Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = acetone-DMF solvents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2315 KiB  
Article
Anisotropic Swelling Behavior of Liquid Crystal Elastomers in Isotropic Solvents
by Limei Zhang, Hong Li, Wenjiang Zheng, Yu Zhao, Weimin Pan, Niankun Zhang, Jing Xu and Xuewei Liu
Nanomaterials 2025, 15(6), 443; https://doi.org/10.3390/nano15060443 - 14 Mar 2025
Cited by 1 | Viewed by 852
Abstract
The chemical response of liquid crystal elastomers (LCEs) offers substantial potential for applications in propulsion systems, micromechanical systems, and active smart surfaces. However, the shape-changing behaviors of LCEs in response to organic (isotropic) solvents remain scarcely explored, with most research focusing on liquid [...] Read more.
The chemical response of liquid crystal elastomers (LCEs) offers substantial potential for applications in propulsion systems, micromechanical systems, and active smart surfaces. However, the shape-changing behaviors of LCEs in response to organic (isotropic) solvents remain scarcely explored, with most research focusing on liquid crystal (anisotropic) solvents. Herein, we prepared a series of aligned LCEs with varying crosslink densities using a surface alignment technique combined with an aza-Michael addition reaction, aiming to investigate their swelling behaviors in different isotropic solvents. We found that the rates of shape and volume variation modes, the elastic modulus of the LCEs, and the polarity of the solvent all significantly influence the swelling behavior. Specifically, when LCEs swell in acetone, dimethylformamide (DMF), and ethyl acetate, contraction occurs along the alignment direction. Conversely, extension along the alignment direction is observed when LCEs swell in toluene, anisole, and acrylic acid. Meanwhile, extension in the perpendicular direction is noted when LCEs swell in nearly all solvents. These shape changes can be attributed to the phase transitions of the LCEs. This research not only provides valuable insights into the swelling mechanisms of LCEs but also holds great promise for the development of solvent sensors and gas sensing applications. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 2846 KiB  
Article
Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring
by Dong-Sup Kim, Abdus Sobhan, Jun-Hyun Oh, Jahyun Lee, Chulhwan Park and Jinyoung Lee
Biosensors 2024, 14(12), 630; https://doi.org/10.3390/bios14120630 - 19 Dec 2024
Cited by 1 | Viewed by 1037
Abstract
The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), [...] Read more.
The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone. The findings revealed that SWCNTs achieved optimal dispersion without precipitation in DMF. Additionally, we observed that the electrical resistance decreased as the concentration of SWCNTs increased from 0.025 to 0.4 g/L, with significant conductivity enhancements noted between 0.2 g/L and 0.4 g/L in DMF. In constructing the biosensor platform, we employed 1-pyrenebutanoic acid succinimidyl ester (PBSE) as a linker molecule, while glucose oxidase (Gox) served as the binding substrate. The interaction between Gox and glucose led to a notable decrease in the biosensor’s resistance values as glucose concentrations ranged from 0.001 to 0.1 M. These results provide foundational insights into the development of SWCNT-based electrode materials and suggest a promising pathway toward the next generation of efficient and reliable biosensors. Full article
Show Figures

Figure 1

13 pages, 5661 KiB  
Article
New Insights into ZIF-90 Synthesis
by Jan Marčec, Alenka Ristić and Nataša Zabukovec Logar
Molecules 2024, 29(16), 3731; https://doi.org/10.3390/molecules29163731 - 6 Aug 2024
Cited by 2 | Viewed by 3251
Abstract
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to [...] Read more.
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake. Pure ZIF-90 was synthesized under ambient pressure at 60 °C for 90 min using the conventional solvothermal method in an acetone–water solution, while under microwave irradiation it was formed in only 5 min at 80 °C. Altering methanol, water and acetone in the reaction mixture significantly affected the structural and water adsorption properties of ZIF-90s, which were monitored via PXRD, TGA, nitrogen and water sorption, and SEM. The highly efficient, less toxic, low-cost and activation-free microwave synthesis resulted in the formation of ZIF-90 nanoparticles that exhibited the highest maximum water adsorption capacity (0.37 g/g) and the best hydrothermal stability between water adsorption at 30 °C and desorption at 100 °C at 12.5 mbar among all the products obtained. Full article
(This article belongs to the Special Issue Recent Advances in Metal–Organic Frameworks)
Show Figures

