Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (505)

Search Parameters:
Keywords = actin binding proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2390 KB  
Review
Structure and Functions of Actin and Actin-Binding Proteins in Leishmania
by Chhitar M. Gupta and Saravanamuthu Thiyagarajan
Pathogens 2025, 14(9), 948; https://doi.org/10.3390/pathogens14090948 - 19 Sep 2025
Viewed by 623
Abstract
The actin cytoskeleton plays a crucial role in fundamental eukaryotic processes such as morphogenesis, motility, endocytosis, intracellular trafficking, and cell division. However, our understanding of actin and its associated proteins in trypanosomatid parasites like Leishmania remains limited. Over the past two decades, considerable [...] Read more.
The actin cytoskeleton plays a crucial role in fundamental eukaryotic processes such as morphogenesis, motility, endocytosis, intracellular trafficking, and cell division. However, our understanding of actin and its associated proteins in trypanosomatid parasites like Leishmania remains limited. Over the past two decades, considerable progress has been made in elucidating the structure and functions of Leishmania actin and its core regulators. Notably, these findings are primarily derived from studies of the insect-stage promastigote form, while the roles of the actin machinery during the disease-causing amastigote stage within mammalian hosts remain largely unexplored. This review consolidates the current knowledge of actin and its interactors in Leishmania promastigotes, highlighting their potential roles in parasite development and stage-specific differentiation. Additionally, it explores the potential of targeting the cytoskeletal system as a strategy for novel therapeutic interventions against Leishmaniasis. The review concludes by identifying critical knowledge gaps and proposing future research directions to better understand actin-driven pathogenesis in this important human parasite. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

