Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = acidic oligopeptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4387 KB  
Article
Enzymatic Hydrolysis-Assisted Separation and Purification of High F-Value Oligopeptides from Sea Cucumbers and Their Anti-Fatigue Mechanism
by Xin Mu, Xinxin Yang, Jian Jiao, Ming Du and Zhenyu Wang
Mar. Drugs 2026, 24(1), 10; https://doi.org/10.3390/md24010010 - 23 Dec 2025
Viewed by 443
Abstract
Sea cucumber peptides have been shown to possess a number of functions, including antioxidant, anti-inflammatory, anti-tumor, and anti-fatigue effects, as well as immune regulation and promotion of collagen synthesis. Among these, high F-value oligopeptides are a promising natural active ingredient demonstrating excellent anti-fatigue [...] Read more.
Sea cucumber peptides have been shown to possess a number of functions, including antioxidant, anti-inflammatory, anti-tumor, and anti-fatigue effects, as well as immune regulation and promotion of collagen synthesis. Among these, high F-value oligopeptides are a promising natural active ingredient demonstrating excellent anti-fatigue effects. This study utilized fresh sea cucumbers as the primary raw material, employing membrane separation technology to investigate the simultaneous separation of sea cucumber polysaccharides and peptides. The process for removing aromatic amino acids during the preparation of high F-value oligopeptides from sea cucumbers was optimized, and the mechanism underlying their anti-fatigue effects was explored. A two-step enzymatic hydrolysis method using neutral protease and composite flavor protease was employed, followed by membrane separation using a 10,000 Da molecular weight ultrafiltration membrane, yielding a sea cucumber peptide yield of 45.00 ± 0.12% and a sea cucumber polysaccharide yield of 51.28 ± 0.63%. Following the removal of aromatic amino acids by means of activated carbon adsorption, the F-value of the high-F-value oligopeptides attained 23.82, with a yield of 24.56%. The experimental findings demonstrated that high-F-value oligopeptides exhibited a substantial increase in the swimming duration of mice and a notable enhancement in their grip strength. These observations signified their substantial anti-fatigue potential. Furthermore, studies have indicated that sea cucumber high-F-value oligopeptides reduce metabolites produced by exercise, enhance muscle protection, increase the activity of antioxidant enzymes in the body, and alleviate fatigue, thereby achieving an anti-fatigue effect. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

25 pages, 2302 KB  
Article
Metabolomic Profiling of Commercial Tomato Puree by One-Shot Mass Spectrometry-Based Analysis: A Qualitative Perspective
by Antonella Lamonaca, Elisabetta De Angelis and Rosa Pilolli
Metabolites 2025, 15(11), 732; https://doi.org/10.3390/metabo15110732 - 9 Nov 2025
Viewed by 727
Abstract
Tomato is one of the most important vegetable crops worldwide, with about one quarter of the yearly production of fresh fruits dispatched to the processing industry. Paste, canned tomatoes, and sauces represent the three leading categories. Background/Objectives: The metabolic profile of processed [...] Read more.
Tomato is one of the most important vegetable crops worldwide, with about one quarter of the yearly production of fresh fruits dispatched to the processing industry. Paste, canned tomatoes, and sauces represent the three leading categories. Background/Objectives: The metabolic profile of processed tomatoes can be modified by several production steps, affecting the nutritional and sensory profile of the finished product. Despite this, a detailed metabolomic profiling of transformed tomatoes is currently missing. The goal of this investigation is to provide qualitative metabolomic profiling of tomato purees with two main advances: first, the use of a more sustainable analytical approach based on a single extraction protocol and one-shot analysis for multiple information retrieval on different compound classes; second, the achievement of a curated database consolidated over a wide collection of commercial samples representative of the Italian market. Methods: A non-selective ethanol extraction was applied to collect the main polar metabolites followed by untargeted high-resolution MS/MS analysis and software-based compound identification. Results: A list of more than five hundred features was collected and assigned to specific compounds or compound groups with different confidence levels. The results confirmed the persistence in processed tomatoes of the main primary and secondary metabolites already reported in fresh fruits, such as essential amino acids, sugar, organic acids, vitamins, fatty acyls, and phytohormones. Moreover, new insight on specific components never traced before in similar finished samples is provided. Bioactive compounds were detected in all samples, such as oligopeptides with ACE-inhibitor activity, ɣ-aminobutyric acid, alkaloids, and polyphenols (flavonoids, coumarins, and cinnamic acids). Many of these compounds have antioxidant activities, proving the relevance of transformed tomatoes as a source of health-promoting compounds for the human diet. Conclusions: A detailed metabolic profile of commercial tomato puree samples was obtained, and a curated database of metabolites was compiled, which can be useful for multiple purposes, for example, authentication, quality, or nutritional assessments. Full article
Show Figures

