (MG) tissue samples collected from healthy dairy cows and those with CM caused by Staphylococcus aureus (n = 3 per group) to observe histological changes and autophagic phenomena, identify candidate biomolecular targets involved in external stimuli in dairy cows affected by mastitis through proteomic and bioinformatic analyses, and analyze their expression and distribution patterns in MG tissues. Pathological examination revealed that the MG tissues of the CM group exhibited significant alveoli collapse and inflammatory cell infiltration, accompanied by autolysosome and phagolysosome activation, and elevated expression of lysosomal and autophagic markers. Bioinformatic analysis identified five biological processes (BPs) and 144 differentially expressed proteins (DEPs) associated with external stimuli, among which beclin 1 (BECN1) was involved in all five BPs. Pathway enrichment analysis revealed that BECN1 participated in six autophagy-related signaling pathways. BECN1 was localized in the cytoplasm of mammary epithelial cells, and both mRNA and protein levels of BECN1 were significantly upregulated in the CM group compared with those in the controls (p < 0.01). These findings suggest that BECN1 expression is closely associated with CM in dairy cows and correlates with autophagy-related responses to external stimuli, and its elevated expression is positively correlated with Staphylococcus aureus–induced CM severity. Our results offer preliminary observations relevant to the molecular mechanisms by which BECN1, the autophagy-regulating biomolecule BECN1 influences the development of CM. Full article
(This article belongs to the Collection Feature Papers in Molecular Biomarkers)
Show Figures

Figure 1

18 pages, 7749 KB  
Article
From Early Signals to Systemic Decline: Physiological Defense Landscape of Agave tequilana in the Fusarium oxysporum Pathosystem
by Diego E. Navarro-López, Julio César López-Velázquez, Antonia Gutiérrez-Mora, Mayra Itzcalotzin Montero-Cortés, Martin Eduardo Avila-Miranda, Norma Alejandra Mancilla-Margalli, Elizabeth Sánchez-Jiménez, Miriam Irene Jiménez-Pérez, Jorge L. Mejía-Méndez and Joaquín Alejandro Qui-Zapata
Plants 2026, 15(2), 233; https://doi.org/10.3390/plants15020233 - 12 Jan 2026
Abstract
The agave wilt associated with Fusarium oxysporum (Fox) is a major disease of blue agave (Agave tequilana Weber var. azul), used to produce “Tequila” in Mexico. Little is known about the A. tequilana-F. oxysporum interaction yet understanding defense mechanisms [...] Read more.
The agave wilt associated with Fusarium oxysporum (Fox) is a major disease of blue agave (Agave tequilana Weber var. azul), used to produce “Tequila” in Mexico. Little is known about the A. tequilana-F. oxysporum interaction yet understanding defense mechanisms against the pathogen is necessary for control strategies. During early Fox infection, plants trigger defense mechanisms to interrupt the compatible interaction, while Fox’s pathogenesis mechanism interacts with plant response. This study evaluated plant defense mechanisms induced by Fox in A. tequilana and their interaction with fungal pathogenesis. For this, an A. tequilana pathogenic strain (FPA), and the non-A. tequilana pathogenic strains FNPA and FOL were utilized. Early defense mechanisms evaluated were hypersensitive response (HR) and cell wall strengthening in agave roots. Resistance mechanisms evaluated included pathogenesis-related proteins (PR proteins), phytoanticipins and phytoalexins. For early defense, induced HR was greater with FPA than other strains. Cell wall strengthening was found in agave roots, plants responded differentially to different strains. Initial response to FPA and FOL was similar in PR proteins, phytoalexins and phytoanticipins production. However, the response differentiated with FOL over time, indicating an incompatible interaction. The study identified effective and ineffective defense responses of A. tequilana to Fox infection, where FPA exhibited compatibility and caused unregulated ROS and PCD, early inhibition of PR activity, extensive lignification, and saponin detoxification. In contrast, this study unveiled incompatible interactions (FNPA and FOL) because of limited colonization, localized HR with suppressed ROS, early and sustained POX activation, significant callose accumulation, moderate lignification, and phenol–saponin dynamics that help in tissue containment and recovery. Full article
Show Figures

