Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = acoustic tweezer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3540 KiB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 269
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

12 pages, 3235 KiB  
Article
Dynamic Acoustic Holography: One-Shot High-Precision and High-Information Methodology
by Zhaoxi Li, Yiheng Yang, Qi Lu, Xiongwei Wei, Chenxue Hou, Yi Quan, Xiaozhou Lü, Weimin Bao, Yintang Yang and Chunlong Fei
Micromachines 2024, 15(11), 1316; https://doi.org/10.3390/mi15111316 - 29 Oct 2024
Cited by 2 | Viewed by 2318
Abstract
Acoustic holography technology is widely used in the field of ultrasound due to its capability to achieve complex acoustic fields. The traditional acoustic holography method based on single-phase holograms is limited due to its inability to complete acoustic field control with high dynamics [...] Read more.
Acoustic holography technology is widely used in the field of ultrasound due to its capability to achieve complex acoustic fields. The traditional acoustic holography method based on single-phase holograms is limited due to its inability to complete acoustic field control with high dynamics and accuracy. Here, we propose a method for constructing an acoustic holographic model, introducing an ultrasonic array to provide dynamic amplitude control degrees of freedom, and combining the dynamically controllable ultrasonic array and high-precision acoustic hologram to achieve the highest acoustic field accuracy and dynamic range. This simulation method has been proven to be applicable to both simple linear patterns and complex surface patterns. Moreover, it is possible to reconstruct the degree of freedom of the target plane amplitude effectively and achieve a breakthrough in high information content. This high-efficiency acoustic field control capability has potential applications in ultrasound imaging, acoustic tweezers, and neuromodulation. Full article
Show Figures

Figure 1

14 pages, 4550 KiB  
Article
Tunable Acoustic Tweezer System for Precise Three-Dimensional Particle Manipulation
by Jiyun Nan, Hiep Xuan Cao, Jong-Oh Park, Eunpyo Choi and Byungjeon Kang
Micromachines 2024, 15(10), 1240; https://doi.org/10.3390/mi15101240 - 8 Oct 2024
Cited by 1 | Viewed by 1792
Abstract
This study introduces a tunable acoustic tweezer system designed for precise three-dimensional particle trapping and manipulation. The system utilizes a dual-liquid-layer acoustic lens, which enables the dynamic control of the focal length through the adjustable curvature of a latex membrane. This tunability is [...] Read more.
This study introduces a tunable acoustic tweezer system designed for precise three-dimensional particle trapping and manipulation. The system utilizes a dual-liquid-layer acoustic lens, which enables the dynamic control of the focal length through the adjustable curvature of a latex membrane. This tunability is essential for generating the acoustic forces necessary for effective manipulation of particles, particularly along the direction of acoustic wave propagation (z-axis). Experiments conducted with spherical particles as small as 1.5 mm in diameter demonstrated the system’s capability for stable trapping and manipulation. Performance was rigorously evaluated through both z-axis and 3D manipulation tests. In the z-axis experiments, the system achieved a manipulation range of 33.4–53.4 mm, with a root-mean-square error and standard deviation of 0.044 ± 0.045 mm, which highlights its precision. Further, the 3D manipulation experiments showed that particles could be accurately guided along complex paths, including multilayer rectangular and helical trajectories, with minimal deviation. A visual feedback-based particle navigation system significantly enhanced positional accuracy, reducing errors relative to open-loop control. These results confirm that the tunable acoustic tweezer system is a robust tool for applications requiring precise control of particles with diameter of 1.5 mm in three-dimensional environments. Considering its ability to dynamically adjust the focal point and maintain stable trapping, this system is well suited for tasks demanding high precision, such as targeted particle delivery and other applications involving advanced material manipulation. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 2404 KiB  
Article
Integrated Hybrid Tweezer for Particle Trapping with Combined Optical and Acoustic Forces
by Sen Li, Xin Tong, Lutong Cai and Lin Zhang
Appl. Sci. 2023, 13(19), 10673; https://doi.org/10.3390/app131910673 - 26 Sep 2023
Cited by 1 | Viewed by 1704
Abstract
We propose an on-chip integrated hybrid tweezer that can simultaneously apply optical and acoustic forces on particles to control their motions. Multiple potential wells can be formed to trap particles, and the acoustic force generated by an interdigital transducer can balance the optical [...] Read more.
We propose an on-chip integrated hybrid tweezer that can simultaneously apply optical and acoustic forces on particles to control their motions. Multiple potential wells can be formed to trap particles, and the acoustic force generated by an interdigital transducer can balance the optical force induced by an optical waveguide. For example, by driving the waveguide with an optical power of 100 mW and the interdigital transducer with a voltage of 1.466 V, the particle with a refractive index of 1.4 and a diameter of 5 μm (similar to yeast cells) can be stably trapped on the waveguide surface, and its trapping position is controllable by changing the optical power or voltage. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