Graphical abstract

15 pages, 2689 KB  
Article
Update on the Research of an Emulgel for the Effective Treatment of Atopic Dermatitis: Clinical Investigation in Children
by Almudena Gómez-Farto, Ana Leticia Jiménez-Escobar, Noelia Pérez-González, Amy Lozano-White, Jésica Expósito-Herrera, Trinidad Montero-Vílchez, Beatriz Clares and Salvador Arias-Santiago
Gels 2025, 11(11), 880; https://doi.org/10.3390/gels11110880 - 2 Nov 2025
Viewed by 1492
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition that affects up to 25% of children and impairs both skin barrier function and quality of life. This study examined the effectiveness of an emulgel containing hyaluronic acid, glycerol, grape seed oil, Calendula officinalis [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin condition that affects up to 25% of children and impairs both skin barrier function and quality of life. This study examined the effectiveness of an emulgel containing hyaluronic acid, glycerol, grape seed oil, Calendula officinalis, aloe vera and sh-oligopeptide-1 (a synthetic Epidermal Growth Factor) for treating paediatric AD. In a randomised, self-controlled trial, 57 children (aged 2–14) applied the emulgel twice daily for 10 days to one forearm and left the other forearm as a control. Skin barrier parameters such as transepidermal water loss (TEWL), stratum corneum hydration (SCH), erythema and pH were measured. After applying the emulgel, lesional skin showed reduced erythema (p = 0.007), lower TEWL (p = 0.002) and higher SCH (p < 0.001). Non-lesional skin showed improved SCH (p < 0.001). SCORing Atopic Dermatitis (SCORAD) and Eczema Area and Severity Index (EASI) scores indicated milder disease post-treatment (mild cases: 64.9% to 80.7% SCORAD; 82.5% to 93.0%EASI). The Dermatology Life Quality Index improved by ~3.5 points, and patients reported high satisfaction with no adverse effects. This emulgel is an effective and well-tolerated adjunctive therapy for paediatric AD, enhancing barrier function and clinical outcomes. Full article
(This article belongs to the Special Issue Biobased Gels for Drugs and Cells)
Show Figures

Figure 1

21 pages, 19381 KB  
Article
Insights into Microbial and Metabolite Profiles in Traditional Northern Thai Fermented Soybean (Tuanao) Fermentation Through Metagenomics and Metabolomics
by Sivamoke Dissook, Patcharawadee Thongkumkoon, Pitiporn Noisagul, Chanenath Sriaporn, Sirikunlaya Suwannapat, Weeraya Pramoonchakko, Manida Suksawat, Thanaporn Kulthawatsiri, Jutarop Phetcharaburanin, Teera Chewonarin and Jetsada Ruangsuriya
Foods 2025, 14(17), 3070; https://doi.org/10.3390/foods14173070 - 30 Aug 2025
Cited by 1 | Viewed by 3236
Abstract
Tuanao, a traditional Northern Thai fermented soybean product, was profiled with an integrated multi-omics workflow to clarify how microbes and metabolites co-evolve during household fermentation. Soybeans were fermented spontaneously for three days; samples from four time points were analyzed by shotgun metagenomics alongside [...] Read more.
Tuanao, a traditional Northern Thai fermented soybean product, was profiled with an integrated multi-omics workflow to clarify how microbes and metabolites co-evolve during household fermentation. Soybeans were fermented spontaneously for three days; samples from four time points were analyzed by shotgun metagenomics alongside 1H-NMR and UHPLC-ESI-QTOF-MS/MS metabolomics. Bacillus spp. (phylum Bacilliota) quickly supplanted early Enterobacterales and dominated the mature microbiome. The rise of Bacillus coincided with genes for peptide and carbohydrate utilization and with the accumulation of acetate, free amino acids (glutamine, leucine, alanine, valine) and diverse oligopeptides, whereas citrate and glucose-1-phosphate were depleted. This Bacillus-linked metabolic shift indicates that Tuanao is a promising source of probiotics and bioactive compounds. Our study provides the first system-level view of Tuanao fermentation and offers molecular markers to guide starter-culture design and quality control. Full article
Show Figures