22 pages, 2736 KB  
Article
Proteomic Screening for Cellular Targets of the Duck Enteritis Virus Protein VP26 Reveals That the Host Actin–Myosin II Network Regulates the Proliferation of the Virus
by Liu Chen, Yin-Chu Zhu, Tao Yun, Wei-Cheng Ye, Zheng Ni, Jiong-Gang Hua and Cun Zhang
Int. J. Mol. Sci. 2025, 26(18), 9108; https://doi.org/10.3390/ijms26189108 - 18 Sep 2025
Viewed by 274
Abstract
Duck enteritis virus (DEV) is responsible for duck viral enteritis, a contagious and lethal disease in waterfowls. The host proteins targeted by DEV are unknown. In this study, we developed a recombinant DEV rVP26-Flag and identified 17 host proteins that interact with VP26 [...] Read more.
Duck enteritis virus (DEV) is responsible for duck viral enteritis, a contagious and lethal disease in waterfowls. The host proteins targeted by DEV are unknown. In this study, we developed a recombinant DEV rVP26-Flag and identified 17 host proteins that interact with VP26 in infected chicken embryo fibroblast cells using co-immunoprecipitation in conjunction with liquid chromatography–tandem mass spectrometry (Co-IP-MS/MS). The 17 potential targets of VP26 proteins include Xirp1, TMOD3, DCN, ATP5PD, AP3M1, MYO5A, MYH10, MYH9 (non-muscle myosin IIA heavy chain), and GSN. Most of these proteins are microfilament or cytoskeletal proteins with functions such as cytoskeletal protein binding, actin filament interaction, microfilament motor activity, and myosin II interaction. Using the Search Tool for the Retrieval of Interacting Genes analysis, we predicted a functional network of microfilament cytoskeletal proteins interacting with VP26. Interaction between DEV VP26 and the carboxyl-terminus domain of MYH9 (1651–1960 aa) was verified via co-localization and Co-IP assays. We also demonstrated that the inhibition of actin polymerization with cytochalasin D and latrunculin A reduced the DEV titer. Furthermore, siRNA-mediated knockdown of MYH9, which has intrinsic ATPase activity, also resulted in a reduced viral titer. A targeted inhibitor of myosin II ATPase, (-)-Blebbistatin, significantly suppressed DEV infection both in vitro and in vivo. These results suggest that the actin–myosin II network plays a crucial role in DEV proliferation, with MYH9 being an important host factor influencing DEV infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 299 KB  
Review
Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer
by Marcio F. Chedid, Aline C. Tregnago, Floriano Riva, Lucas Prediger, Anisha Agarwal and Jane Mattei
Life 2025, 15(9), 1447; https://doi.org/10.3390/life15091447 - 16 Sep 2025
Viewed by 680
Abstract
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or [...] Read more.
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or other rare tumors (1%). Given the high cure rates and the ability to histologically confirm tumor clearance, surgical therapy is the gold standard for the treatment of skin cancer. Conventional surgery is the most employed technique for the removal of non-melanoma skin cancer (NMSCs). Mohs Micrographic Surgery (MMS) is the most precise surgical method for the treatment of non-melanoma skin cancer, allowing for 100% margin evaluation, being the gold-standard method for surgical treatment of non-melanoma skin cancer. Whenever it is possible to obtain wide margins (4 to 6 mm), cure rates vary from 70% to 99%. Imiquimod, a synthetic imidazoquinolinone amine, is a topical immune response modifier approved by the U.S. Food and Drug Administration (FDA) for the treatment of external anogenital warts, actinic keratosis (AK), and superficial basal cell carcinoma (sBCC). The efficacy of imiquimod is primarily attributed to its ability to modulate both innate and adaptive immune responses, as well as its direct effects on cancer cells. Imiquimod exerts its immunomodulatory effects by activating Toll-like receptors 7 and 8 (TLR7/8) on various immune cells, including dendritic cells, macrophages, and natural killer (NK) cells. Upon binding to these receptors, imiquimod triggers the MyD88-dependent signaling pathway, leading to the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRFs). This cascade leads to the production of pro-inflammatory cytokines, including interferon-alpha (IFN-α), tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-6 (IL-6). These cytokines enhance local inflammation, recruit additional immune cells to the tumor site, and stimulate antigen presentation, thereby promoting an anti-tumor immune response. Radiation therapy (RTh) may be employed as a primary treatment to BCC. It may also be employed as an adjuvant treatment to surgery for SCC and aggressive subtypes of BCC. RTh triggers both direct and indirect DNA damage on cancer cells and generates reactive oxygen species (ROS) within cells. ROS trigger oxidative damage to DNA, proteins, and lipids, exacerbating the cellular stress and contributing to tumor cell death. Recently, immunotherapy emerged as a revolutionary treatment for all stages of SCC. Cemiplimab is a human programmed cell death 1 (PD-1)-blocking antibody that triggers a response to over 50% of patients with locally advanced and metastatic SCC. A randomized clinical trial (RCT) published in 2022 revealed that cemiplimab was highly effective in the neoadjuvant treatment of large SCCs. The drug promoted a significant tumor size decrease, enabling organ-sparing operations and a much better cosmetic effect. A few months ago, a RCT of cemiplimab on adjuvant therapy for locally aggressive SCC was published. Interestingly, cemiplimab was administered to patients with local or regional cutaneous squamous cell carcinoma after surgical resection and postoperative radiotherapy, at high risk for recurrence owing to nodal features, revealed that cemiplimab led to much lower risks both of locoregional recurrence and distant recurrence. Full article
15 pages, 3377 KB  
Article
Swiprosin-1 Negatively Regulates Osteoclast Differentiation and Bone Resorption via Akt/MAPK/NF-κB Pathway and αvβ3 Integrin-Dependent Signaling
by Yoon-Hee Cheon, Sung Chul Kwak, Chong Hyuk Chung, Chang Hoon Lee, Myeung Su Lee and Ju-Young Kim
Int. J. Mol. Sci. 2025, 26(17), 8613; https://doi.org/10.3390/ijms26178613 - 4 Sep 2025
Viewed by 627
Abstract
Swiprosin-1 (SWS1/EFhd2) is a calcium-binding adaptor protein involved in cytoskeletal regulation, but its physiological role in bone homeostasis remains largely undefined. To elucidate its function in osteoclast biology, we examined SWS1 expression and activity during osteoclastogenesis using primary murine bone marrow-derived macrophages, siRNA-mediated [...] Read more.
Swiprosin-1 (SWS1/EFhd2) is a calcium-binding adaptor protein involved in cytoskeletal regulation, but its physiological role in bone homeostasis remains largely undefined. To elucidate its function in osteoclast biology, we examined SWS1 expression and activity during osteoclastogenesis using primary murine bone marrow-derived macrophages, siRNA-mediated knockdown, and SWS1 knockout (KO) mice. SWS1 was predominantly localized to the nucleus in precursor cells and redistributed to the F-actin ring in mature osteoclasts. Receptor activator of nuclear factor-kappa B ligand stimulation significantly downregulated SWS1 mRNA expression. Loss of SWS1 enhanced osteoclast formation, F-actin ring integrity, and bone resorption, accompanied by elevated expression of osteoclastogenic markers. In vivo, male SWS1 KO mice exhibited deteriorated trabecular bone microarchitecture with increased osteoclast numbers. Mechanistically, SWS1 deficiency intensified αvβ3 integrin-associated cytoskeletal signaling and upregulated Akt, MAPK, NF-κB, and PLCγ2 pathways. These results indicate that SWS1 negatively regulates osteoclast differentiation and function by restraining cytoskeletal reorganization and downstream signaling. Collectively, our findings establish SWS1 as a novel modulator of osteoclast activity and a potential therapeutic target for osteolytic bone disorders. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

