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Abstract: A series of new benzothiazole-derived donor–acceptor-based compounds (Comp1–4) were
synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge
transport, electronic, and optical. All the proposed structural formulations (Comp1–4) were com-
mensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV–vis, and elemental analysis techniques.
The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the
optoelectronic and charge transfer properties were studied. The substituent effect on absorption was
calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polar-
ity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF,
and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds
by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the
synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge
carrier mobility and other related device parameters with the help of I-V characteristic measurements.

Keywords: organic semiconductor materials; benzothiazole; density functional theory; optical
properties; charge transport

1. Introduction

Organic semiconductors have become indispensable because of their cheap, malleable,
lightweight, and environmentally friendly properties [1–8]. Advances in organic semi-
conductor materials (OSMs) in organic field effect transistors (OFETs), photovoltaics, and
organic thin film transistors (OTFTs) have motivated scientists to explore materials [9–21].
The versatility of OSMs allows many interesting properties to be tuned because organic ma-
terials such as benzothiazole have promising applications in fluorescence sensors, OLEDs,
solar cells, OFETs, OTFTs, etc., and have attracted great interest [22–26].

Low band gap materials have attracted the attention of the scientific community
because of their high tendency to harvest photons of visible wavelength, redox-tunable
quality, and use in ambipolar transistors [27–33]. Essentially, a promising strategy is to
develop molecules that carry electron-donating moiety (D) and electron-acceptor moiety
(A) that can match the charge carrier injection and receive both holes and electrons. The
most important materials to date have been modifications of the HOMO/LUMO (high-
est/lowest occupied/unoccupied molecular orbital) of the molecule, which can be obtained
by the simple introduction of the suitable D and A units in the molecule [34–36]. In such
compounds, the interaction of the HOMO, which donates the electron (D), and the LUMO,
which accepts the electron (A), results in a narrowing of the gap [37]. At present, HOMO
and LUMO molecule levels can be controlled, making those systems more attractive for
use in OSMs [38]. The benzothiazole group has been described as a valuable receptor. It
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provides a D-π-A compound that exhibits two-photon absorption (TPA) compared with
asymmetrical chromophores [39]. The donor–acceptor (DA) model system diagram is
illustrated in Figure 1. By adopting the benzothiazole unit as a well-made acceptor, the
changes made by various donors can further increase the TPA.
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Figure 1. Donor–acceptor (DA) model system diagram.

The computational probing of the electronic structure of compounds has made a
significant contribution to estimating known and unpredicted properties. In this context
and to guide the integration of smaller energy gap materials, computational methods have
been widely used to predict energy gaps [40–42]. Computational chemistry is accompa-
nied by a variety of applications in fields such as materials science, energy, engineering,
nanoscience, etc. [43]. The density functional theory (DFT) seems to be a good choice and
has been established as an effective means of investigating the electronic, charge transfer,
and physical properties associated with various materials. The DFT method provides the
most accurate results for electronic, optical, and charge transport properties that are in the
closest agreement with experimental evidence [44–46]. In addition, computational calcu-
lations are extensively used to determine properties and provide spectral data. There are
many studies on the calculation using DFT of the various properties of certain thiophene
and benzothiazoles, such as ultraviolet–visible spectroscopy (UV–vis), HOMO-LUMO
energy, the molecular electrostatic potential, and charge distribution [47,48].

We synthesized various dyes aiming to investigate their OFET properties. First-
principle methods were used to discover the impact of electron-donating -CH3 and -NO2
groups on the charge transport and optoelectronic properties. We anticipated that the
substitution of positions 3 and 4 for electron-donating groups (EDGs) and position 5 for
the electron-withdrawing group (-NO2) would boost properties of interest (Figure 2).



Molecules 2022, 27, 8672 3 of 16Molecules 2022, 27, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 2. The structures of benzothiazole derivatives. 

2. Methods 
2.1. Computational Details 

The optimization of ground state (S0) geometries of benzothiazole compounds was 
achieved by density functional theory (DFT) [49–52] at the B3LYP/6-31+G** level. The fre-
quency calculations were performed at the B3LYP/6-31+G** level. There was no negative 
frequency obtained, which indicated that the optimized structures were suitable for fur-
ther studies. Earlier studies demonstrated that B3LYP was able to calculate charge 
transport [53]. Here, electron affinity (EA), ionization potential (IP), and reorganization 
energy for hole/electron (λhole/λelec) values were computed at the B3LYP/6-31G** level. The 
optimization of geometries in an excited state (S1) was achieved by time-dependent DFT 
[54] at the TD-B3LYP/6-31+G** level. The absorption (λmax) was assessed at the TD-
B3LYP/6-31+G** level in gas-phase and solvents (ethanol, acetone, DMF, and DMSO) with 
the Gaussian16 package [55] using self-consistent reaction field (SCRF) theory with a po-
larized continuum model (PCM) [56]. 