Figure 1

16 pages, 831 KB  
Article
Clinical and Histological Outcomes of Autologous Dentin Matrix in Post-Extraction Alveolar Healing: A Pilot Randomized Clinical Trial
by Massiel Jáquez, Juan Algar, James Rudolph Collins, Gleny Hernández and Juan Manuel Aragoneses
J. Clin. Med. 2026, 15(2), 606; https://doi.org/10.3390/jcm15020606 - 12 Jan 2026
Abstract
Background/Objectives: Autologous dentin matrix (ADM) has been suggested as a biologically plausible biomaterial for alveolar bone regeneration after tooth extraction. However, clinical evidence regarding its biological activity and early healing outcomes is limited. This exploratory, randomized controlled pilot study aimed to descriptively [...] Read more.
Background/Objectives: Autologous dentin matrix (ADM) has been suggested as a biologically plausible biomaterial for alveolar bone regeneration after tooth extraction. However, clinical evidence regarding its biological activity and early healing outcomes is limited. This exploratory, randomized controlled pilot study aimed to descriptively assess early alveolar healing patterns and bone morphogenetic protein 4 (BMP4) expression following tooth extraction using ADM compared with other grafting approaches. Methods: Patients requiring tooth extraction were allocated to one of four groups: ADM, xenograft, ADM combined with platelet-rich fibrin, and a graft-free control group. Histological and immunohistochemical analyses were performed four months after extraction to descriptively assess cellular features of healing and BMP4 expression. The trial was registered at the Brazilian Registry of Clinical Trials (ReBEC; RBR-24mdgrf) and conducted under prior ethics committee approval. Results: BMP4 expression was detected in 67.9% of the analyzed histological fields, predominantly localized in osteocytic, osteoblastic, and medullary areas. Although descriptive differences in BMP4-positive fields were observed among the groups, no statistically significant differences were identified between the groups. Histological evaluation revealed an active cellular environment across all treatment modalities, consistent with early post-extraction healing. No adverse events related to surgical procedures or grafting materials were reported during the study period. Conclusions: Within the limitations of this pilot randomized clinical trial, ADM exhibited consistent biological behavior during early post-extraction alveolar healing. The observed BMP4 expression likely reflects a general physiological healing response rather than a material-specific effect. This finding supports the biological plausibility of dentin-derived grafts as osteoconductive biomaterials. These findings are hypothesis-generating, and larger, adequately powered randomized clinical trials with standardized molecular and histological assessments are required to determine their clinical relevance. Full article
(This article belongs to the Topic Advances in Dental Health, 2nd Edition)
Show Figures

Figure 1

36 pages, 1746 KB  
Review
Cross-Talk Between Signaling and Transcriptional Networks Regulating Thermogenesis—Insights into Canonical and Non-Canonical Regulatory Pathways
by Klaudia Simka-Lampa
Int. J. Mol. Sci. 2026, 27(2), 754; https://doi.org/10.3390/ijms27020754 - 12 Jan 2026
Abstract
Brown adipose tissue (BAT) and beige adipocytes play a crucial role in adaptive thermogenesis, primarily via uncoupling protein 1 (UCP1)-driven heat production. Once considered physiologically irrelevant in adults, BAT is now recognized as an active tissue that contributes to energy expenditure and metabolic [...] Read more.
Brown adipose tissue (BAT) and beige adipocytes play a crucial role in adaptive thermogenesis, primarily via uncoupling protein 1 (UCP1)-driven heat production. Once considered physiologically irrelevant in adults, BAT is now recognized as an active tissue that contributes to energy expenditure and metabolic homeostasis and represents a potential therapeutic target for obesity and metabolic disorders. This review provides an integrated overview of the molecular regulation of thermogenic adipocytes, emphasizing both canonical UCP1-dependent as well as non-canonical UCP1-independent mechanisms of heat generation. Key transcriptional and epigenetic regulators are discussed in the context of mitochondrial biogenesis, substrate utilization, and thermogenic gene programs. Major upstream signaling routes are further summarized, encompassing classical β-adrenergic pathways, as well as alternative regulatory nodes including AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) together with diverse nutrient- and hormone-responsive cues that converge to activate brown and beige adipocytes. Finally, the cross-talk among neuronal, endocrine, immune, and gut microbiota-derived signals is highlighted as a key determinant of thermogenic adipocyte function. Together, these multilayered regulatory inputs provide a comprehensive framework for understanding how thermogenic adipose tissue integrates environmental, metabolic, and microbial cues to regulate systemic energy balance—knowledge that is essential for developing targeted therapies to combat obesity and metabolic diseases. Full article
(This article belongs to the Special Issue Regulation of Brown Adipose Function)
Show Figures