Figure 1

16 pages, 3940 KiB  
Article
Fabrication of Polypyrrole Hollow Nanospheres by Hard-Template Method for Supercapacitor Electrode Material
by Renzhou Hong, Xijun Zhao, Rongyu Lu, Meng You, Xiaofang Chen and Xiaoming Yang
Molecules 2024, 29(10), 2331; https://doi.org/10.3390/molecules29102331 - 15 May 2024
Cited by 9 | Viewed by 1924
Abstract
Conducting polymers like polypyrrole, polyaniline, and polythiophene with nanostructures offers several advantages, such as high conductivity, a conjugated structure, and a large surface area, making them highly desirable for energy storage applications. However, the direct synthesis of conducting polymers with nanostructures poses a [...] Read more.
Conducting polymers like polypyrrole, polyaniline, and polythiophene with nanostructures offers several advantages, such as high conductivity, a conjugated structure, and a large surface area, making them highly desirable for energy storage applications. However, the direct synthesis of conducting polymers with nanostructures poses a challenge. In this study, we employed a hard template method to fabricate polystyrene@polypyrrole (PS@PPy) core–shell nanoparticles. It is important to note that PS itself is a nonconductive material that hinders electron and ion transport, compromising the desired electrochemical properties. To overcome this limitation, the PS cores were removed using organic solvents to create hollow PPy nanospheres. We investigated six different organic solvents (cyclohexane, toluene, tetrahydrofuran, chloroform, acetone, and N,N-dimethylformamide (DMF)) for etching the PS cores. The resulting hollow PPy nanospheres showed various nanostructures, including intact, hollow, buckling, and collapsed structures, depending on the thickness of the PPy shell and the organic solvent used. PPy nanospheres synthesized with DMF demonstrated superior electrochemical properties compared to those prepared with other solvents, attributed to their highly effective PS removal efficiency, increased specific surface area, and improved charge transport efficiency. The specific capacitances of PPy nanospheres treated with DMF were as high as 350 F/g at 1 A/g. And the corresponding symmetric supercapacitor demonstrated a maximum energy density of 40 Wh/kg at a power density of 490 W/kg. These findings provide new insights into the synthesis method and energy storage mechanisms of PPy nanoparticles. Full article
Show Figures

Graphical abstract

16 pages, 2237 KiB  
Article
Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals
by Chiara Ruini, Erika Ferrari, Caterina Durante, Giulia Lanciotti, Paolo Neri, Anna Maria Ferrari and Roberto Rosa
Molecules 2024, 29(9), 2132; https://doi.org/10.3390/molecules29092132 - 3 May 2024
Cited by 1 | Viewed by 2065
Abstract
This work is focused on performing a quantitative assessment of the environmental impacts associated with an organic synthesis reaction, optimized using an experimental design approach. A nucleophilic substitution reaction was selected, employing vanillin as the substrate, a phenolic compound widely used in the [...] Read more.
This work is focused on performing a quantitative assessment of the environmental impacts associated with an organic synthesis reaction, optimized using an experimental design approach. A nucleophilic substitution reaction was selected, employing vanillin as the substrate, a phenolic compound widely used in the food industry and of pharmaceutical interest, considering its antioxidant and antitumoral potential. To carry out the reaction, three different solvents have been chosen, namely acetonitrile (ACN), acetone (Ace), and dimethylformamide (DMF). The syntheses were planned with the aid of a multivariate experimental design to estimate the best reaction conditions, which simultaneously allow a high product yield and a reduced environmental impact as computed by Life Cycle Assessment (LCA) methodology. The experimental results highlighted that the reactions carried out in DMF resulted in higher yields with respect to ACN and Ace; these reactions were also the ones with lower environmental impacts. The multilinear regression models allowed us to identify the optimal experimental conditions able to guarantee the highest reaction yields and lowest environmental impacts for the studied reaction. The identified optimal experimental conditions were also validated by experimentally conducting the reaction in those conditions, which indeed led to the highest yield (i.e., 93%) and the lowest environmental impacts among the performed experiments. This work proposes, for the first time, an integrated approach of DoE and LCA applied to an organic reaction with the aim of considering both conventional metrics, such as reaction yield, and unconventional ones, such as environmental impacts, during its lab-scale optimization. Full article
Show Figures