26 pages, 1722 KB  
Review
Profilin and Non-Canonical Wnt Signaling: Coordinating Cytoskeletal Dynamics from Development to Disease
by Samira Alam, Danielle Duncan and Sharmin Hasan
J. Dev. Biol. 2025, 13(3), 31; https://doi.org/10.3390/jdb13030031 - 1 Sep 2025
Viewed by 1377
Abstract
Vertebrate embryonic development relies on tightly regulated signaling pathways that guide morphogenesis, cell fate specification, and tissue organization. Among these, the Wnt signaling pathway plays a central role, orchestrating key developmental events. The non-canonical Wnt pathways, including the Planar Cell Polarity and Wnt/Ca [...] Read more.
Vertebrate embryonic development relies on tightly regulated signaling pathways that guide morphogenesis, cell fate specification, and tissue organization. Among these, the Wnt signaling pathway plays a central role, orchestrating key developmental events. The non-canonical Wnt pathways, including the Planar Cell Polarity and Wnt/Ca2+ branches, are especially critical for regulating cytoskeletal dynamics during gastrulation. Recent studies highlight that these pathways interface with cytoskeletal effectors to control actin remodeling in response to extracellular cues. One such effector is Profilin, a small, evolutionarily conserved actin-binding protein that modulates actin polymerization and cellular architecture. Profilins, particularly Profilin1 and 2, are known to interact with Daam1, a formin protein downstream of PCP signaling, thereby linking Wnt signals to actin cytoskeletal regulation. Emerging evidence suggests that Profilins are active signaling intermediates that contribute to morphogenetic processes. Their context-dependent interactions and differential expression across species also suggest that they play specialized roles in development and disease. This review synthesizes the current understanding of Profilin’s role in non-canonical Wnt signaling, examining its molecular interactions and contributions to cytoskeletal control during development. By integrating data across model systems, we aim to clarify how Profilins function at the intersection of signaling and cytoskeletal dynamics, with implications for both developmental biology and disease pathogenesis. Full article
Show Figures