Figure 1

20 pages, 2996 KB  
Article
Widely Targeted Metabolomics Analysis Reveals Developmental Shifts in Antioxidants and Functional Peptides in Akebia trifoliata
by Tianjiao Jia, Mian Faisal Nazir, Edgar Manuel Bovio-Zenteno, Longyu Dai, Jie Xu, Yafang Zhao and Shuaiyu Zou
Antioxidants 2025, 14(9), 1039; https://doi.org/10.3390/antiox14091039 - 24 Aug 2025
Viewed by 1272
Abstract
Akebia trifoliata is an emerging fruit crop in China, valued for its medicinal and nutritional properties. To elucidate the developmental dynamics of its bioactive compounds, we performed widely targeted metabolomics using Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) across four fruit developmental stages [...] Read more.
Akebia trifoliata is an emerging fruit crop in China, valued for its medicinal and nutritional properties. To elucidate the developmental dynamics of its bioactive compounds, we performed widely targeted metabolomics using Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) across four fruit developmental stages (S1–S4). A total of 1595 metabolites were identified, of which 988 were differentially accumulated and categorized into three distinct accumulation patterns. Flavonoids and phenolic acids exhibited a marked decline during fruit maturation, corresponding with decreasing antioxidant and α-glucosidase inhibitory activities. Conversely, functional oligopeptides and specific terpenoids accumulated significantly at later stages. K-means clustering revealed dynamic shifts in metabolic profiles, and 23 functional oligopeptides with antioxidative, antidiabetic, and ACE-inhibitory activities (angiotensin-converting enzyme, ACE) were predicted. KEGG enrichment highlighted stage-specific pathway transitions from flavonoid biosynthesis during early development to sugar metabolism at ripening. Correlation analysis identified key flavonoids, phenolic acids, and amino acid derivatives associated with antioxidant capacity and α-glucosidase inhibition. This study provides comprehensive metabolomic landscape of A. trifoliata fruit development and offers valuable insights for its functional exploitation in food and medicinal applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

25 pages, 18172 KB  
Article
Sea Cucumber Egg Oligopeptides Ameliorate Cognitive Impairments and Pathology of Alzheimer’s Disease Through Regulating HDAC3 and BDNF/NT3 via the Microbiota–Gut–Brain Axis
by Guifeng Zhang, Yanjie Dou, Huiwen Xie, Dan Pu, Longxing Wang, Renjun Wang and Xiaofei Han
Nutrients 2025, 17(14), 2312; https://doi.org/10.3390/nu17142312 - 14 Jul 2025
Viewed by 1898
Abstract
Background: Oligopeptides from sea cucumber eggs (SCEPs) are rarely studied for their neuroprotective effects. Methods: Therefore, we prepared SCEPs via simulated gastrointestinal digestion and then administered them to an Alzheimer’s disease (AD) mouse model via gavage. Behavior tests, gut–brain histopathology and fecal microbiota [...] Read more.
Background: Oligopeptides from sea cucumber eggs (SCEPs) are rarely studied for their neuroprotective effects. Methods: Therefore, we prepared SCEPs via simulated gastrointestinal digestion and then administered them to an Alzheimer’s disease (AD) mouse model via gavage. Behavior tests, gut–brain histopathology and fecal microbiota transplantation (FMT) experiments were conducted, and gut microbiota and metabolite short-chain fatty acids (SCFAs) were evaluated via 16sRNA gene sequencing and LC-MS. Results: The results showed that both the SCEP and FMT groups experienced improvements in the cognitive impairments of AD and showed reduced levels of Aβ, P-Tau, GFAP, and NFL in the brain, especially in the hippocampus. SCEP remodeled the gut microbiota, increasing the relative abundances of Turicibacter and Lactobacillus by 2.7- and 4.8-fold compared with the model at the genus level. In the SCEP and FMT treatments, four SCFA-producing bacteria obtained from gut microbiota profiling showed consistent trends, indicating that they may be involved in mediating the neuroprotective effects of SCEP. Mechanically, SCEP regulated the SCFA distribution in feces, blood, and the brain, greatly increased the content of SCFAs in the brain up to 2000 μg/mg, eased gut–brain barrier dysfunction, inhibited HDAC3 overexpression, and upregulated BDNF/NT3 levels. Conclusions: This study provides a promising candidate for preventing AD and a reference for applying SCEP. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

