Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = acoustic travelling-wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3371 KiB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 299
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

25 pages, 2486 KiB  
Article
Influence of Intense Internal Waves Traveling Along an Acoustic Path on Source Holographic Reconstruction in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(8), 1409; https://doi.org/10.3390/jmse13081409 - 24 Jul 2025
Viewed by 316
Abstract
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The [...] Read more.
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The presence of IIWs introduces inhomogeneities into the waveguide and causes significant mode coupling, which perturbs the received sound field. This paper proposes the use of holographic signal processing (HSP) to eliminate perturbations in the received signal caused by mode coupling due to IIWs. Within the HSP framework, we examine the interferogram (the received sound intensity distribution in the frequency–time domain) and the hologram (the two-dimensional Fourier transform of the interferogram) of a moving source in the presence of space–time inhomogeneities caused by IIWs. A key finding is that under the influence of IIWs, the hologram is divided into two regions that correspond to the unperturbed and perturbed components of the sound field. This hologram structure enables the extraction and reconstruction of the interferogram corresponding to the unperturbed field as it would appear in a shallow-water waveguide without IIWs. Numerical simulations of HSP application under the realistic conditions of the SWARM’95 experiment were carried out for stationary and moving sources. The results demonstrate the high efficiency of holographic reconstruction of the unperturbed sound field. Unlike matched field processing (MFP), HSP does not require prior knowledge of the propagation environment. These research results advance signal processing methods in underwater acoustics by introducing efficient HSP methods for environments with spatiotemporal inhomogeneities. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 450
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

20 pages, 5499 KiB  
Article
Characterization of Acoustic Source Signal Response in Oxidized Autocombusted Coal Temperature Inversion Experiments
by Jun Guo, Wenjing Gao, Yin Liu, Guobin Cai and Kaixuan Wang
Fire 2025, 8(7), 264; https://doi.org/10.3390/fire8070264 - 3 Jul 2025
Viewed by 571
Abstract
The measurement error of sound travel time, one of the most critical parameters in acoustic temperature measurement, is significantly affected by the type of sound source signal. In order to select more appropriate sound source signals, a sound source signal preference study of [...] Read more.
The measurement error of sound travel time, one of the most critical parameters in acoustic temperature measurement, is significantly affected by the type of sound source signal. In order to select more appropriate sound source signals, a sound source signal preference study of loose coal acoustic temperature measurement was performed and is described herein. The results showed that the absolute error of the swept signal and the pseudo-random signal both increased with increased acoustic wave propagation distance. The relative error of the swept signal showed a relatively stable upward trend; in comparison, the pseudo-random signal showed a general decrease with a large fluctuation in the middle section, and both the relative and absolute errors for the pseudo-random signal were larger than those of the swept signal. Therefore, the swept signal is expected to perform better than the pseudo-random signal in the loose coal medium. Based on the experimental results, the linear sweep signal was selected as the sound source signal for the loose coal temperature inversion experiments: the average error between the inverted temperature value and the actual value was 4.86%, the maximum temperature difference was 2.926 °C, and the average temperature difference was 1.5949 °C. Full article
(This article belongs to the Special Issue Coal Fires and Their Impact on the Environment)
Show Figures