Figure 1

21 pages, 6977 KB  
Article
An Integrative Small RNA–Degradome–Transcriptome Analysis Reveals Mechanisms of Heat-Induced Anther Indehiscence in Pepper
by Gang Lei, Tao Li, Kunhua Zhou, Xinjie Yuan, Yueqin Huang, Gege Li, Yu Fang, Rong Fang and Xuejun Chen
Biology 2026, 15(2), 129; https://doi.org/10.3390/biology15020129 - 12 Jan 2026
Abstract
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. [...] Read more.
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. DL showed a collapse of anther dehiscence above 34–38 °C, whereas B021 retained normal dehiscence at 39 °C, and histology revealed tapetal enlargement, premature degeneration, and locule contraction only in DL. RNA-seq indicated genotype- and stage-dependent reprogramming, with DL suppressing phenylpropanoid/cell-wall, transport, and proteostasis pathways, while B021 maintained reproductive and stress-integration programs. Small-RNA profiling and degradome sequencing identified conserved miRNA families with in vivo target cleavage, and notably, miR397 targeting a laccase gene showed stronger evidence in B021, which is consistent with controlled lignification. Functional organization of differentially expressed miRNA targets highlighted modules in respiration/redox, hormone and terpenoid metabolism, vascular–cell-wall programs, and proteostasis/osmotic buffering. WGCNA modules correlated with heat-tolerance traits converged on the same processes. Enzyme assays corroborated multi-omics predictions, with SOD, CAT, and POD activities consistently induced in B021 and limited MDA accumulation. Together, the data supports a model in which tolerant anthers sustain dehiscence under heat by coordinating secondary-wall formation, auxin/jasmonate/gibberellin crosstalk, respiratory and reactive oxygen species buffering, and protein/membrane quality control, providing tractable targets for breeding heat-resilient peppers. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

25 pages, 2466 KB  
Article
Screening of the Pandemic Response Box Library Identified CRM1/XPO1 as an Anti-Mammarenavirus Druggable Target
by Chukwudi A. Ofodile, Beatrice Cubitt, Ngozi Onyemelukwe, Chetachi B. Okwuanaso, Haydar Witwit and Juan C. de la Torre
Viruses 2026, 18(1), 103; https://doi.org/10.3390/v18010103 - 12 Jan 2026
Abstract
Mammarenaviruses (MaAv) cause persistent infection in their natural rodent hosts across the world and, via zoonotic events, can cause severe disease in humans. Thus, the MaAv Lassa virus (LASV) in Western Africa and the Junin virus (JUNV) in the Argentinean Pampas cause hemorrhagic [...] Read more.
Mammarenaviruses (MaAv) cause persistent infection in their natural rodent hosts across the world and, via zoonotic events, can cause severe disease in humans. Thus, the MaAv Lassa virus (LASV) in Western Africa and the Junin virus (JUNV) in the Argentinean Pampas cause hemorrhagic fever diseases with significant case fatality rates in their endemic regions. In addition, the globally distributed MaAv lymphocytic choriomeningitis virus (LCMV) is an underrecognized human pathogen of clinical significance capable of causing devastating infections in neonates and immunocompromised individuals. Despite their impact on human health, there are currently no FDA-approved vaccines or specific antiviral treatments for MaAv infections. Existing anti-MaAv therapies are limited to the off-label use of ribavirin, whose efficacy remains controversial; hence, the development of novel therapeutics to combat human pathogenic MaAv is vital. We employed a high-throughput cell-based infection assay to screen the Pandemic Response Box, a collection of 400 diverse compounds with established antimicrobial activity, for MaAv inhibitors. We identified Ro-24-7429, an antagonist of the HIV-1 Tat protein and RUNX family transcription factor 1 inhibitor; WO 2006118607 A2, a dihydroorotate dehydrogenase inhibitor; and verdinexor, a novel selective inhibitor of nuclear export (SINE) targeting the XPO1/CRM1, as potent anti-MaAv compounds. Consistent with their distinct validated targets, verdinexor and WO 2006118607 A2 exhibited very strong synergistic antiviral activity when used in combination therapy. Our findings pave the way for the development of verdinexor as a potent host-directed antiviral against MaAv, which could be integrated into the development of combination therapy with direct- or host-acting antivirals to combat human pathogenic MaAv. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