Graphical abstract

30 pages, 11132 KiB  
Review
Solvent Replacement Strategies for Processing Pharmaceuticals and Bio-Related Compounds—A Review
by Jia Lin Lee, Gun Hean Chong, Masaki Ota, Haixin Guo and Richard Lee Smith
Liquids 2024, 4(2), 352-381; https://doi.org/10.3390/liquids4020018 - 9 Apr 2024
Cited by 6 | Viewed by 5999
Abstract
An overview of solvent replacement strategies shows that there is great progress in green chemistry for replacing hazardous di-polar aprotic solvents, such as N,N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP), and 1,4-dioxane (DI), used in processing active industrial ingredients (APIs). In synthetic chemistry, alcohols, carbonates, ethers, [...] Read more.
An overview of solvent replacement strategies shows that there is great progress in green chemistry for replacing hazardous di-polar aprotic solvents, such as N,N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP), and 1,4-dioxane (DI), used in processing active industrial ingredients (APIs). In synthetic chemistry, alcohols, carbonates, ethers, eucalyptol, glycols, furans, ketones, cycloalkanones, lactones, pyrrolidinone or solvent mixtures, 2-methyl tetrahydrofuran in methanol, HCl in cyclopentyl methyl ether, or trifluoroacetic acid in propylene carbonate or surfactant water (no organic solvents) are suggested replacement solvents. For the replacement of dichloromethane (DCM) used in chromatography, ethyl acetate ethanol or 2-propanol in heptanes, with or without acetic acid or ammonium hydroxide additives, are suggested, along with methanol acetic acid in ethyl acetate or methyl tert-butyl ether, ethyl acetate in ethanol in cyclohexane, CO2-ethyl acetate, CO2-methanol, CO2-acetone, and CO2-isopropanol. Supercritical CO2 (scCO2) can be used to replace many organic solvents used in processing materials from natural sources. Vegetable, drupe, legume, and seed oils used as co-extractants (mixed with substrate before extraction) can be used to replace the typical organic co-solvents (ethanol, acetone) used in scCO2 extraction. Mixed solvents consisting of a hydrogen bond donor (HBD) solvent and a hydrogen bond acceptor (HBA) are not addressed in GSK or CHEM21 solvent replacement guides. Published data for 100 water-soluble and water-insoluble APIs in mono-solvents show polarity ranges appropriate for the processing of APIs with mixed solvents. When water is used, possible HBA candidate solvents are acetone, acetic acid, acetonitrile, ethanol, methanol, 2-methyl tetrahydrofuran, 2,2,5,5-tetramethyloxolane, dimethylisosorbide, Cyrene, Cygnet 0.0, or diformylxylose. When alcohol is used, possible HBA candidates are cyclopentanone, esters, lactone, eucalytol, MeSesamol, or diformylxylose. HBA—HBA mixed solvents, such as Cyrene—Cygnet 0.0, could provide interesting new combinations. Solubility parameters, Reichardt polarity, Kamlet—Taft parameters, and linear solvation energy relationships provide practical ways for identifying mixed solvents applicable to API systems. Full article
Show Figures