20 pages, 2401 KB  
Article
Catabolism Mechanism and Growth-Promoting Effect of Xylooligosaccharides in Lactiplantibacillus plantarum Strain B20
by Yini Shi, Huan Wang, Zhongke Sun, Zifu Ni and Chengwei Li
Fermentation 2025, 11(5), 280; https://doi.org/10.3390/fermentation11050280 - 13 May 2025
Cited by 1 | Viewed by 1521
Abstract
Prebiotics are food ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefits upon host health. Xylooligosaccharides (XOS) are prebiotic fibers made from xylan. Commercial XOS are mixtures of oligosaccharides containing β-1,4–linked xylose residues. Though [...] Read more.
Prebiotics are food ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefits upon host health. Xylooligosaccharides (XOS) are prebiotic fibers made from xylan. Commercial XOS are mixtures of oligosaccharides containing β-1,4–linked xylose residues. Though they are widely added to foods at different doses, the molecular mechanisms of the catabolism and growth promotion of XOS in the innate gut microbes Lactobacillus spp. remain unknown. In this study, we evaluated the growth-promoting effect using a human fecal isolate, Lactiplantibacillus plantarum strain B20 (Lb. plantarum B20). Assays of bacterial growth and lactic acid production showed stronger growth promotion of XOS than other oligosaccharides did, in a dose- and fraction-dependent pattern. Using the Lb. plantarum strain SK151 genome as a reference, bioinformatic analysis failed to identify any previously characterized genes responsible for the uptake and catabolism of XOS. However, transcriptomic analysis of Lb. plantarum B20 yielded numerous differentially expressed genes (DEGs) during fermentation of XOS. Among these, an oligopeptide ABC transporter (RS03575-03595, composed of five proteins) and a hydrolase (RS06170) were significantly upregulated. Molecular docking analysis indicated that the substrate-binding protein RS03575 may mediate the import of XOS into the cell. Enzymatic assays further demonstrated that RS06170 possesses β-xylosidase activity and can effectively degrade XOS. In addition, functional enrichment analysis suggested that the growth-promoting effect of XOS may be attributed to the upregulation of genes involved in cellular component biogenesis and cell division, potentially through modulation of ribosome function and carbohydrate metabolism in Lb. plantarum B20. These results provide valuable insights into the mechanisms by which XOS promote growth and highlight potential targets for enhancing prebiotic–probiotic interactions. Full article
Show Figures