2.2. Experimental Details 
All the characterization spectra of FTIR, 1HNMR, 13C NMR, and ESI-mass were in-

corporated in supporting files as Figures S1–S17. 

2.2.1. Synthesis of Comp1 
Methanolic solution of 4-methyl-2-thiophenecarboxaldehyde (0.332 g, 2 mmol) was 

added dropwise to the solution of 2-hydrazino benzothiazole (0.252 g, 2 mmol) dissolved 
in methanol. The resulting mixture was continuously stirred for 12 h under reflux condi-
tions. The resulting pale yellow-colored precipitate of Comp1 was further filtered and 
washed with methanol and ether thrice (yield: 0.428 g, 78%). 

1H NMR (500 MHz, DMSO, ppm): 2.21 (s, 3H, -CH3), 7.09 (s, 1H, thiophene-H), 7.19 
(s, 1H, thiophene-H), 7.22 (s, 2H, Ar-H), 7.28 (s, 1H, Ar-H), 7.73 (s, 1H, Ar-H), 8.26 (s, 1H, 
=CH), 12.15 (s, 1H, -NH). 13C NMR (500 MHz, DMSO, ppm): 15.74, 121.98, 122.14, 123.79, 

S

S

N
NH

N CH
S

OHC

S

N
NH

NH2

2-Hydrazinobenzothiazole

(ia) 4-Methyl-2-thiophene carboxaldehyde, a* = Methanol
(ib) 3-Methyl-2-thiophene carboxaldehyde, b* = Ethanol, cat. AcOH

R

OOHC
R

S

N
NH

N CH
O

R2-Hydrazinobenzothiazole

(ic) (R=Nitro) 5-Nitro-2-furaldehyde

(id) (R=Methyl) 5-Methyl-2-furaldehyde

R

S

N
NH

NH2

1

2

3

4

+

+

12 h, reflux

a*, b*

Ethanol,
cat. AcOH

10-12 h, reflux

Figure 2. The structures of benzothiazole derivatives.

2. Methods
2.1. Computational Details

The optimization of ground state (S0) geometries of benzothiazole compounds was
achieved by density functional theory (DFT) [49–52] at the B3LYP/6-31+G** level. The
frequency calculations were performed at the B3LYP/6-31+G** level. There was no neg-
ative frequency obtained, which indicated that the optimized structures were suitable
for further studies. Earlier studies demonstrated that B3LYP was able to calculate charge
transport [53]. Here, electron affinity (EA), ionization potential (IP), and reorganization
energy for hole/electron (λhole/λelec) values were computed at the B3LYP/6-31G** level.
The optimization of geometries in an excited state (S1) was achieved by time-dependent
DFT [54] at the TD-B3LYP/6-31+G** level. The absorption (λmax) was assessed at the
TD-B3LYP/6-31+G** level in gas-phase and solvents (ethanol, acetone, DMF, and DMSO)
with the Gaussian16 package [55] using self-consistent reaction field (SCRF) theory with a
polarized continuum model (PCM) [56].

2.2. Experimental Details

All the characterization spectra of FTIR, 1HNMR, 13C NMR, and ESI-mass were
incorporated in supporting files as Figures S1–S17.

2.2.1. Synthesis of Comp1

Methanolic solution of 4-methyl-2-thiophenecarboxaldehyde (0.332 g, 2 mmol) was
added dropwise to the solution of 2-hydrazino benzothiazole (0.252 g, 2 mmol) dissolved in
methanol. The resulting mixture was continuously stirred for 12 h under reflux conditions.
The resulting pale yellow-colored precipitate of Comp1 was further filtered and washed
with methanol and ether thrice (yield: 0.428 g, 78%).

1H NMR (500 MHz, DMSO, ppm): 2.21 (s, 3H, -CH3), 7.09 (s, 1H, thiophene-H), 7.19 (s,
1H, thiophene-H), 7.22 (s, 2H, Ar-H), 7.28 (s, 1H, Ar-H), 7.73 (s, 1H, Ar-H), 8.26 (s, 1H, =CH),
12.15 (s, 1H, -NH). 13C NMR (500 MHz, DMSO, ppm): 15.74, 121.98, 122.14, 123.79, 126.47,
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132.23, 138.19, 144.10, 167.04. FTIR (ATR, cm−1): 1615 (C=N), 1575 (C=N; benzothiazole
ring). UV–vis spectrum [(0.5 × 10−5 M; lmax, solvent), (e; L M−1 cm−1)]: 353 (acetone;
59,000), 360 (DMF; 59,000), 362 (DMSO; 58,500). Anal. calcd. for C13H11N3S2: C, 57.12; H,
4.06; N, 15.37; S, 23.46. Found C, 57.16; H, 4.10; N, 15.41; S, 23.42. HR-MS [M+H]+: 274
(calcd. 274).