Figure 1

16 pages, 4266 KiB  
Article
Leak Identification and Positioning Strategies for Downhole Tubing in Gas Wells
by Yun-Peng Yang, Guo-Hua Luan, Lian-Fang Zhang, Ming-Yong Niu, Guang-Gui Zou, Xu-Liang Zhang, Jin-You Wang, Jing-Feng Yang and Mo-Song Li
Processes 2025, 13(6), 1708; https://doi.org/10.3390/pr13061708 - 29 May 2025
Viewed by 502
Abstract
Accurate detection of downhole tubing leakage in gas wells is essential for planning effective repair operations and mitigating safety risks in annulus pressure buildup wells. Current localization methods employ autocorrelation analysis to exploit the time-delay features of acoustic signals traveling through the tubing–casing [...] Read more.
Accurate detection of downhole tubing leakage in gas wells is essential for planning effective repair operations and mitigating safety risks in annulus pressure buildup wells. Current localization methods employ autocorrelation analysis to exploit the time-delay features of acoustic signals traveling through the tubing–casing annulus. This allows non-invasive wellhead detection, avoiding costly tubing retrieval or production shutdowns. However, field data show that multiphase flow noise, overlapping reflected waves, and coupled multi-leakage points in the wellbore frequently introduce multi-peak interference in acoustic autocorrelation curves. Such interference severely compromises the accuracy of time parameter extraction. To resolve this issue, our study experimentally analyzes how leakage pressure differential, aperture size, depth, and multiplicity affect the autocorrelation coefficients of acoustic signals generated by leaks. It compares the effects of different noise reduction parameters on leakage localization accuracy and proposes a characteristic time selection principle for autocorrelation curves, providing a new solution for precise leakage localization under complex downhole conditions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 2796 KiB  
Article
Determining Offshore Ocean Significant Wave Height (SWH) Using Continuous Land-Recorded Seismic Data: An Example from the Northeast Atlantic
by Samaneh Baranbooei, Christopher J. Bean, Meysam Rezaeifar and Sarah E. Donne
J. Mar. Sci. Eng. 2025, 13(4), 807; https://doi.org/10.3390/jmse13040807 - 18 Apr 2025
Viewed by 658
Abstract
Long-term continuous and reliable real-time ocean wave height data are important for climatologists, offshore industries, leisure craft users, and marine forecasters. However, maintaining data continuity and reliability is challenging due to offshore equipment failures and sparse in situ observations. Opposing interactions between wind-driven [...] Read more.
Long-term continuous and reliable real-time ocean wave height data are important for climatologists, offshore industries, leisure craft users, and marine forecasters. However, maintaining data continuity and reliability is challenging due to offshore equipment failures and sparse in situ observations. Opposing interactions between wind-driven ocean waves generate acoustic waves near the ocean surface, which can convert to seismic waves at the seafloor and travel through the Earth’s solid structure. These low-frequency seismic waves, known as secondary microseisms, are clearly recorded on terrestrial seismometers offering land-based access to ocean wave states via seismic ground vibrations. Here, we demonstrate the potential of this by estimating ocean Significant Wave Heights (SWHs) in the Northeast Atlantic using continuous recordings from a land-based seismic network in Ireland. Our method involves connecting secondary microseism amplitudes with the ocean waves that generate them, using an Artificial Neural Network (ANN) to quantify the relationship. Time series data of secondary microseism amplitudes together with buoy-derived and numerical model ocean significant wave heights are used to train and test the ANN. Application of the ANN to previously unseen data yields SWH estimates that closely match in situ buoy observations, located approximately 200 km offshore, Northwest of Ireland. Terrestrial seismic data are relatively cheap to acquire, with reliable weather-independent data streams. This suggests a pathway to a complementary, exceptionally cost-effective, data-driven approach for future operational applications in real-time SWH determination. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

14 pages, 3882 KiB  
Article
Acoustic Losses in Cryogenic Hydrogen at Transitions Between Tubes of Different Diameters
by Kian Conroy and Konstantin I. Matveev
Hydrogen 2025, 6(2), 25; https://doi.org/10.3390/hydrogen6020025 - 14 Apr 2025
Viewed by 785
Abstract
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions [...] Read more.
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities. Full article
Show Figures

Figure 1

17 pages, 4847 KiB  
Article
Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading
by Katsumi Tsuchiya and Xiaolu Wang
Fluids 2025, 10(4), 89; https://doi.org/10.3390/fluids10040089 - 1 Apr 2025
Viewed by 532
Abstract
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation [...] Read more.
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation frequency, acoustic strength or input power density, and the presence/absence of a “stabilizing” nozzle. High-speed, high-resolution imaging made it possible to qualitatively identify four representative transitions/demarcations: (1) the onset of a protrusion on otherwise flat free surface; (2) the appearance of undulation along the growing protuberance; (3) the triggering of emanating beads fountain out of this foundation-like region; and (4) the induction of droplets bursting and/or mist spreading. Quantitatively examined were the two-parameters specifications—on the degrees as well as induction—of the periodicity in the protrusion-surface and beads-fountain oscillations, detected over wider ranges of driving/excitation frequency (0.43–3.0 MHz) and input power density (0.5–10 W/cm2) applied to the ultrasound transducer of flat surface on which the nozzle was either mounted or not. The resulting time sequence of images processed for the extended operating ranges, regarding the fountain structure pertaining, in particular, to recurring beads, confirms the wave-associated nature, i.e., their size “scalability” to the ultrasound wavelength, predictable from the traveling wave relationship. The thresholds in acoustic conditions for each of the four transition states of the fountain structure have been identified—notably, the onset of plausible “bifurcation” in the chain-beads’ diameter below a critical excitation frequency. Full article
(This article belongs to the Special Issue Advances in Multiphase Flow Science and Technology, 2nd Edition)
Show Figures