9 pages, 4706 KiB  
Article
Phase-Optimized Multi-Step Phase Acoustic Metasurfaces for Arbitrary Multifocal Beamforming
by Jianxin Zhao, Xiongwei Wei, Chunlong Fei, Yi Li, Zhaoxi Li, Lifei Lou, Yi Quan and Yintang Yang
Micromachines 2023, 14(6), 1176; https://doi.org/10.3390/mi14061176 - 31 May 2023
Viewed by 2915
Abstract
Focused ultrasound featuring non-destructive and high sensitivity has attracted widespread attention in biomedical and industrial evaluation. However, most traditional focusing techniques focus on the design and improvement of single-point focusing, neglecting the need to carry more dimensions of multifocal beams. Here we propose [...] Read more.
Focused ultrasound featuring non-destructive and high sensitivity has attracted widespread attention in biomedical and industrial evaluation. However, most traditional focusing techniques focus on the design and improvement of single-point focusing, neglecting the need to carry more dimensions of multifocal beams. Here we propose an automatic multifocal beamforming method, which is implemented using a four-step phase metasurface. The metasurface composed of four-step phases improves the transmission efficiency of acoustic waves as a matching layer and enhances the focusing efficiency at the target focal position. The change in the number of focused beams does not affect the full width at half maximum (FWHM), revealing the flexibility of the arbitrary multifocal beamforming method. Phase-optimized hybrid lenses reduce the sidelobe amplitude, and excellent agreement is observed between the simulation and experiments for triple-focusing beamforming metasurface lenses. The particle trapping experiment further validates the profile of the triple-focusing beam. The proposed hybrid lens can achieve flexible focusing in three dimensions (3D) and arbitrary multipoint, which may have potential prospects for biomedical imaging, acoustic tweezers, and brain neural modulation. Full article
Show Figures

Figure 1

13 pages, 6267 KiB  
Article
Ultrasonic High-Resolution Imaging and Acoustic Tweezers Using Ultrahigh Frequency Transducer: Integrative Single-Cell Analysis
by Hayong Jung, K. Kirk Shung and Hae Gyun Lim
Sensors 2023, 23(4), 1916; https://doi.org/10.3390/s23041916 - 8 Feb 2023
Cited by 5 | Viewed by 3500
Abstract
Ultrasound imaging is a highly valuable tool in imaging human tissues due to its non-invasive and easily accessible nature. Despite advances in the field of ultrasound research, conventional transducers with frequencies lower than 20 MHz face limitations in resolution for cellular applications. To [...] Read more.
Ultrasound imaging is a highly valuable tool in imaging human tissues due to its non-invasive and easily accessible nature. Despite advances in the field of ultrasound research, conventional transducers with frequencies lower than 20 MHz face limitations in resolution for cellular applications. To address this challenge, we employed ultrahigh frequency (UHF) transducers and demonstrated their potential applications in the field of biomedical engineering, specifically for cell imaging and acoustic tweezers. The lateral resolution achieved with a 110 MHz UHF transducer was 20 μm, and 6.5 μm with a 410 MHz transducer, which is capable of imaging single cells. The results of our experiments demonstrated the successful imaging of a single PC-3 cell and a 15 μm bead using an acoustic scanning microscope equipped with UHF transducers. Additionally, the dual-mode multifunctional UHF transducer was used to trap and manipulate single cells and beads, highlighting its potential for single-cell studies in areas such as cell deformability and mechanotransduction. Full article
Show Figures