2.2.2. Synthesis of Comp2

Ethanolic solution of 3-methyl-2-thiophenecarboxaldehyde (0.229 g, 1.815 mmol) was
added dropwise to the solution of 2-hydrazino benzothiazole (0.300 g, 1.815 mmol) dis-
solved in ethanol in the presence of 5 drops of acetic acid. The resulting mixture was contin-
uously stirred for 12 h under reflux conditions. The resulting off-white-colored precipitate
of Comp2 was further filtered and washed with ethanol and ether (yield: 0.372 g, 75%).

1H NMR (500 MHz, DMSO, ppm): 2.38 (s, 3H, -CH3), 7.01 (s, 1H, Fural-H), 7.14 (s, 1H,
Fural-H), 7.34 (s, 1H, Ar-H), 7.43 (s, 1H, Ar-H), 7.57 (s, 1H, Ar-H), 7.79 (s, 1H, Ar-H), 8.40 (s,
1H, =CH), 12.12 (s, 1H, -NH). FTIR (ATR, cm−1): 1616 (C=N), 1576 (C=N; benzothiazole
ring). 13C NMR (500 MHz, DMSO, ppm): 14.52, 121.01, 121.24, 122.70, 124.52, 128.81, 131.31,
143.01, 167.01. UV–vis spectrum [(0.5 × 10−5 M; lmax, solvent), (ε; L M−1 cm−1)]: 352
(ethanol; 55,150), 353 (acetone; 55,150), 358 (DMF; 55,000), 361 (DMSO; 55,050). Anal. calcd.
for C13H11N3S2: C, 57.12; H, 4.06; N, 15.37; S, 23.46. Found C, 57.11; H, 4.09; N, 15.41; S,
23.40. HR-MS [M+H]+: 274 (calcd. 274).

2.2.3. Crystal Structure of Comp2

Empirical formula: C13H11N3S2; formula weight: 273.37; crystal system: triclinic;
space group P-1, unit cell dimensions a = 5.8300 (12) Å, α = 87.37 (3)◦, b = 13.365 (3) Å,
β = 82.25 (3)◦, c = 16.684 (3) Å and γ = 83.70 (3)◦; volume 1279.7 (5) Å3; Z = 4; density
(calculated) 1.419 Mg/m3 (see Figures 3 and 4).
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Figure 3. (A) Two adjacent molecules showing the π-π stacking interaction also displayed with the
help of (B) the space fill model, (C) H-bonding interaction between two laterally close molecules
(bond length shown in Å), (D) extended network of molecules though weak interactions (π-π stacking
and H-bonding), and (E) labeling of each atom shown in ball stick model.
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(ellipsoids at 40% probability).

2.2.4. Synthesis of Comp3

Ethanolic solution of 5-nitro-2-furaldehyde (0.256 g, 1.815 mmol) was added dropwise
to the solution of 2-hydrazino benzothiazole (0.300 g, 1.815 mmol) dissolved in ethanol in
the presence of 5-7 drops of acetic acid. The resulting mixture was continuously stirred
for 10 h under reflux conditions. The resulting orange-colored precipitate of Comp3 was
further filtered and washed with ethanol and ether (yield: 0.377 g, 72%).

1H NMR (500 MHz, DMSO, ppm): 7.16 (d, 2H, Ar-H), 7.33 (d, 1H, Ar-H), 7.45 (s, 1H, Ar-
H), 7.79 (d, 2H, Fural-H), 8.10 (s, 1H, =CH), 12.71 (s, 1H, -NH). 13C NMR (500 MHz, DMSO,
ppm): 108.99, 115.01, 121.91, 122.04, 126.42, 133.41, 148.35, 154.68, 156.52, 167.08. FTIR
(ATR, cm−1): 1622 (C=N), 1581 (C=N, benzothiazole). UV–vis spectrum [(0.5 × 10−5 M;
λmax, solvent), (ε; LM−1 cm−1)]: 430 (DMF; 57,500), 445 (DMSO; 57,400). Anal. calcd. for
C13H11N3S2: C, 50.00; H, 2.80; N, 19.43; S, 11.12. Found C, 50.11; H, 2.83; N, 19.40; S, 11.15.
HR-MS [M+Na]+: 311 (calcd. 311). [M+H]+; 289 (289).