Figure 1

15 pages, 2329 KB  
Article
Modeling the Interaction Between Silver(I) Ion and Proteins with 12-6 Lennard-Jones Potential: A Bottom-Up Parameterization Approach
by Luca Manciocchi, Alexandre Bianchi, Valérie Mazan, Mark Potapov, Katharina M. Fromm and Martin Spichty
Biophysica 2025, 5(1), 7; https://doi.org/10.3390/biophysica5010007 - 25 Feb 2025
Cited by 1 | Viewed by 3014
Abstract
Silver(I) ions and organometallic complexes thereof are well-established antimicrobial agents. They have been employed in medical applications for centuries. It is also known that some bacteria can resist silver(I) treatments through an efflux mechanism. However, the exact mechanism of action remains unclear. All-atom [...] Read more.
Silver(I) ions and organometallic complexes thereof are well-established antimicrobial agents. They have been employed in medical applications for centuries. It is also known that some bacteria can resist silver(I) treatments through an efflux mechanism. However, the exact mechanism of action remains unclear. All-atom force-field simulations can provide valuable structural and thermodynamic insights into the molecular processes of the underlying mechanism. Lennard-Jones parameters of silver(I) have been available for quite some time; their applicability to properly describing the binding properties (affinity, binding distance) between silver(I) and peptide-based binding motifs is, however, still an open question. Here, we demonstrate that the standard 12-6 Lennard-Jones parameters (previously developed to describe the hydration free energy with the TIP3P water model) significantly underestimate the interaction strength between silver(I) and both methionine and histidine. These are two key amino-acid residues in silver(I)-binding motifs of proteins involved in the efflux process. Using free-energy calculations, we calibrated non-bonded fix (NBFIX) parameters for the CHARMM36m force field to reproduce the experimental binding constant between amino acid sidechain fragments and silver(I) ions. We then successfully validated the new parameters on a set of small silver-binding peptides with experimentally known binding constants. In addition, we monitored how silver(I) ions increased the α-helical content of the LP1 oligopeptide, in agreement with previously reported Circular Dichroism (CD) experiments. Future improvements are outlined. The implementation of these new parameters is straightforward in all simulation packages that can use the CHARMM36m force field. It sets the stage for the modeling community to study more complex silver(I)-binding processes such as the interaction with silver(I)-binding-transporter proteins. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Graphical abstract

15 pages, 1614 KB  
Article
Integrating Metabolomics and Genomics to Uncover Antimicrobial Compounds in Lactiplantibacillus plantarum UTNGt2, a Cacao-Originating Probiotic from Ecuador
by Diana Molina, Evelyn Angamarca, George Cătălin Marinescu, Roua Gabriela Popescu and Gabriela N. Tenea
Antibiotics 2025, 14(2), 123; https://doi.org/10.3390/antibiotics14020123 - 24 Jan 2025
Cited by 5 | Viewed by 2910
Abstract
Background/Objectives: Lactic acid bacteria (LAB) produce several diverse metabolites during fermentation that play key roles in enhancing health and food quality. These metabolites include peptides, organic acids, exopolysaccharides, and antimicrobial compounds, which contribute to gut health, immune system modulation, and pathogen inhibition. [...] Read more.
Background/Objectives: Lactic acid bacteria (LAB) produce several diverse metabolites during fermentation that play key roles in enhancing health and food quality. These metabolites include peptides, organic acids, exopolysaccharides, and antimicrobial compounds, which contribute to gut health, immune system modulation, and pathogen inhibition. This study analyzed the intracellular (Met-Int) and extracellular metabolites (Met-Ext-CFS; cell-free supernatant) of Lactiplantibacillus plantarum UTNGt2, a probiotic strain isolated from Theobroma grandiflorum. Methods: The assessment was performed using capillary LC-MS/MS metabolomics with a SWATH-based data-independent acquisition approach to identify molecules associated with antimicrobial activity. Results: The integration of metabolomic data with whole-genome annotation enabled the identification of several key metabolites, including amino acids, nucleotides, organic acids, oligopeptides, terpenes, and flavonoids, many of which were associated with the antimicrobial activity of UTNGt2. Pathway analysis reveals critical processes such as secondary metabolite biosynthesis, nucleotide and galactose metabolism, and cofactor biosynthesis. By integrating RiPP (ribosomally synthesized and post-translationally modified peptide) cluster gene predictions with LC-MS data, this study validates the production of specific RiPPs and uncovers novel bioactive compounds encoded within the UTNGt2 genome. The oligopeptide val-leu-pro-val-pro-gln found in both Met-Int (ESI+) and Met-Ext-CFS (ESI+) may contribute to the strain’s antimicrobial strength. It could also enhance probiotic and fermentation-related functions. Conclusions: While genome-based predictions highlight the strain’s biosynthetic potential, the actual metabolite profile is influenced by factors like transcriptional regulation, post-transcriptional and post-translational modifications, and environmental conditions. These findings emphasize the value of multi-omics approaches in providing a holistic understanding of metabolite production and its role in antimicrobial activity. Full article
Show Figures