Figure 1

9 pages, 4198 KiB  
Article
Ultrahigh Frequency Ultrasonic Transducers (150MHz) Based on Silicon Lenses
by Jun Chen, Chunlong Fei, Jianxin Zhao, Yi Quan, Yecheng Wang, Zhishui Jiang and Li Wen
Micromachines 2023, 14(1), 213; https://doi.org/10.3390/mi14010213 - 14 Jan 2023
Cited by 7 | Viewed by 3073
Abstract
Acoustic microscopes and acoustic tweezers have great value in the application of microparticle manipulation, biomedical research and non-destructive testing. Ultrahigh frequency (UHF) ultrasonic transducers act as the key component in acoustic microscopes, and acoustic tweezers and acoustic lenses are essential parts of UHF [...] Read more.
Acoustic microscopes and acoustic tweezers have great value in the application of microparticle manipulation, biomedical research and non-destructive testing. Ultrahigh frequency (UHF) ultrasonic transducers act as the key component in acoustic microscopes, and acoustic tweezers and acoustic lenses are essential parts of UHF ultrasonic transducers. Therefore, the preparation of acoustic lenses is crucial. Silicon is a suitable material for preparing acoustic lenses because of its high acoustic velocity, low acoustic attenuation and excellent machinability. In previous research, silicon lenses were mainly prepared by etching. However, etching has some drawbacks. The etching of large sizes is complex, time-consuming and expensive. Furthermore, vertical etching is preferred to spherical etching. Thus, a new method of ultra-precision machining was introduced to prepare silicon lenses. In this paper, silicon lenses with an aperture of 892 μm and a depth of 252 μm were prepared. Then, UHF ultrasonic transducers with a center frequency of 157 MHz and a −6-dB bandwidth of 52% were successfully prepared based on silicon lenses. The focal distance of the transducers was 736 μm and the F-number was about 0.82. The transducers had a lateral resolution of 11 μm and could distinguish the 13 μm slots on silicon wafers clearly. Full article
Show Figures

Figure 1

14 pages, 3323 KiB  
Article
A Novel Detachable, Reusable, and Versatile Acoustic Tweezer Manipulation Platform for Biochemical Analysis and Detection Systems
by Yukai Liu, Miaomiao Ji, Yichi Zhang, Xiaojun Qiao, Nanxin Yu, Chenxi Ding, Lingxiao Yang, Rui Feng, Xiujian Chou and Wenping Geng
Biosensors 2022, 12(12), 1179; https://doi.org/10.3390/bios12121179 - 18 Dec 2022
Cited by 4 | Viewed by 2682
Abstract
Multifunctional, integrated, and reusable operating platforms are highly sought after in biochemical analysis and detection systems. In this study, we demonstrated a novel detachable, reusable acoustic tweezer manipulation platform that is flexible and versatile. The free interchangeability of different detachable microchannel devices on [...] Read more.
Multifunctional, integrated, and reusable operating platforms are highly sought after in biochemical analysis and detection systems. In this study, we demonstrated a novel detachable, reusable acoustic tweezer manipulation platform that is flexible and versatile. The free interchangeability of different detachable microchannel devices on the acoustic tweezer platform was achieved by adding a waveguide layer (glass) and a coupling layer (polydimethylsiloxane (PDMS) polymer film). We designed and demonstrated the detachable multifunctional acoustic tweezer platform with three cell manipulation capabilities. In Demo I, the detachable acoustic tweezer platform is demonstrated to have the capability for parallel processing and enrichment of the sample. In Demo II, the detachable acoustic tweezer platform with capability for precise cell alignment is demonstrated. In Demo III, it was demonstrated that the detachable acoustic tweezer platform has the capability for the separation and purification of cells. Through experiments, our acoustic tweezer platform has good acoustic retention ability, reusability, and stability. More capabilities can be expanded in the future. It provides a simple, economical, and multifunctional reusable operating platform solution for biochemical analysis and detection systems. Full article
Show Figures