2.2.5. Synthesis of Comp4

A solution mixture of 2-hydrazino benzothiazole (0.300 g, 1.815 mmol) with 5 drops
of acetic acid was separately prepared and allowed to react with 5-methylfurfrualdehyde
(0.200 g, 1.815 mmol). The resulting solution mixture was refluxed for 12 h to further obtain
the light brown precipitate of compound Comp4, which was washed with ethanol and
ether (yield: 0.355 g, 76%).

1H NMR (500 MHz, DMSO, ppm): 2.36 (s, 3H, -CH3), 6.26 (s, 1H, Fural-H), 6.74 (s, 1H,
Fural-H), 7.08 (s, 1H, Ar-H), 7.30 (s, 1H, Ar-H), 7.38 (s, 1H, Ar-H), 7.74 (s, 1H, Ar-H), 7.93
(s, 1H, =CH), 12.11 (s, 1H, -NH). 13C NMR (500 MHz, DMSO, ppm): 14.17, 117.06, 122.00,
122.13, 131.52, 132.94, 139.85, 149.14, 152.20, 166.99. FTIR (ATR, cm−1): 1622 (C=N), 1607
(C=N, benzothiazole). UV–vis spectrum [(0.5 × 10−5 M; λmax, solvent), (ε; L M−1 cm−1)]:
343 (acetone; 59,000), 344 (ethanol; 59,000), 350 (DMF; 59,000), 353 (DMSO; 58,950). Anal.
calcd. for C13H11N3OS: C, 60.68; H, 4.31; N, 16.33; S, 12.46. Found C, 60.26; H, 4.40; N,
16.30; S, 12.39. HR-MS [M+H]+: 258 (calcd. 258), [M+Na]+; 280 (calcd. 280).

3. Results and Discussion
3.1. Electronic Properties

The EHOMO, ELUMO, and Egap of S0 and S1 of the benzothiazole compounds are
provided in Table 1. The trend in the S0 EHOMO was: Comp4 (−5.52) > Comp2 (−5.58) >
Comp1 (−5.59) > Comp3 (−6.18). The trend in ELUMO at S0 was: Comp2 (−1.88) > Comp4
(−1.92) > Comp1 (−1.95) > Comp3 (−3.35). The effect of -NO2 in place of -CH3 in the
furan-based derivative was more useful for tuning the energy values of frontier molecular
orbitals (FMOs), i.e., Comp3. One can see that the substitution of -NO2 group lowered the
EHOMO and ELUMO values of Comp3, resulting in reducing the Egap, i.e., 2.83 eV at S0.
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Table 1. The HOMO/LUMO energies (EHOMO/ELUMO) and energy gaps (Egap) of benzothiazoles at
the B3LYP/6-31+G** and TD-B3LYP/6-31+G** levels for S0 and S1 (in eV), respectively.

Compounds EHOMO ELUMO Egap EHOMO ELUMO Egap
Ground State Excited State

Comp1 −5.59 −1.95 3.64 −4.77 −2.61 2.16
Comp2 −5.58 −1.88 3.70 −4.76 −2.55 2.21
Comp3 −6.18 −3.35 2.83 −5.13 −4.01 1.12
Comp4 −5.52 −1.92 3.60 −4.73 −2.56 2.17

The tendency in the S1 EHOMO was: Comp4 (−4.73) > Comp2 (−4.76) > Comp1
(−4.77) > Comp3 (−5.13), while in the S1 ELUMO it was: Comp2 (−2.55) > Comp4 (−2.56) >
Comp1 (−2.61) > Comp3 (−4.01). The substitution of -NO2 at position-5 on the furan ring
led to lowering the energy levels of the HOMO and LUMO in Comp3, which reduced
the Egap of S1, i.e., 1.12 eV, and was advantageous for charge transport and optoelectronic
properties. The FMOs at S0 and S1 are illustrated in Figures 5 and 6, respectively. The
HOMO was delocalized on entire molecules in all studied systems, and the LUMO was
localized toward the thiophene/furan moiety in Comp1, Comp2, and Comp4, while -NO2
in Comp3 was also involved in the formation of the LUMO showing an intra-molecular
charge transfer (ICT) from H→L. At S1, the HOMO was delocalized on the benzothiazoles
ring in all the derivatives, while the charge density at the LUMO was nearly the same as S0.
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The work functions (φ) of Ag (Al) were 4.74 (4.08 eV) [57]. The hole/electron injection
energy barricades (HIE/EIE) of benzothiazoles to the Al electrode were computed as (φ-
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EHOMO) and (ELUMO-φ), correspondingly. The EIE from Comp1–Comp4 to Al were 2.13,
2.20, 0.73, and 2.16 eV, respectively. The HIE for Comp1–Comp4 were 1.51, 1.50, 2.00,
and 1.44 eV, correspondingly. The calculated EIE from Comp1–Comp4 to Ag were 2.79,
2.86, 1.39, and 1.82 eV, respectively. The HIE for Comp1–Comp4 were 0.85, 0.84, 1.44, and
0.78 eV, respectively. These outcomes suggested that the substitution of the -NO2 group at
position 5 on the furan moiety in Comp3 would encourage the development of the electron
injection, while the -CH3 group might top up the hole injection aptitude, see Table 2.