Figure 1

13 pages, 5986 KiB  
Article
Studying Fluorescence Sensing of Acetone and Tryptophan and Antibacterial Properties Based on Zinc-Based Triple Interpenetrating Metal–Organic Skeletons
by Congying Yuan, Yidan Qiao, Zhaolei Zhang, Yinhang Chai, Xiaojun Zhang, Xiaojing Dong and Ying Zhao
Molecules 2023, 28(21), 7315; https://doi.org/10.3390/molecules28217315 - 28 Oct 2023
Cited by 8 | Viewed by 1900
Abstract
Two triple interpenetrating Zn(II)-based MOFs were studied in this paper. Named [Zn6(1,4-bpeb)4(IPA)6(H2O)]n (MOF-1) and {[Zn3(1,4-bpeb)1.5(DDBA)3]n·2DMF} (MOF-2), {1,4-bpeb = 1,4-bis [2-(4-pyridy1) ethenyl]benze, IPA [...] Read more.
Two triple interpenetrating Zn(II)-based MOFs were studied in this paper. Named [Zn6(1,4-bpeb)4(IPA)6(H2O)]n (MOF-1) and {[Zn3(1,4-bpeb)1.5(DDBA)3]n·2DMF} (MOF-2), {1,4-bpeb = 1,4-bis [2-(4-pyridy1) ethenyl]benze, IPA = Isophthalic acid, DDBA = 3,3′-Azodibenzoic acid}, they were synthesized by the hydrothermal method and were characterized and stability tested. The results showed that MOF-1 had good acid–base stability and solvent stability. Furthermore, MOF-1 had excellent green fluorescence and with different phenomena in different solvents, which was almost completely quenched in acetone. Based on this phenomenon, an acetone sensing test was carried out, where the detection limit of acetone was calculated to be 0.00365% (volume ratio). Excitingly, the MOF-1 could also be used as a proportional fluorescent probe to specifically detect tryptophan, with a calculated detection limit of 34.84 μM. Furthermore, the mechanism was explained through energy transfer and competitive absorption (fluorescence resonance energy transfer (FRET)) and internal filtration effect (IFE). For antibacterial purposes, the minimum inhibitory concentrations of MOF-1 against Escherichia coli and Staphylococcus aureus were 19.52 µg/mL and 39.06 µg/mL, respectively, and the minimum inhibitory concentrations of MOF-2 against Escherichia coli and Staphylococcus aureus were 68.36 µg/mL and 136.72 µg/mL, respectively. Full article
Show Figures

Figure 1

16 pages, 7903 KiB  
Article
Fabrication of Ultra-High-Performance PVDF-HFP Air Filters by Electrospinning
by Iman Azarian Borojeni, Greg Gajewski, Arash Jenab, Mehdi Sanjari, Charles Boudreault and Reza A. Riahi
Fibers 2023, 11(8), 71; https://doi.org/10.3390/fib11080071 - 21 Aug 2023
Cited by 2 | Viewed by 2460
Abstract
This research aims to fabricate hydrophobic electrospun air filters with ultra-high performance against virions. In order to achieve this goal, constant basis weight electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with low-bead, high-bead, and ultra-high-bead fibre structures were used to fabricate single and multilayer filters by [...] Read more.
This research aims to fabricate hydrophobic electrospun air filters with ultra-high performance against virions. In order to achieve this goal, constant basis weight electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with low-bead, high-bead, and ultra-high-bead fibre structures were used to fabricate single and multilayer filters by controlling the Dimethylformamide (DMF)-to-acetone ratio of the solvent. The water contact angle of the fabricated layers ranged from 131° for low-bead structures to 135° for ultra-high-bead structures, indicating their overall high hydrophobicity. The size-resolved filtering efficiency and pressure drop tests on the fabricated filters showed that low-bead structure for both single and multilayer filters and high-bead structure for single-layer filters enhance the quality factor remarkably. The results showed that the single-layer ultra-high-bead structure air filters had a filtering efficiency of 99.33%, superior to N95 air filters (96.54%) and comparable to double N95 filters (99.86%). However, the electrospun air filter showed a pressure drop of 169.3 Pa and a quality factor of 27.6×103 Pa1compared to a pressure drop of 388 Pa and quality factor of 16.9×103 Pa1 for double N95 air filters. Therefore, it has a high potential to be used as the filtration media in hospitals, long-term care centers, and masks to provide superior protection against virions for healthcare providers and patients. Full article
Show Figures

Figure 1

11 pages, 1663 KiB  
Article
Effect of Solvent Polarity on the Spectral Characteristics of 5,10,15,20-Tetrakis(p-hydroxyphenyl)porphyrin
by Hongwei Guo, Xianhu Liu, Lan Li, Yanping Chang and Wanqing Yao
Molecules 2023, 28(14), 5516; https://doi.org/10.3390/molecules28145516 - 19 Jul 2023
Cited by 5 | Viewed by 2445
Abstract
The electronic absorption and vibrational spectra of deprotonated 5,10,15,20-tetrakis(p-hydroxyphenyl)porphyrin (THPP) are studied as a function of solvent polarity in H2O-DMF, H2O-acetone, H2O-methanol, and DMF-acetone mixtures. The maximum absorption wavelength (λmax) of the lowest energy [...] Read more.
The electronic absorption and vibrational spectra of deprotonated 5,10,15,20-tetrakis(p-hydroxyphenyl)porphyrin (THPP) are studied as a function of solvent polarity in H2O-DMF, H2O-acetone, H2O-methanol, and DMF-acetone mixtures. The maximum absorption wavelength (λmax) of the lowest energy electronic absorption band of deprotonated THPP shows an unusual solvatochromism-a bathochromic followed by a hypsochromic shift with reduced polarity. According to the correlation analysis, both specific interactions (H-bonds) and nonspecific interactions affect the spectral changes of this porphyrin. Furthermore, the solvent polarity scale ET(30) can explain both shifts very well. At higher polarity (ET(30) > 48), THPP exists as a hyperporphyrin. The ET(30) is linear with λmax and a decrease in solvent polarity is accompanied by a bathochromic shift of λmax. These results can be rationalized in terms of the cooperative effects of H-bonds and nonspecific interactions on the spectra of hyperporphyrin. At relatively low polarity (45.5 < ET(30) < 48), hyperporphyrin gradually becomes Na2P as ET(30) reaches the critical value of 45.5. The spectrum of the hyperporphyrin turns into the three-band spectrum of the metalloporphyrin, which is accompanied by a hypsochromic shift of λmax. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