Figure 1

15 pages, 4496 KB  
Article
Identification of Oligopeptides in the Distillates from Various Rounds of Soy Sauce-Flavored Baijiu and Their Effect on the Ester–Acid–Alcohol Profile in Baijiu
by Qiang Wu, Shanlin Tian, Xu Zhang, Yunhao Zhao and Yougui Yu
Foods 2025, 14(2), 287; https://doi.org/10.3390/foods14020287 - 16 Jan 2025
Cited by 4 | Viewed by 1558
Abstract
Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography–tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh [...] Read more.
Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography–tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh rounds of soy sauce-flavored Baijiu. Two hundred and five oligopeptides were identified from these distillates, all of which had molecular weights below 1000 Da and were composed of amino acid residues associated with flavor (sweet, sour, and bitter) and biological activity. Furthermore, full-wavelength scanning, content determination of the main compounds, and molecular docking were performed to analyze these oligopeptides’ effect on the ester–acid–alcohol profile in Baijiu. This determination revealed a negative correlation between the peptide content and total ester content (r = −0.691), as well as the total acid content (r = −0.323), and a highly significant negative correlation with ethanol content (r = −0.916). Notably, the screened peptides (TRH, YHY, RQTQ, PLDLTSFVLHEAI, KHVS, LPQRHRMVYSLL, and NEWH) had specific interactions with the major flavor substances via hydrogen bonds, including esters (ethyl acetate, ethyl butanoate, ethyl hexanoate, and ethyl lactate), acids (acetate acid, butanoate acid, hexanoate acid, lactate acid), and alcohols (ethanol, 1-propanol, 1-butanol, and 1-hexanol). These findings elucidate the distribution and dynamic changes of endogenous peptides in the distillates from various rounds of soy sauce-flavored Baijiu, providing a theoretical foundation for further investigation into their interaction mechanisms associated with flavor compounds. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

11 pages, 1281 KB  
Article
Branched-Chain Amino Acid (BCAA) Oligopeptide Determination from Whey Proteins: Preparation, Peptide Profiles, and Anti-Fatigue Activity
by Qiong Zhu, Renjie Zhou, Xiping Zhu, Xiangru Lu, Binli Ai, Qibin Zhuang and Chun Cui
Foods 2025, 14(1), 32; https://doi.org/10.3390/foods14010032 - 26 Dec 2024
Cited by 2 | Viewed by 3814
Abstract
Whey proteins have anti-fatigue activity, but there are few studies that have reported the ameliorative effects of branched-chain amino acid (BCAA) oligopeptides from whey proteins on fatigue in mice. The purposes of this study were to establish a process for the preparation of [...] Read more.
Whey proteins have anti-fatigue activity, but there are few studies that have reported the ameliorative effects of branched-chain amino acid (BCAA) oligopeptides from whey proteins on fatigue in mice. The purposes of this study were to establish a process for the preparation of BCAA oligopeptides from whey protein and to investigate the anti-fatigue activity of BCAA oligopeptides. Whey proteins were hydrolyzed by trypsin and flavourzyme and purified by ethanol precipitation and reversed-phase high performance liquid chromatography (RP-HPLC). Fraction D’ was found to contain the highest content of BCAAs and a high proportion of low-molecular-weight peptides (<1 kDa; content: 81.48%). Subsequently, mass spectrometry identified 15 BCAA oligopeptides in Fraction D’, including three dipeptides, six tripeptides, two tetrapeptides, and four pentapeptides. In addition, animal experiments showed that BCAA oligopeptides significantly prolonged the residence time on the rod and swimming time of mice. Further studies showed that BCAA oligopeptides remarkably reduced serotonin (5-hydroxytryptamine, 5-HT) synthesis in the brain by down-regulating the plasma-free tryptophan (F-Trp)/BCAA ratio, thereby alleviating fatigue. Therefore, BCAA oligopeptides can be used as an auxiliary functional dietary molecule in functional products to exert anti-fatigue activity by regulating 5-HT synthesis. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