Figure 1

11 pages, 4770 KiB  
Article
Fabrication and Characterization of Lead-Free BNT-6BT Ultrasonic Transducers Designed by an Intelligent Optimization Algorithm
by Junshan Zhang, Jianxin Zhao, Yi Quan, Jingrong He, Yi Li, Zhe Wang, Kun Zheng, Jian Zhuang, Zhishui Jiang, Li Wen and Wei Ren
Crystals 2022, 12(8), 1181; https://doi.org/10.3390/cryst12081181 - 22 Aug 2022
Cited by 2 | Viewed by 2765
Abstract
Lead-free piezoelectric material-based ultrasonic transducers have been researched for several years, but the inefficient properties and design difficulties have troubled lead-free ultrasonic transducers for a long time. To improve the performance and design efficiency of lead-free ultrasonic transducers, in this work, an equivalent [...] Read more.
Lead-free piezoelectric material-based ultrasonic transducers have been researched for several years, but the inefficient properties and design difficulties have troubled lead-free ultrasonic transducers for a long time. To improve the performance and design efficiency of lead-free ultrasonic transducers, in this work, an equivalent circuit model and intelligent optimization algorithm were combined for use in a transducer design. Firstly, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3(BNT-6BT) lead-free piezoelectric ceramics were prepared and characterized. Then, BNT-6BT ceramics were used to fabricate the ultrasonic transducers. An equivalent circuit model-based software, PiezoCAD, and a genetic algorithm-based back-propagation neural network were used to optimize the design of the transducers. A 3.03 MHz center frequency and 60.3% −6 dB bandwidth of the optimized transducers were achieved, which were consistent with the neural networks optimization results. To verify the application potential of the lead-free transducers, tungsten rods phantom imaging and polystyrene spheres with 300 μm diameter manipulation were completed by the transducers, and the experiment results indicate that the BNT-6BT lead-free transducers have great potential in further biological and biomedical applications. Full article
(This article belongs to the Special Issue Lead-free Ferro-/Piezoelectric Ceramics and Thin Films)
Show Figures

Graphical abstract

16 pages, 8346 KiB  
Article
Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery
by Hiep Xuan Cao, Daewon Jung, Han-Sol Lee, Van Du Nguyen, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park and Chang-Sei Kim
Pharmaceutics 2022, 14(7), 1490; https://doi.org/10.3390/pharmaceutics14071490 - 18 Jul 2022
Cited by 18 | Viewed by 3719
Abstract
Acoustic tweezers provide unique capabilities in medical applications, such as contactless manipulation of small objects (e.g., cells, compounds or living things), from nanometer-sized extracellular vesicles to centimeter-scale structures. Additionally, they are capable of being transmitted through the skin to trap and manipulate drug [...] Read more.
Acoustic tweezers provide unique capabilities in medical applications, such as contactless manipulation of small objects (e.g., cells, compounds or living things), from nanometer-sized extracellular vesicles to centimeter-scale structures. Additionally, they are capable of being transmitted through the skin to trap and manipulate drug carriers in various media. However, these capabilities are hindered by the limitation of controllable degrees of freedom (DoFs) or are limited maneuverability. In this study, we explore the potential application of acoustical tweezers by presenting a five-DoF contactless manipulation acoustic system (AcoMan). The system has 30 ultrasound transducers (UTs) with single-side arrangement that generates active traveling waves to control the position and orientation of a fully untethered nanocarrier clusters (NCs) in a spherical workspace in water capable of three DoFs translation and two DoFs rotation. In this method, we use a phase modulation algorithm to independently control the phase signal for 30 UTs and manipulate the NCs’ positions. Phase modulation and switching power supply for each UT are employed to rotate the NCs in the horizontal plane and control the amplitude of power supply to each UT to rotate the NCs in the vertical plane. The feasibility of the method is demonstrated by in vitro and ex vivo experiments using porcine ribs. A significant portion of this study could advance the therapeutic application such a system as targeted drug delivery. Full article
(This article belongs to the Special Issue Ultrasonic Technologies in Imaging and Drug Delivery)
Show Figures