Graphical abstract

31 pages, 17297 KiB  
Article
Construction of the Closed Form Wave Solutions for TFSMCH and (1 + 1) Dimensional TFDMBBM Equations via the EMSE Technique
by Md. Asaduzzaman and Farhana Jesmin
Fractal Fract. 2025, 9(2), 72; https://doi.org/10.3390/fractalfract9020072 - 24 Jan 2025
Cited by 1 | Viewed by 1238
Abstract
The purpose of this study is to investigate a series of novel exact closed form traveling wave solutions for the TFSMCH equation and (1 + 1) dimensional TFDMBBM equation using the EMSE technique. The considered FONLEEs are used to delineate the characteristic of [...] Read more.
The purpose of this study is to investigate a series of novel exact closed form traveling wave solutions for the TFSMCH equation and (1 + 1) dimensional TFDMBBM equation using the EMSE technique. The considered FONLEEs are used to delineate the characteristic of diffusion in the creation of shapes in liquid beads arising in plasma physics and fluid flow and to estimate the external long waves in nonlinear dispersive media. These equations are also used to characterize various types of waves, such as hydromagnetic waves, acoustic waves, and acoustic gravity waves. Here, we utilize the Caputo-type fractional order derivative to fractionalize the considered FONLEEs. Some trigonometric and hyperbolic trigonometric functions have been used to represent the obtained closed form traveling wave solutions. Furthermore, here, we reveal that the EMSE technique is a suitable, significant, and dominant mathematical tool for finding the exact traveling wave solutions for various FONLEEs in mathematical physics. We draw some 3D, 2D, and contour plots to describe the various wave behaviors and analyze the physical consequence of the attained solutions. Finally, we make a numerical comparison of our obtained solutions and other analogous solutions obtained using various techniques. Full article
Show Figures

Figure 1

15 pages, 5253 KiB  
Article
Interface Acoustic Waves in 128° YX-LiNbO3/SU-8/Overcoat Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà, Farouk Laidoudi and Gaetana Petrone
Micromachines 2025, 16(1), 99; https://doi.org/10.3390/mi16010099 - 16 Jan 2025
Cited by 2 | Viewed by 1433
Abstract
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO3/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software [...] Read more.
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO3/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO3/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO3, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO3 half-space. The numerical predictions were experimentally assessed for some SU-8 layer thicknesses and overcoat material types. The propagation of the IAWs was experimentally measured in LiNbO3/SU-8/fused silica, LiNbO3/SU-8/(001)Si, and LiNbO3/SU-8/c-Al2O3 structures for an SU-8 layer about 15 µm thick; the velocities of the IAWs were found in good agreement with the theoretically calculated values. Although the interest in IAWs was born many years ago for packageless applications, it can currently be renewed if thought for applications in microfluidics. Indeed, the IAWs may represent a valid alternative to standing SAWs, which are strongly attenuated when travelling beneath the walls of polydimethylsiloxane (PDMS) microfluidic channels for continuous flow particle manipulation, provided that the channel is excavated into the overcoating. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