23 pages, 6280 KiB  
Article
Electrospun Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Nanofiber Membranes for Brine Treatment via Membrane Distillation
by Amjad Albiladi, Lassaad Gzara, Hussam Organji, Nazeeha S. Alkayal and Alberto Figoli
Polymers 2023, 15(12), 2706; https://doi.org/10.3390/polym15122706 - 16 Jun 2023
Cited by 9 | Viewed by 3943
Abstract
The major challenge for membrane distillation (MD) is the membrane wetting resistance induced by pollutants in the feed solution. The proposed solution for this issue was to fabricate membranes with hydrophobic properties. Hydrophobic electrospun poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber membranes were produced for [...] Read more.
The major challenge for membrane distillation (MD) is the membrane wetting resistance induced by pollutants in the feed solution. The proposed solution for this issue was to fabricate membranes with hydrophobic properties. Hydrophobic electrospun poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber membranes were produced for brine treatment using the direct-contact membrane distillation (DCMD) technique. These nanofiber membranes were prepared from three different polymeric solution compositions to study the effect of solvent composition on the electrospinning process. Furthermore, the effect of the polymer concentration was investigated by preparing polymeric solutions with three different polymer percentages: 6, 8, and 10%. All of the nanofiber membranes obtained from electrospinning were post-treated at varying temperatures. The effects of thickness, porosity, pore size, and liquid entry pressure (LEP) were studied. The hydrophobicity was determined using contact angle measurements, which were investigated using optical contact angle goniometry. The crystallinity and thermal properties were studied using DSC and XRD, while the functional groups were studied using FTIR. The morphological study was performed with AMF and described the roughness of nanofiber membranes. Finally, all of the nanofiber membranes had enough of a hydrophobic nature to be used in DCMD. A PVDF membrane filter disc and all nanofiber membranes were applied in DCMD to treat brine water. The resulting water flux and permeate water quality were compared, and it was discovered that all of the produced nanofiber membranes showed good behavior with varying water flux, but the salt rejection was greater than 90%. A membrane prepared from DMF/acetone 5-5 with 10% PVDF-HFP provided the perfect performance, with an average water flux of 44 kg.m−2.h−1 and salt rejection of 99.8%. Full article
(This article belongs to the Special Issue Advanced Polymer for Membrane Applications)
Show Figures