Figure 1

10 pages, 2299 KiB  
Article
Single-Beam Acoustic Tweezer Prepared by Lead-Free KNN-Based Textured Ceramics
by Yi Quan, Chunlong Fei, Wei Ren, Lingyan Wang, Jinyan Zhao, Jian Zhuang, Tianlong Zhao, Zhaoxi Li, Chenxi Zheng, Xinhao Sun, Kun Zheng, Zhe Wang, Matthew Xinhu Ren, Gang Niu, Nan Zhang, Tomoaki Karaki, Zhishui Jiang and Li Wen
Micromachines 2022, 13(2), 175; https://doi.org/10.3390/mi13020175 - 25 Jan 2022
Cited by 5 | Viewed by 3410
Abstract
Acoustic tweezers for microparticle non-contact manipulation have attracted attention in the biomedical engineering field. The key components of acoustic tweezers are piezoelectric materials, which convert electrical energy to mechanical energy. The most widely used piezoelectric materials are lead-based materials. Because of the requirement [...] Read more.
Acoustic tweezers for microparticle non-contact manipulation have attracted attention in the biomedical engineering field. The key components of acoustic tweezers are piezoelectric materials, which convert electrical energy to mechanical energy. The most widely used piezoelectric materials are lead-based materials. Because of the requirement of environmental protection, lead-free piezoelectric materials have been widely researched in past years. In our previous work, textured lead-free (K, Na)NbO3 (KNN)-based piezoelectric ceramics with high piezoelectric performance were prepared. In addition, the acoustic impedance of the KNN-based ceramics is lower than that of lead-based materials. The low acoustic impedance could improve the transmission efficiency of the mechanical energy between acoustic tweezers and water. In this work, acoustic tweezers were prepared to fill the gap between lead-free piezoelectric materials research and applications. The tweezers achieved 13 MHz center frequency and 89% −6 dB bandwidth. The −6 dB lateral and axial resolution of the tweezers were 195 μm and 114 μm, respectively. Furthermore, the map of acoustic pressure measurement and acoustic radiation calculation for the tweezers supported the trapping behavior for 100 μm diameter polystyrene microspheres. Moreover, the trapping and manipulation of the microspheres was achieved. These results suggest that the KNN-based acoustic tweezers have a great potential for further applications. Full article
(This article belongs to the Special Issue Advances in Piezoelectric Sensors, Transducers and Harvesters)
Show Figures

Figure 1

8 pages, 1790 KiB  
Article
A Sensitivity-Enhanced Electrolyte-Gated Graphene Field-Effect Transistor Biosensor by Acoustic Tweezers
by Yan Chen, Wenpeng Liu, Hao Zhang, Daihua Zhang and Xiaoliang Guo
Micromachines 2021, 12(10), 1238; https://doi.org/10.3390/mi12101238 - 13 Oct 2021
Cited by 1 | Viewed by 2533
Abstract
Low-abundance biomolecule detection is very crucial in many biological and medical applications. In this paper, we present a novel electrolyte-gated graphene field-effect transistor (EGFET) biosensor consisting of acoustic tweezers to increase the sensitivity. The acoustic tweezers are based on a high-frequency bulk acoustic [...] Read more.
Low-abundance biomolecule detection is very crucial in many biological and medical applications. In this paper, we present a novel electrolyte-gated graphene field-effect transistor (EGFET) biosensor consisting of acoustic tweezers to increase the sensitivity. The acoustic tweezers are based on a high-frequency bulk acoustic resonator with thousands of MHz, which has excellent ability to concentrate nanoparticles. The operating principle of the acoustic tweezers to concentrate biomolecules is analyzed and verified by experiments. After the actuation of acoustic tweezers for 10 min, the IgG molecules are accumulated onto the graphene. The sensitivities of the EGFET biosensor with accumulation and without accumulation are compared. As a result, the sensitivity of the graphene-based biosensor is remarkably increased using SMR as the biomolecule concentrator. Since the device has advantages such as miniaturized size, low reagent consumption, high sensitivity, and rapid detection, we expect it to be readily applied to many biological and medical applications. Full article
(This article belongs to the Special Issue MEMS and Microfluidic Devices for Analytical Chemistry and Biosensing)
Show Figures