19 pages, 1696 KiB  
Article
Near-Field Aeroacoustics of Spanwise Forcing on a Transonic Wing: A DNS Study
by Niccolò Berizzi, Davide Gatti, Giulio Soldati, Sergio Pirozzoli and Maurizio Quadrio
Appl. Sci. 2025, 15(2), 814; https://doi.org/10.3390/app15020814 - 15 Jan 2025
Viewed by 945
Abstract
The transonic airflow around a supercritical wing with a shock wave is described via direct numerical simulations. Flow control for turbulent drag reduction is applied via streamwise traveling waves of spanwise velocity applied on a finite portion of the suction side. The near-field [...] Read more.
The transonic airflow around a supercritical wing with a shock wave is described via direct numerical simulations. Flow control for turbulent drag reduction is applied via streamwise traveling waves of spanwise velocity applied on a finite portion of the suction side. The near-field modifications caused by the forcing are studied via the analysis of the wake profile downstream of the trailing edge. Moreover, for the first time, the effects of spanwise forcing on aeroacoustic noise are considered to establish whether active flow control for drag reduction could possibly increase noise. By extracting the acoustic signals on a circumference placed in the near-field around the wing and by studying them in terms of sound intensity and frequency content, it is found that noise intensity is not significantly increased by spanwise forcing and that frequency content is only minimally altered. Furthermore, if the angle of attack is reduced to take into account the increased lift and the reduced drag made possible by the control action, changes in the noise characteristics become negligible. Full article
(This article belongs to the Special Issue Computational Active Flow and Noise Control)
Show Figures

Figure 1

13 pages, 1235 KiB  
Article
Features of Generation, Propagation and Application of Special Ultrasonic Impulses in Viscous Liquids
by Oleg M. Gradov
Math. Comput. Appl. 2024, 29(6), 121; https://doi.org/10.3390/mca29060121 - 18 Dec 2024
Viewed by 678
Abstract
An exact numerical and approximate analytical description of solitary acoustic pulses with a large difference in spatial gradients of parameters in different directions has been obtained in viscous liquids using this small parameter. The method of special initial-boundary conditions obtained during analyzing the [...] Read more.
An exact numerical and approximate analytical description of solitary acoustic pulses with a large difference in spatial gradients of parameters in different directions has been obtained in viscous liquids using this small parameter. The method of special initial-boundary conditions obtained during analyzing the hydrodynamic equations has been applied to describe the peculiarities of this nonlinear phenomenon. Waves of this type exist in the presence of two- or three-dimensional inhomogeneity of the initial disturbances and retain a spatial structure along the direction of propagation when traveling long distances. At the same time, it is possible to regulate the pressure drop and the speed of the acoustic signal, which creates unique conditions for a special force effect or information transmission. The efficiency of their use in such processes as metal dissolution, solvent extraction and mass transfer under the conditions of resonance exposure of ultrasound was evaluated. Fine details of exciting the nonlinear impulse with the necessary properties have been analyzed to demonstrate a possible way to a new technology of successfully treating any different specimens, materials and constructions for a long distance between the source of radiation and the position of the treatment. The use of such pulses opens up new opportunities for remote acoustic force impact on various objects, as well as for the transmission of information. Full article
Show Figures

Figure 1

17 pages, 8620 KiB  
Article
Unique Characteristics of Pulse-Echo Sensing Systems for Ultrasonic Immersion Testing in Harsh Environments
by Gaofeng Sha, Andrew R. Bozek, Bernhard R. Tittmann and Cliff J. Lissenden
Sensors 2024, 24(23), 7748; https://doi.org/10.3390/s24237748 - 4 Dec 2024
Viewed by 1136
Abstract
Ultrasound is an excellent way to acquire data that reveal useful information about systems operating in harsh environments, which may include elevated temperature, ionizing radiation, and aggressive chemicals. The effects of harsh environments on piezoelectric materials have been studied in much more depth [...] Read more.
Ultrasound is an excellent way to acquire data that reveal useful information about systems operating in harsh environments, which may include elevated temperature, ionizing radiation, and aggressive chemicals. The effects of harsh environments on piezoelectric materials have been studied in much more depth than the other aspects of ultrasonic transducers used in pulse-echo mode. Therefore, finite element simulations and laboratory experiments are used to demonstrate the unique characteristics of pulse-echo immersion testing. Using an aluminum nitride piezoelectric element mounted on a vessel wall, characteristics associated with electrode thickness, couplant, backing material, and an acoustic matching layer are investigated. Considering a wave path through a vessel wall and into a fluid containing a target, when the travel distance in the fluid is relatively short, it can be difficult to discern the target echo from the reverberations in the vessel wall. When an acoustic matching layer between the vessel wall and the fluid does not suffice, a simple subtractive signal-processing method can minimize the reverberations, leaving just the target echoes of interest. Simulations and experiments demonstrate that sufficient target echoes are detected to determine the time of flight. Furthermore, a simple disc-like surface anomaly on the target is detectable. Full article
Show Figures