Graphical abstract

13 pages, 1966 KiB  
Article
The Quest for Green Solvents for the Sustainable Production of Nanosheets of Two-Dimensional (2D) Materials, a Key Issue in the Roadmap for the Ecology Transition in the Flatland
by Jessica Occhiuzzi, Grazia Giuseppina Politano, Gianluca D’Olimpio and Antonio Politano
Molecules 2023, 28(3), 1484; https://doi.org/10.3390/molecules28031484 - 3 Feb 2023
Cited by 20 | Viewed by 3361
Abstract
The recent advent of two-dimensional (2D) materials has had a ground-breaking impact on science and technology. To exploit in technology their unique thickness-dependent physicochemical properties, the large-scale production of 2D materials is mandatory, but it represents an open challenge still due to various [...] Read more.
The recent advent of two-dimensional (2D) materials has had a ground-breaking impact on science and technology. To exploit in technology their unique thickness-dependent physicochemical properties, the large-scale production of 2D materials is mandatory, but it represents an open challenge still due to various pitfalls and severe limitations including the toxicity of state-of-the-art solvents. Thus, liquid-phase exfoliation based on green and bioderived solvents represents an ideal methodology for massive production. This is particularly crucial for introducing 2D materials in technological applications such as the production of drinking water and agri-food industrial processes. Here, we assessed the production of 2D nanosheets (specifically, graphene, WS2, MoS2) with liquid-phase exfoliation assisted by eco-friendly solvents, with a comparative evaluation of green solvents in terms of the yield and, moreover, the aspect ratio, defectivity, and crystalline quality of the produced nanosheets. In particular, we focus on the most promising green solvents in terms of the yield and the crystalline quality of the produced nanosheets: Polarclean, Iris, and Cyrene, which were compared with acetone/water mixtures, isopropyl alcohol (IPA), triethanolamine (TEA), aqueous solutions of urea, and an ethanol/water mixture as well as two toxic solvents largely used for the production of 2D nanosheets: N-methyl-2-pyrrolidone (NMP) and N, N-dimethylformamide (DMF). Remarkably, the density of defects was particularly low in the liquid-phase exfoliation with Polarclean, as indicated by the Raman spectrum of graphene, with the I(D)/I(G) ratio below 0.1. Furthermore, Polarclean and Iris also enable ink-jet printing with functional inks of 2D materials based on green solvents due to their low dynamic viscosity at room temperature. Full article
(This article belongs to the Special Issue Materials Chemistry in Italy)
Show Figures

Figure 1

16 pages, 2660 KiB  
Article
Investigation of the Effect of Substituents on Electronic and Charge Transport Properties of Benzothiazole Derivatives
by Ahmad Irfan, Abul Kalam, Abdullah G. Al-Sehemi and Mrigendra Dubey
Molecules 2022, 27(24), 8672; https://doi.org/10.3390/molecules27248672 - 8 Dec 2022
Cited by 4 | Viewed by 2185
Abstract
A series of new benzothiazole-derived donor–acceptor-based compounds (Comp1–4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1–4) were commensurate using FTIR, 1H NMR, [...] Read more.
A series of new benzothiazole-derived donor–acceptor-based compounds (Comp1–4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1–4) were commensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV–vis, and elemental analysis techniques. The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the optoelectronic and charge transfer properties were studied. The substituent effect on absorption was calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polarity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF, and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge carrier mobility and other related device parameters with the help of I-V characteristic measurements. Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Figure 1

10 pages, 1686 KiB  
Article
Tuning the Electronic and Charge Transport Properties of Schiff Base Compounds by Electron Donor and/or Acceptor Groups
by Ahmad Irfan, Abdullah G. Al-Sehemi and Abul Kalam
Materials 2022, 15(23), 8590; https://doi.org/10.3390/ma15238590 - 2 Dec 2022
Cited by 4 | Viewed by 2066
Abstract
Organic semiconductors have gained substantial interest as active materials in electronic devices due to their advantages over conventional semiconductors. We first designed four Schiff base compounds, then the effect of electron donor/acceptor groups (methyl/nitro) was studied on the compounds’ electronic and transport nature. [...] Read more.
Organic semiconductors have gained substantial interest as active materials in electronic devices due to their advantages over conventional semiconductors. We first designed four Schiff base compounds, then the effect of electron donor/acceptor groups (methyl/nitro) was studied on the compounds’ electronic and transport nature. The absorption spectra (λabs) were computed by time-dependent DFT at TD-B3LYP/6-31+G** level. The effect of different solvents (ethanol, DMF, DMSO, and acetone) was investigated on the λabs. The substitution of the -NO2 group to the furan moiety at the 5th position in Compound 3 leads to a red-shift in the absorption spectrum. A smaller hole reorganization energy value in Compound 3 would be beneficial to get the hole’s intrinsic mobility. In contrast, a reduced-electron reorganization energy value of Compound 4 than hole may result in enhanced electron charge transfer capabilities. The reorganization energies of compounds 1 and 2 exposed balanced hole/electron transport probability. The optical, electronic, and charge transport properties at the molecular level indicate that Compound 3 is suitable for organic electronic device applications. Full article
(This article belongs to the Special Issue Functional Materials for Therapeutic and Industrial Applications)
Show Figures