Figure 1

23 pages, 10444 KiB  
Review
Ultrasonic Particle Manipulation in Glass Capillaries: A Concise Review
by Guotian Liu, Junjun Lei, Feng Cheng, Kemin Li, Xuanrong Ji, Zhigang Huang and Zhongning Guo
Micromachines 2021, 12(8), 876; https://doi.org/10.3390/mi12080876 - 26 Jul 2021
Cited by 21 | Viewed by 13306
Abstract
Ultrasonic particle manipulation (UPM), a non-contact and label-free method that uses ultrasonic waves to manipulate micro- or nano-scale particles, has recently gained significant attention in the microfluidics community. Moreover, glass is optically transparent and has dimensional stability, distinct acoustic impedance to water and [...] Read more.
Ultrasonic particle manipulation (UPM), a non-contact and label-free method that uses ultrasonic waves to manipulate micro- or nano-scale particles, has recently gained significant attention in the microfluidics community. Moreover, glass is optically transparent and has dimensional stability, distinct acoustic impedance to water and a high acoustic quality factor, making it an excellent material for constructing chambers for ultrasonic resonators. Over the past several decades, glass capillaries are increasingly designed for a variety of UPMs, e.g., patterning, focusing, trapping and transporting of micron or submicron particles. Herein, we review established and emerging glass capillary-transducer devices, describing their underlying mechanisms of operation, with special emphasis on the application of glass capillaries with fluid channels of various cross-sections (i.e., rectangular, square and circular) on UPM. We believe that this review will provide a superior guidance for the design of glass capillary-based UPM devices for acoustic tweezers-based research. Full article
(This article belongs to the Special Issue Miniature Ultrasonic Devices and Their Applications)
Show Figures

Figure 1

13 pages, 6213 KiB  
Article
Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array
by Rafael Morales, Iñigo Ezcurdia, Josu Irisarri, Marco A. B. Andrade and Asier Marzo
Appl. Sci. 2021, 11(7), 2981; https://doi.org/10.3390/app11072981 - 26 Mar 2021
Cited by 34 | Viewed by 16758
Abstract
Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative [...] Read more.
Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms. Full article
(This article belongs to the Special Issue Holography in Acoustics and Ultrasonics)
Show Figures

Figure 1

18 pages, 5564 KiB  
Article
Classification of Breast Cancer Cells Using the Integration of High-Frequency Single-Beam Acoustic Tweezers and Convolutional Neural Networks
by Hae Gyun Lim, O-Joun Lee, K. Kirk Shung, Jin-Taek Kim and Hyung Ham Kim
Cancers 2020, 12(5), 1212; https://doi.org/10.3390/cancers12051212 - 12 May 2020
Cited by 23 | Viewed by 4279
Abstract
Single-beam acoustic tweezers (SBAT) is a widely used trapping technique to manipulate microscopic particles or cells. Recently, the characterization of a single cancer cell using high-frequency (>30 MHz) SBAT has been reported to determine its invasiveness and metastatic potential. Investigation of cell elasticity [...] Read more.
Single-beam acoustic tweezers (SBAT) is a widely used trapping technique to manipulate microscopic particles or cells. Recently, the characterization of a single cancer cell using high-frequency (>30 MHz) SBAT has been reported to determine its invasiveness and metastatic potential. Investigation of cell elasticity and invasiveness is based on the deformability of cells under SBAT’s radiation forces, and in general, more physically deformed cells exhibit higher levels of invasiveness and therefore higher metastatic potential. However, previous imaging analysis to determine substantial differences in cell deformation, where the SBAT is turned ON or OFF, relies on the subjective observation that may vary and requires follow-up evaluations from experts. In this study, we propose an automatic and reliable cancer cell classification method based on SBAT and a convolutional neural network (CNN), which provides objective and accurate quantitative measurement results. We used a custom-designed 50 MHz SBAT transducer to obtain a series of images of deformed human breast cancer cells. CNN-based classification methods with data augmentation applied to collected images determined and validated the metastatic potential of cancer cells. As a result, with the selected optimizers, precision, and recall of the model were found to be greater than 0.95, which highly validates the classification performance of our integrated method. CNN-guided cancer cell deformation analysis using SBAT may be a promising alternative to current histological image analysis, and this pretrained model will significantly reduce the evaluation time for a larger population of cells. Full article
(This article belongs to the Special Issue Innovations in Cancer Diagnostic Evaluation and Biomarker Detection)
Show Figures

Graphical abstract

Back to TopTop