Figure 1

14 pages, 3442 KB  
Article
Drebrin Is Involved in the Life Cycle of Pseudorabies Virus by Regulating the Actin Cytoskeleton
by Kun Xu, Xiao-Han Wang, Yan-Pei Ku, Jie-Yuan Guo, Shu-Han Fan, Miao-Miao Xue, Jiang Wang, Shuang Guo, Jia-Jia Pan and Bei-Bei Chu
Microorganisms 2025, 13(9), 1969; https://doi.org/10.3390/microorganisms13091969 - 22 Aug 2025
Viewed by 471
Abstract
Pseudorabies virus (PRV), a highly pathogenic alphaherpesvirus, poses a potential threat to public health and safety due to its broad host range and risk of cross-species transmission. Viruses have evolved multiple strategies to exploit host factors for entry into and survival in host [...] Read more.
Pseudorabies virus (PRV), a highly pathogenic alphaherpesvirus, poses a potential threat to public health and safety due to its broad host range and risk of cross-species transmission. Viruses have evolved multiple strategies to exploit host factors for entry into and survival in host cells. Drebrin is an actin-binding protein that restricts rotavirus entry by inhibiting dynamin-mediated endocytosis. However, its role and mechanism in DNA virus infection, particularly in herpesviruses, remain unexplored. In this study, we investigated the role of Drebrin in PRV infection using pharmacological inhibition (BTP−2) and CRISPR-Cas9-mediated gene knockout. Both the Drebrin inhibitor BTP−2 and gene knockout significantly suppressed PRV replication. Intriguingly, Drebrin exhibited stage-specific effects on the viral life cycle: its inhibition enhanced viral internalization during early infection but impaired viral replication at later stages, suggesting that Drebrin plays a complex role in the regulation of PRV infection. PRV infection partially disrupted actin stress fibers and caused an increase in cell size. Drebrin knockout also altered the host-cell morphology, reduced the cell surface area, and induced actin cytoskeleton rearrangement, which was further modulated in PRV-infected cells. In summary, our data demonstrate that Drebrin functions as a critical host factor governing the entire PRV life cycle by regulating actin cytoskeleton reorganization. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

18 pages, 2240 KB  
Article
Role of Tpm Isoforms Produced by the TPM4 Gene in the Regulation of Actin Filament Dynamics by Cofilin
by Svetlana G. Roman, Victoria V. Nefedova and Alexander M. Matyushenko
Biomolecules 2025, 15(8), 1206; https://doi.org/10.3390/biom15081206 - 21 Aug 2025
Viewed by 722
Abstract
The actin cytoskeleton determines a huge number of intracellular processes, as well as maintaining the cell shape, transport, formation of intercellular contacts, etc. The actin cytoskeleton’s function is largely determined by actin-binding proteins. Here, the mutual influence of two actin-binding proteins, cofilin (cof) [...] Read more.
The actin cytoskeleton determines a huge number of intracellular processes, as well as maintaining the cell shape, transport, formation of intercellular contacts, etc. The actin cytoskeleton’s function is largely determined by actin-binding proteins. Here, the mutual influence of two actin-binding proteins, cofilin (cof) and tropomyosin (Tpm), is studied. In the present work, using various biochemical approaches, we reveal the effects of two TPM4 gene-derived isoforms (Tpm4.1 and Tpm4.2) in the presence of cofilin-1 and cofilin-2. The cofilin severing activity was estimated in F-actin and Tpm/F-actin complexes using viscosity measurements and electron microscopy. Both cofilins prompted the disassembly of F-actin filaments with Tpms attached to them, and the Tpm4.2 isoform demonstrated a better protective effect. We also estimated the ability of cofilin-1 and cofilin-2 to displace Tpms from actin filaments by using the co-sedimentation method. Both cofilin isoforms efficiently displaced Tpm4.1 and Tpm4.2 and bound to actin filaments. Both Tpms decreased the initial rate of actin polymerization in the presence of cofilin-1 and cofilin-2. Overall, we can assume that Tpm4.1 and Tpm4.2 do not affect the binding of cofilin to actin filaments, which may be important for cofilin to exhibit its severing activity and lead to the remodeling of the actin cytoskeleton. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