Figure 1

11 pages, 3106 KiB  
Article
Solvent-Dependent Fluorescence Properties of CH2-bis(BODIPY)s
by Alexander Kalyagin, Lubov Antina, Alexander Ksenofontov, Elena Antina and Mikhail Berezin
Int. J. Mol. Sci. 2022, 23(22), 14402; https://doi.org/10.3390/ijms232214402 - 19 Nov 2022
Cited by 9 | Viewed by 2780
Abstract
Biocompatible luminophores based on organic dyes, which have fluorescence characteristics that are highly sensitive to the properties of the solvating medium, are of particular interest as highly sensitive, selective, and easy-to-use analytical agents. We found that BODIPY dimers (2,2′-, 2,3′-3,3′-CH2-bis [...] Read more.
Biocompatible luminophores based on organic dyes, which have fluorescence characteristics that are highly sensitive to the properties of the solvating medium, are of particular interest as highly sensitive, selective, and easy-to-use analytical agents. We found that BODIPY dimers (2,2′-, 2,3′-3,3′-CH2-bis(BODIPY) (13)) demonstrate fluorescence characteristics with a high sensitivity to the presence of polar solvents. The intense fluorescence of 13 in nonpolar/low-polarity solvents is dramatically quenched in polar media (acetone, DMF, and DMSO). It has been established that the main reason for CH2-bis(BODIPY) fluorescence quenching is the specific solvation of dyes by electron-donating molecules (Solv) with the formation of stable supramolecular CH2-bis(BODIPY)·2Solv structures. Using steady-state absorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, and computational modeling, the formation mechanism, composition, and structure of CH2-bis(BODIPY)·2Solv supramolecular complexes have been substantiated, and their stability has been evaluated. The results show the promise of developing fluorescent probes based on CH2-bis(BODIPY)s for detecting toxic N/O-containing compounds in solutions. Full article
(This article belongs to the Special Issue The Self-Assembly and Design of Polyfunctional Nanosystems 3.0)
Show Figures

Graphical abstract

9 pages, 1098 KiB  
Article
The Solubility of Ethyl Candesartan in Mono Solvents and Investigation of Intermolecular Interactions
by Cunbin Du
Liquids 2022, 2(4), 404-412; https://doi.org/10.3390/liquids2040023 - 17 Nov 2022
Cited by 2 | Viewed by 1868
Abstract
In this work, the experimental solubility of ethyl candesartan in the selected solvents within the temperature ranging from 278.15 to 318.15 K was studied. It can be easily found that the solubility of ethyl candesartan increases with the rising temperature in all solvents. [...] Read more.
In this work, the experimental solubility of ethyl candesartan in the selected solvents within the temperature ranging from 278.15 to 318.15 K was studied. It can be easily found that the solubility of ethyl candesartan increases with the rising temperature in all solvents. The maximum solubility value was obtained in N,N-dimethylformamide (DMF, 7.91 × 10−2), followed by cyclohexanone (2.810 × 10−2), 1,4-dioxanone (2.69 × 10−2), acetone (7.04 × 10−3), ethyl acetate (4.20 × 10−3), n-propanol (3.69 × 10−3), isobutanol (3.38 × 10−3), methanol (3.17 × 10−3), n-butanol (3.03 × 10−3), ethanol (2.83 × 10−3), isopropanol (2.69 × 10−3), and acetonitrile (1.15 × 10−2) at the temperature of 318.15 K. Similar results of solubility sequence from large to small were also obtained in other temperatures. The X-ray diffraction analysis illustrates that the crystalline forms of all samples were consistent, and no crystalline transformation occurred during the dissolution process. In aprotic solvents, except for individual solvents, the solubility data decreases with the decreasing values of hydrogen bond basicity (β) and dipolarity/polarizability (π*). The largest average relative deviation (ARD) data in the modified Apelblat equation is 1.9% and observed in isopropanol; the maximum data in λh equation is 4.3% and found in n-butanol. The results of statistical analysis show that the modified Apelblat equation is the more suitable correlation of experimental data for ethyl candesartan in selected mono solvents at all investigated temperatures. In addition, different parameters were used to quantify the solute–solvent interactions that occurred in the dissolution process including Abraham solvation parameters (APi), Hansen solubility parameters (HPi), and Catalan parameters (CPi). Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
Show Figures

Figure 1

Back to TopTop