18 pages, 4764 KB  
Article
AcfA Regulates the Virulence and Cell Envelope Stress Response of Vibrio parahaemolyticus
by Huan Liu, Huayu Lei, Juanjuan Cao, Zhaobang Xie, Yile Shi and Yanni Zhao
Microorganisms 2025, 13(1), 7; https://doi.org/10.3390/microorganisms13010007 - 24 Dec 2024
Cited by 2 | Viewed by 1360
Abstract
Vibrio parahaemolyticus is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by Vibrio to assist in the colonization and invasion of host cells leading to subsequent [...] Read more.
Vibrio parahaemolyticus is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by Vibrio to assist in the colonization and invasion of host cells leading to subsequent illnesses. In this work, ΔacfA, an in-frame deletion mutant strain lacking the 4th to the 645th nucleotides of the open reading frame (ORF) of the acfA gene, and the complementary strain acfA+ were constructed to decipher the function of AcfA in V. parahaemolyticus. The deletion of acfA had no effect on bacterial growth but resulted in a significant reduction in biofilm formation, hemolytic activity, mucus adhesion, and the accumulated mortality of zebrafish, compared to the wild-type strain and the complementary strain acfA+. Additionally, AcfA was involved in adapting to stressors, such as H2O2, EDTA, and acid, in V. parahaemolyticus. Furthermore, RNA-Seq transcriptome analysis was conducted to identify global gene transcription alterations resulting from deletion of the acfA gene. A total of 416 differentially expressed genes were identified in the ΔacfA vs. wild-type comparison, with 238 up-regulated genes and 178 down-regulated genes. The expression of genes associated with the type III secretion system, type VI secretion system, and oligopeptide permeases system were significantly reduced, and yet the expression of genes associated with cell envelope biosynthesis and response regulation system were enhanced dramatically in the absence of the acfA gene compared to the wild-type strain. These findings suggest that AcfA may play a role in the overall success of pathogenesis and the cell envelope stress response of V. parahaemolyticus. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

28 pages, 3491 KB  
Review
Functional and Molecular Characterization of Plant Nitrate Transporters Belonging to NPF (NRT1/PTR) 6 Subfamily
by Olga I. Nedelyaeva, Dmitry E. Khramov, Yurii V. Balnokin and Vadim S. Volkov
Int. J. Mol. Sci. 2024, 25(24), 13648; https://doi.org/10.3390/ijms252413648 - 20 Dec 2024
Cited by 8 | Viewed by 3225
Abstract
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 [...] Read more.
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea. The phylogenetic analysis of the plant NPF family is based on the amino acid sequences present in databases; an analysis identified a separate NPF6 clade (subfamily) with the first plant nitrate transporters studied at the molecular level. The available information proves that proteins of the NPF6 clade play key roles not only in the supply of nitrate and its allocation within different parts of plants but also in the transport of chloride, amino acids, ammonium, and plant hormones such as auxins and ABA. Moreover, members of the NPF6 family participate in the perception of nitrate and ammonium, signaling, plant responses to different abiotic stresses, and the development of tolerance to these stresses and contribute to the structure of the root–soil microbiome composition. The available information allows us to conclude that NPF6 genes are among the promising targets for engineering/editing to increase the productivity of crops and their tolerance to stresses. The present review summarizes the available published data and our own results on members of the NPF6 clade of nitrate transporters, especially under salinity; we outline their molecular, structural, and functional characteristics and suggest potential lines for future research. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
Show Figures