18 pages, 7271 KB  
Article
ENO1 from Mycoplasma bovis Disrupts Host Glycolysis and Inflammation by Binding ACTB
by Rui-Rui Li, Xiao-Jiao Yu, Jia-Yin Liang, Jin-Liang Sheng, Hui Zhang, Chuang-Fu Chen, Zhong-Chen Ma and Yong Wang
Biomolecules 2025, 15(8), 1107; https://doi.org/10.3390/biom15081107 - 1 Aug 2025
Viewed by 673
Abstract
Mycoplasma bovis is an important pathogen that is associated with respiratory diseases, mastitis, and arthritis in cattle, leading to significant economic losses in the global cattle industry. Most notably in this study, we pioneer the discovery that its secreted effector ENO1 (α-enolase) directly [...] Read more.
Mycoplasma bovis is an important pathogen that is associated with respiratory diseases, mastitis, and arthritis in cattle, leading to significant economic losses in the global cattle industry. Most notably in this study, we pioneer the discovery that its secreted effector ENO1 (α-enolase) directly targets host cytoskeletal proteins for metabolic–immune regulation. Using an innovative GST pull-down/mass spectrometry approach, we made the seminal discovery of β-actin (ACTB) as the primary host target of ENO1—the first reported bacterial effector–cytoskeleton interaction mediating metabolic reprogramming. ENO1–ACTB binding depends on a hydrogen bond network involving ACTB’s 117Glu and 372Arg residues. This interaction triggers (1) glycolytic activation via Glut1 upregulation, establishing Warburg effect characteristics (lactic acid accumulation/ATP inhibition), and (2) ROS-mediated activation of dual inflammatory axes (HIF-1α/IL-1β and IL-6/TNF-α). This work establishes three groundbreaking concepts: (1) the first evidence of a pathogen effector hijacking host ACTB for metabolic manipulation, (2) a novel ‘glycolysis–ACTB–ROS-inflammation’ axis, and (3) the first demonstration of bacterial proteins coordinating a Warburg effect with cytokine storms. These findings provide new targets for anti-infection therapies against Mycoplasma bovis. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

23 pages, 3835 KB  
Article
Computational Saturation Mutagenesis Reveals Pathogenic and Structural Impacts of Missense Mutations in Adducin Proteins
by Lennon Meléndez-Aranda, Jazmin Moreno Pereyda and Marina M. J. Romero-Prado
Genes 2025, 16(8), 916; https://doi.org/10.3390/genes16080916 - 30 Jul 2025
Viewed by 898
Abstract
Background and objectives: Adducins are cytoskeletal proteins essential for membrane stability, actin–spectrin network organization, and cell signaling. Mutations in the genes ADD1, ADD2, and ADD3 have been linked to hypertension, neurodevelopmental disorders, and cancer. However, no comprehensive in silico saturation [...] Read more.
Background and objectives: Adducins are cytoskeletal proteins essential for membrane stability, actin–spectrin network organization, and cell signaling. Mutations in the genes ADD1, ADD2, and ADD3 have been linked to hypertension, neurodevelopmental disorders, and cancer. However, no comprehensive in silico saturation mutagenesis study has systematically evaluated the pathogenic potential and structural consequences of all possible missense mutations in adducins. This study aimed to identify high-risk variants and their potential impact on protein stability and function. Methods: We performed computational saturation mutagenesis for all possible single amino acid substitutions across the adducin proteins family. Pathogenicity predictions were conducted using four independent tools: AlphaMissense, Rhapsody, PolyPhen-2, and PMut. Predictions were validated against UniProt-annotated pathogenic variants. Predictive performance was assessed using Cohen’s Kappa, sensitivity, and precision. Mutations with a prediction probability ≥ 0.8 were further analyzed for structural stability using mCSM, DynaMut2, MutPred2, and Missense3D, with particular focus on functionally relevant domains such as phosphorylation and calmodulin-binding sites. Results: PMut identified the highest number of pathogenic mutations, while PolyPhen-2 yielded more conservative predictions. Several high-risk mutations clustered in known regulatory and binding regions. Substitutions involving glycine were consistently among the most destabilizing due to increased backbone flexibility. Validated variants showed strong agreement across multiple tools, supporting the robustness of the analysis. Conclusions: This study highlights the utility of multi-tool bioinformatic strategies for comprehensive mutation profiling. The results provide a prioritized list of high-impact adducin variants for future experimental validation and offer insights into potential therapeutic targets for disorders involving ADD1, ADD2, and ADD3 mutations. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