Figure 1

19 pages, 10323 KiB  
Article
Numerical Modeling of Scholte Wave in Acoustic-Elastic Coupled TTI Anisotropic Media
by Yifei Chen and Deli Wang
Appl. Sci. 2024, 14(18), 8302; https://doi.org/10.3390/app14188302 - 14 Sep 2024
Cited by 1 | Viewed by 1225
Abstract
Numerical modeling of acoustic-elastic media is helpful for seismic exploration in the deepwater environment. We propose an algorithm based on the staggered grid finite difference to simulate wave propagation in the interface between fluid and transversely isotropic media, where the interface does not [...] Read more.
Numerical modeling of acoustic-elastic media is helpful for seismic exploration in the deepwater environment. We propose an algorithm based on the staggered grid finite difference to simulate wave propagation in the interface between fluid and transversely isotropic media, where the interface does not need to consider the boundary condition. We also derive the stability conditions of the proposed method. Scholte waves, which are generated at the seafloor, exhibit distinctly different propagation behaviors than body waves in ocean-bottom seismograms. Numerical examples are used to characterize the wavefield of Scholte waves and discuss the relationship between travel time and the Thomsen parameters. Thomsen parameters are assigned clear physical meanings, and the magnitude of their values directly indicates the strength of the anisotropy in the media. Numerical results show that the velocity of the Scholte wave is positively correlated with ε and negatively correlated with δ. And the curve of the arrival time of the Scholte wave as a whole is sinusoidal and has no symmetry in inclination. The velocity of the Scholte wave in azimuth is positively related to the polar angle. The energy of the Scholte wave is negatively correlated with the distance from the source to the fluid-solid interface. The above results provide a basis for studying oceanic Scholte waves and are beneficial for utilizing the information provided by Scholte waves. Full article
Show Figures

Figure 1

14 pages, 3178 KiB  
Article
Separation of Microplastics from Blood Samples Using Traveling Surface Acoustic Waves
by Pedro Mesquita, Yang Lin, Liyuan Gong and Daniel Schwartz
Microplastics 2024, 3(3), 449-462; https://doi.org/10.3390/microplastics3030028 - 2 Aug 2024
Cited by 3 | Viewed by 4622
Abstract
Microplastics have emerged as ubiquitous contaminants, attracting increasing global attention. Recent evidence confirms the presence of microplastics in human blood, suggesting their potential to interact with cells and induce adverse physiological reactions in various organs as blood circulates. To quantify the distribution of [...] Read more.
Microplastics have emerged as ubiquitous contaminants, attracting increasing global attention. Recent evidence confirms the presence of microplastics in human blood, suggesting their potential to interact with cells and induce adverse physiological reactions in various organs as blood circulates. To quantify the distribution of microplastics and assess their potential effects on human health, the effective separation of microplastics from blood is crucial. However, current methods for separating microplastics from blood are limited in effectiveness and simplicity. This study proposes a microfluidic device that utilizes traveling surface acoustic waves to separate microplastics from blood. While traveling surface acoustic waves have been employed to separate various particles, a systematic study on the separation of microplastics from blood samples has not been previously reported. Specifically, the theoretical values of the acoustic radiation factor for various types of microplastics and blood cells were investigated. The significant differences in resonant frequencies indicated the feasibility of separating microplastics of different sizes and types from blood cells. Experimental validation was performed using a polydimethylsiloxane microfluidic device on a piezoelectric lithium niobate substrate. The device successfully separated 5- and 10-micrometer polystyrene microplastics from blood samples. The effects of power and flow rate on separation efficiency were also systematically investigated. This study provides a novel approach for the effective separation of microplastics from blood, contributing to the assessment of their distribution and potential health impacts. Full article
Show Figures

Figure 1

Back to TopTop