Figure 1

22 pages, 2794 KB  
Article
Enhanced Oligopeptide and Free Tryptophan Release from Chickpea and Lentil Proteins: A Comparative Study of Enzymatic Modification with Bromelain, Ficin, and Papain
by Éva Domokos-Szabolcsy, Tarek Alshaal, Nevien Elhawat, Zoltán Kovács, László Kaszás, Áron Béni and Attila Kiss
Plants 2024, 13(21), 3100; https://doi.org/10.3390/plants13213100 - 3 Nov 2024
Cited by 9 | Viewed by 3925
Abstract
Plant-based foods offer a sustainable alternative to meet the growing protein demand. Legumes are the most promising of these, as they contain relatively high concentrations of protein, low digestible starch, and dietary fiber, as well as them possibly featuring low levels of fat. [...] Read more.
Plant-based foods offer a sustainable alternative to meet the growing protein demand. Legumes are the most promising of these, as they contain relatively high concentrations of protein, low digestible starch, and dietary fiber, as well as them possibly featuring low levels of fat. Enzymatically modified legume proteins provide us with tempting perspectives in terms of enhancing foods’ biological values. However, their bioavailability and digestibility are generally less sufficient than that of proteins of animal origin, which may be improved by well-tailored enzyme modification. In this study, the efficacy of three plant-based proteases (bromelain, ficin, and papain) were evaluated at two distinct concentrations (2.5% and 10%) and three hydrolysis durations (1, 2, and 12 h) when transforming chickpea and lentil proteins. The degree of hydrolysis (DH), peptide profiles, and free amino acid content were analyzed to determine the efficiency of each enzyme. Results showed significant variations in DH, which was influenced by enzyme type, concentration, and hydrolysis duration. Papain exhibited the highest DH, particularly at a 10% concentration, reaching 27.8% efficiency in chickpea and 34.8% in lentils after 12 h. Bromelain and ficin were proven to be less effective, with ficin showing the least hydrolytic activity. SDS-PAGE analysis revealed substantial protein degradation, especially subsequent to papain treatment, pointing out that most proteins were cleaved into smaller peptides. SEC-HPLC indicated a predominant release of peptides within the 200–1000 Da range, suggesting enhanced bioavailability. Papain and bromelain treatments resulted in a significant release of oligopeptides and dipeptides. UHPLC analysis highlighted a marked post-hydrolysis increase in total free amino acids, with arginine, leucine, and lysine being the most abundant ones. Notably, tryptophan, being undetectable in untreated samples, was released in measurable amounts post-hydrolysis. These findings demonstrate papain’s superior performance in protein hydrolysis and its potential in producing bioactive peptides, highlighting its applicability in food processing and the development of both nutraceuticals and functional foods. Full article
Show Figures

Figure 1

18 pages, 1875 KB  
Article
Wheat Peptides as Catalysts for Athletic Performance Improvement in Cross-Country Skiers: A Randomized Controlled Trial
by Mai Xiang, Qi Han, Yue Chen, Shenglin Duan, Xiaofeng Han, Xuemei Sui, Chaoxue Ren and Qirong Wang
Metabolites 2024, 14(10), 538; https://doi.org/10.3390/metabo14100538 - 7 Oct 2024
Cited by 1 | Viewed by 3043
Abstract
Objectives: This study investigated the efficacy of wheat peptide supplementation compared to regular proteins in elite cross-country skiers, providing insights into the metabolic and performance effects of these supplements in order to guide athletes in selecting optimal energy sources for training and competition. [...] Read more.
Objectives: This study investigated the efficacy of wheat peptide supplementation compared to regular proteins in elite cross-country skiers, providing insights into the metabolic and performance effects of these supplements in order to guide athletes in selecting optimal energy sources for training and competition. Methods: Nineteen healthy male cross-country skiers were enrolled and assigned to either the peptide group (PEP, n = 9) or the protein group (PRO, n = 10). A four-week intervention study involving supplementation with wheat peptides/regular proteins was conducted, and pre- and post-intervention assessments were performed to evaluate exercise capacity and metabolic profiles. Results: The study found that the PEP group and the PRO group showed distinct within-group effects on exercise performance. The PEP group demonstrated improved aerobic capacity, including better performance in 10 km roller skating, an increased lactate threshold, and reduced resting blood lactate levels. The PRO group enhanced anaerobic capacity, such as improved sprint time, hexagon test performance, and lactate clearance. Metabolomic analysis revealed specific metabolic pathways affected in each group, with the PEP group showing impacts on the α-linolenic acid pathway and the PRO group on ketone body synthesis and degradation as well as vitamin B6 metabolism. Conclusions: Our findings indicate that wheat oligopeptides and regular proteins have comparable effects on exercise performance. However, the wheat peptides may offer greater advantages in enhancing aerobic capacity. No significant variations were observed in blood metabolite profiles between the two groups, but distinct metabolic pathways exhibited different responses. Full article
Show Figures

Figure 1

Back to TopTop