17 pages, 3646 KB  
Article
Nonmuscle Myosin-2B Regulates Apical Cortical Mechanics, ZO-1 Dynamics and Cell Size in MDCK Epithelial Cells
by Marine Maupérin, Niklas Klatt, Thomas Glandorf, Thomas Di Mattia, Isabelle Méan, Andreas Janshoff and Sandra Citi
Cells 2025, 14(15), 1138; https://doi.org/10.3390/cells14151138 - 23 Jul 2025
Viewed by 3057
Abstract
In epithelial cells, nonmuscle myosin-2B (NM2B) shows a cortical localization and is tethered to tight junctions (TJs) and adherens junctions (AJs) by the junctional adaptor proteins cingulin and paracingulin. MDCK cells knock-out (KO) for cingulin show decreased apical membrane cortex stiffness and decreased [...] Read more.
In epithelial cells, nonmuscle myosin-2B (NM2B) shows a cortical localization and is tethered to tight junctions (TJs) and adherens junctions (AJs) by the junctional adaptor proteins cingulin and paracingulin. MDCK cells knock-out (KO) for cingulin show decreased apical membrane cortex stiffness and decreased TJ membrane tortuosity, and the rescue of these phenotypes requires the myosin-binding region of cingulin. Here, we investigated whether NM2B contributes to these phenotypes independently of cingulin by generating and characterizing clonal lines of MDCK cells KO for NM2B. The loss of NM2B resulted in decreased stiffness and increased fluidity of the apical cortex and reduced accumulation of E-cadherin and phalloidin-labeled actin filaments at junctions but had no significant effect on TJ membrane tortuosity. Fluorescence recovery after photobleaching (FRAP) showed that the KO of NM2B increased the dynamics of the TJ scaffold protein ZO-1, correlating with decreased ZO-1 accumulation at TJs. Finally, the KO of NM2B increased cell size in cells grown both in 2D and 3D but did not alter lumen morphogenesis of cysts. These results extend our understanding of the functions of NM2B by describing its role in the regulation of the mechanical properties of the apical membrane cortex and cell size and validate our model about the role of cingulin–NM2B interaction in the regulation of ZO-1 dynamics. Full article
Show Figures