11 pages, 488 KB  
Article
Identification of Short Amino Acid Sequences That Correlate with Cytoplasmic Retention of Human Proteins
by Jay C. Brown and Baomin Wang
Cells 2026, 15(2), 133; https://doi.org/10.3390/cells15020133 - 12 Jan 2026
Abstract
One group of human proteins found in the cytoplasm, but not in the nucleus, is characterized by the presence of short (6–9 aa), specific amino acid sequences thought to be involved in retaining proteins in the cytoplasm (cytoplasmic retention sequences). While strong evidence [...] Read more.
One group of human proteins found in the cytoplasm, but not in the nucleus, is characterized by the presence of short (6–9 aa), specific amino acid sequences thought to be involved in retaining proteins in the cytoplasm (cytoplasmic retention sequences). While strong evidence supports the ability of some peptides to act in this way, the number of such supported cases is small. We have taken the view that the situation would be improved by enhancing the methods available to identify cytoplasmic retention (CR) sequences. Here, we describe an appropriate bioinformatic method to identify CR peptides using information about their location at the ends of cytoplasmic proteins. The method was then used to link seven different human cytoplasmic proteins with sequences suggested to have cytoplasmic retention activity. Further bioinformatic analysis was carried out with isoforms of the cytoplasmic proteins identified. Amino acid sequence information showed that while the proposed CR amino acid sequences can be the same or distinct in different protein isoforms, they are always located at the same site in the protein. For instance, while the proposed retention sequence of CCDC57 isoform X18 is MLARLVSNS, in isoform 7 it is SEPALNEL, yet the two sequences are each located between amino acids 5 and 13 in the CCDC57 sequence. The results support the view that the protein isoform is involved in determining the location of the CR sequence in a protein, while the amino acid sequence itself affects other variables such as the sub-region of the cytoplasm the protein needs to occupy. Overall, the study yielded identification of 15 candidate CR peptides in which 10 of the 15 have unrelated amino acid sequences. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

24 pages, 2708 KB  
Review
Berberine: A Negentropic Modulator for Multi-System Coordination
by Xiaolian Tian, Qingbo Chen, Yingying He, Yangyang Cheng, Mengyu Zhao, Yuanbin Li, Meng Yu, Jiandong Jiang and Lulu Wang
Int. J. Mol. Sci. 2026, 27(2), 747; https://doi.org/10.3390/ijms27020747 - 12 Jan 2026
Abstract
Berberine (BBR), a protoberberine alkaloid with a long history of medicinal use, has consistently demonstrated benefits in glucose–lipid metabolism and inflammatory balance across both preclinical and human studies. These diverse effects are not mediated by a single molecular target but by BBR’s capacity [...] Read more.
Berberine (BBR), a protoberberine alkaloid with a long history of medicinal use, has consistently demonstrated benefits in glucose–lipid metabolism and inflammatory balance across both preclinical and human studies. These diverse effects are not mediated by a single molecular target but by BBR’s capacity to restore network coordination among metabolic, immune, and microbial systems. At the core of this regulation is an AMP-activated Protein Kinase (AMPK)-centered mechanistic hub, integrating signals from insulin and nutrient sensing, Sirtuin 1/3 (SIRT1/3)-mediated mitochondrial adaptation, and inflammatory pathways such as nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-κB) and NOD-, LRR- and Pyrin Domain-containing Protein 3 (NLRP3). This hub is dynamically regulated by system-level inputs from the gut, mitochondria, and epigenome, which in turn strengthen intestinal barrier function, reshape microbial and bile-acid metabolites, improve redox balance, and potentially reverse the epigenetic imprint of metabolic stress. These interactions propagate through multi-organ axes, linking the gut, liver, adipose, and vascular systems, thus aligning local metabolic adjustments with systemic homeostasis. Within this framework, BBR functions as a negentropic modulator, reducing metabolic entropy by fostering a coordinated balance among these interconnected systems, thereby restoring physiological order. Combination strategies, such as pairing BBR with metformin, Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors, and agents targeting the microbiome or inflammation, have shown enhanced efficacy and substantial translational potential. Berberine ursodeoxycholate (HTD1801), an ionic-salt derivative of BBR currently in Phase III trials and directly compared with dapagliflozin, exemplifies the therapeutic promise of such approaches. Within the hub–axis paradigm, BBR emerges as a systems-level modulator that recouples energy, immune, and microbial circuits to drive multi-organ remodeling. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Human Health and Disease)
Show Figures

Figure 1

Back to TopTop