Figure 1

23 pages, 13635 KB  
Article
Cytochalasins Suppress 3D Migration of ECM-Embedded Tumoroids at Non-Toxic Concentrations
by Klara Beslmüller, Lieke J. A. van Megen, Timo Struik, Daisy Batenburg, Elsa Neubert, Tom M. J. Evers, Alireza Mashaghi and Erik H. J. Danen
Int. J. Mol. Sci. 2025, 26(14), 7021; https://doi.org/10.3390/ijms26147021 - 21 Jul 2025
Viewed by 896
Abstract
Migrastatic strategies are considered as candidate therapeutic approaches to suppress cancer invasion into local surrounding tissues and metastatic spread. The F-actin cytoskeleton is responsible for key properties regulating (cancer) cell migration. The cortical F-actin network controls cell stiffness, which, in turn, determines cell [...] Read more.
Migrastatic strategies are considered as candidate therapeutic approaches to suppress cancer invasion into local surrounding tissues and metastatic spread. The F-actin cytoskeleton is responsible for key properties regulating (cancer) cell migration. The cortical F-actin network controls cell stiffness, which, in turn, determines cell migration strategies and efficiency. Moreover, the dynamic remodeling of F-actin networks mediating filopodia, lamellipodia, and F-actin stress fibers is crucial for cell migration. Here, we have used a conditional knockout approach to delete cofilin, an F-actin-binding protein that controls severing. We find that the deletion of cofilin prevents the migration of cancer cells from tumoroids into the surrounding extracellular matrix without affecting their viability. This identifies cofilin as a candidate target to suppress metastatic spread. Pharmacological inhibitors interfering with F-actin dynamics have been developed but their effects are pleiotropic, including severe toxicity, and their impact on 3D tumor cell migration has not been tested or separated from this toxicity. Using concentration ranges of a panel of inhibitors, we select cytochalasins based on the suppression of 2D migration at non-toxic concentrations. We then show that these attenuate the escape of tumor cells from tumoroids and their migration into the surrounding extracellular matrix without toxicity in 3D cultures. This effect is accompanied by suppression of cell stiffness at such non-toxic concentrations, as measured by acoustic force spectroscopy. These findings identify cytochalasins B and D as candidate migrastatic drugs to suppress metastatic spread. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 3713 KB  
Article
Titin’s Intrinsically Disordered PEVK Domain Modulates Actin Polymerization
by Áron Gellért Altorjay, Hedvig Tordai, Ádám Zolcsák, Nikoletta Kósa, Tamás Hegedűs and Miklós Kellermayer
Int. J. Mol. Sci. 2025, 26(14), 7004; https://doi.org/10.3390/ijms26147004 - 21 Jul 2025
Viewed by 694
Abstract
The multi-domain muscle protein titin provides elasticity and mechanosensing functions to the sarcomere. Titin’s PEVK domain is intrinsically disordered due to the presence of a large number of prolines and highly charged residues. Although PEVK does not have canonical actin-binding motifs, it has [...] Read more.
The multi-domain muscle protein titin provides elasticity and mechanosensing functions to the sarcomere. Titin’s PEVK domain is intrinsically disordered due to the presence of a large number of prolines and highly charged residues. Although PEVK does not have canonical actin-binding motifs, it has been shown to bind F-actin. Here, we explored whether the PEVK domain may also affect actin assembly. We cloned the middle, 733-residue-long segment (called PEVKII) of the full-length PEVK domain, expressed in E. coli and purified by using His- and Avi-tags engineered to the N- and C-termini, respectively. Actin assembly was monitored by the pyrene assay in the presence of varying PEVKII concentrations. The structural features of PEVKII-associated F-actin were studied with atomic force microscopy. The added PEVKII enhanced the initial and log-phase rates of actin assembly and the peak F-actin quantity in a concentration-dependent way. However, the critical concentration of actin polymerization was unaltered. Thus, PEVK accelerates actin polymerization by facilitating its nucleation. This effect was highlighted in the AFM images of F-actin–PEVKII adsorbed to the supported lipid bilayer. The sample was dominated by radially symmetric complexes of short actin filaments. PEVK’s actin polymerization-modulating effect may, in principle, have a function in regulating sarcomeric actin length and turnover. Altogether, titin’s PEVK domain is not only a non-canonical actin-binding protein that regulates sarcomeric shortening, but one that may modulate actin polymerization as well. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions: 2nd Edition)
Show Figures

Figure 1

14 pages, 470 KB  
Review
Unraveling the Role of the microRNA-Mediated Regulation of Actin-Binding Proteins in Ovarian Cancer: A Narrative Review
by Efthalia Moustakli, Anastasios Potiris, Athanasios Zikopoulos, Apostolia Galani, Konstantinos Kechagias, Grigorios Karampas, Ismini Anagnostaki, Chrysi Christodoulaki, Angeliki Gerede, Panagiotis Christopoulos, Nikolaos Thomakos and Sofoklis Stavros
Cancers 2025, 17(14), 2315; https://doi.org/10.3390/cancers17142315 - 11 Jul 2025
Viewed by 556
Abstract
Ovarian cancer remains one of the most lethal gynecological malignancies, primarily due to its late diagnosis and limited prospects for successful treatment. MiRNAs have been shown to be important post-transcriptional regulators in a variety of cancer-related pathways in recent years. One of the [...] Read more.
Ovarian cancer remains one of the most lethal gynecological malignancies, primarily due to its late diagnosis and limited prospects for successful treatment. MiRNAs have been shown to be important post-transcriptional regulators in a variety of cancer-related pathways in recent years. One of the principal mechanisms underlying the motility, invasiveness, and metastatic potential of ovarian cancer cells is the microRNA-mediated regulation of ABPs. As integral components of the cytoskeletal network, ABPs participate in dynamic cellular processes such as migration, adhesion, and invasion, and are critically involved in tumor development and progression. Recent data indicate that some miRNAs affect ABP expression and activity, which in turn affects cytoskeletal remodeling and, ultimately, tumor cell behavior. The role of miRNAs in cancer development is inherently complex due to their ability to function as both tumor suppressors and oncogenes, depending on the molecular context. Key ABPs that are targeted by particular miRNAs are discussed in terms of their clinical relevance, including their potential utility as diagnostic biomarkers or therapeutic targets. A deeper understanding of these regulatory pathways may offer new opportunities for early detection and personalized treatment strategies. In this narrative review, the current knowledge of how miRNAs affect ABP expression and function, and how this interaction contributes to the development and progression of ovarian cancer, is compiled. Full article
(This article belongs to the Special Issue The Role of Actin Binding Proteins in Cancer Progression)
Show Figures

Figure 1

15 pages, 1140 KB  
Article
Serum Proteomic Changes in Pet Rabbits with Subclinical and Clinical Encephalitozoonosis in Thailand
by Taksaon Duangurai, Onrapak Reamtong, Tipparat Thiangtrongjit, Siriluk Jala, Peerut Chienwichai and Naris Thengchaisri
Animals 2025, 15(13), 1962; https://doi.org/10.3390/ani15131962 - 3 Jul 2025
Viewed by 723
Abstract
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits [...] Read more.
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits (30 per group) was pooled (10 samples per pool, 3 pools per group) and analyzed using one-dimensional gel electrophoresis and mass spectrometry. The proteomic analysis revealed 109, 98, and 74 proteins expressed in healthy, subclinical, and clinical groups, respectively. Of these, 50, 40, and 33 proteins were unique to the healthy, subclinical, and clinical groups, respectively, with only 10 proteins shared across all. A total of 88 proteins were differentially expressed in infected groups compared to healthy controls. Importantly, 12 proteins were consistently upregulated in both subclinical and clinical infections. These include markers related to the immune response (beta-2-microglobulin, alpha-2-HS-glycoprotein), coagulation (antithrombin-III, alpha-1-antiproteinase S-1), vitamin A transport (retinol-binding proteins), lipid metabolism (apolipoprotein C-III), cytoskeletal regulation (actin-depolymerizing factor), extracellular matrix integrity (fibrillin 2), and oxidative stress (monooxygenase DBH-like 1). Additionally, Gc-globulin and ER lipid-raft-associated 1 were linked to immune modulation and signaling. These findings identify specific serum proteins as promising biomarkers for distinguishing subclinical from clinical encephalitozoonosis in rabbits, enabling an early diagnosis and effective disease monitoring. Full article
(This article belongs to the Special Issue Advances in Exotic Pet Medicine)
Show Figures

Figure 1

17 pages, 1642 KB  
Review
Ankyrin-G and Its Binding Partners in Neurons: Orchestrating the Molecular Structure of the Axon Initial Segment
by Xiaowei Zhu, Yanyan Yu, Zhuqian Jiang, Yoshinori Otani and Masashi Fujitani
Biomolecules 2025, 15(6), 901; https://doi.org/10.3390/biom15060901 - 19 Jun 2025
Viewed by 1821
Abstract
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules [...] Read more.
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules (CAMs), and cytoskeletal components at this critical neuronal domain. Recent proteomic analyses have revealed a complex network of proteins in the AIS, emphasizing Ankyrin-G’s central role in its molecular architecture. This review discusses new findings in the study of AIS-associated proteins. It explains how Ankyrin-G and its binding partners (such as ion channels, CAMs, spectrins, actin, and microtubule-associated proteins including end-binding protein 3, tripartite motif-containing protein 46, and calmodulin-regulated spectrin-associated protein 2) organize their structure. Understanding the dynamic regulation and molecular interactions within the AIS offers insights into neuronal excitability and reveals potential therapeutic targets for axonal dysfunction–related diseases. Through these dynamic interactions, Ankyrin-G ensures the proper alignment and dense clustering of key channel complexes, thereby maintaining the AIS’s distinctive molecular and functional identity. By further unraveling the complexity of Ankyrin-G’s interactome, our understanding of AIS formation, maintenance, and plasticity will be considerably enhanced, contributing to the elucidation of the pathogenesis of neurological and neuropsychiatric disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodevelopment)
Show Figures

Figure 1

Back to TopTop