Table 2. The electron/hole injection energy (EIE/HIE) barriers in eV from benzothiazoles to silver
(Ag)/aluminum (Al) electrodes calculated at the B3LYP/6-31+G** level.

Compounds HIE (Ag) EIE (Ag) HIE (Al) EIE (Al)

Comp1 0.85 2.79 1.51 2.13
Comp2 0.84 2.86 1.50 2.20
Comp3 1.44 1.39 2.10 0.73
Comp4 0.78 1.82 1.44 2.16

3.2. Absorption Spectra

Absorption (λmax), oscillator strengths (f ), and the percentage contribution of the
transitions of the FMOs to the studied derivatives of benzothiazole on the TD-B3LYP/6-
31+G** level in gas-phase and various solvents are shown in Table 3. The solvent effect
has attracted much attention because of many of the chemical processes that occur in the
solution phase. In an effort to explore the effect of the solvent on the quantum–chemical
calculations of the absorption maxima, the gas phase of the studies consisted of molecules
(as a control), and then the data were compared with the λmax computed in a solvent
such as ethanol, acetone, DMF, and DMSO. The effects of the substituents on the λmax
at the TD-B3LYP/6-31+G** level in the gas phase and the solvent stage were compared
and discussed. The effect of solvent polarity on the absorption spectra was measured in
polar and non-polar solvents (ethanol, acetone, DMF, and DMSO), as demonstrated in
Figures S5 and S6, and corresponding data are tabulated in Table S1.

Here, the first λmax band was noticed at 358 nm related to H→L (S0→S1), whereas
the second was from H→L + 1 at 281 nm for Comp1 in the gas phase. The first λmax band
was observed at 363 nm corresponding to H→ L (S0 → S1), while the second was from
H→L + 1 at 281 nm for Comp1 in ethanol. Additionally, no significant effect was observed
on λmax from the gas phase to solvent in Comp1, Comp2, and Comp4. The solvent polarity
also had no significant effect on λmax. In the gas phase, the substitution of -NO2 at position 5
of furan in Comp3 led to a red shift, i.e., 93 nm in the first band and 42 nm in the second
band compared with Comp1. We noted that a significant effect was observed in λmax from
the gas phase to solvent in Comp3, i.e., 481 nm in ethanol vs. 451 nm in the gas phase. The
computed data were in good agreement with the experimental findings, see Table S1. The
substitution of -NO2 at position 5 of furan in Comp3 led to a redshift in λmax from the gas
phase to ethanol, acetone, DMF, and DMSO, i.e., 30, 30, 33, and 33 nm for the first band
and 12, 12 13, and 13 nm for the second. The effect of electron acceptor and electron donor
moiety was mainly on the first λmax band, i.e., the introduction of -NO2 at position 5 of
furan in Comp3 tuned the wavelength toward a longer wavelength.

All electronic transitions and corresponding oscillator strengths in the absorption spec-
tra were π to π* type. A positive development in the oscillator strength was observed, i.e., it
was largest from S0 to S1 in solvent compared with the gas phase. According to Table 3,
the computed excitation energy for all studied compounds, except Comp3 in solvent,
was almost the same. All of the compounds exhibited two absorption peaks related to
the benzothiazole part, and the charge transfer was associated with the thiophene/furan
substituted moiety (Figure 5). The HOMO was entirely located on the molecules and ben-
zothiazole, while the LUMO was on the thiophene-furan part, which was an illuminating
charge transfer-type transition (CT) of the π to π* in the first bands in the λmax.
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Table 3. The absorption wavelengths (λmax, nm), oscillator strengths (f ), percent contribution, and key
transitions in the gas phase as well as in solvents (ethanol, acetone, DMF, and DMSO) of benzothiazole
derivatives at the TD-B3LYP/6-31+G** level.

Comp λmax f Tran %Con λmax f Tran %Con

Gas phase In Ethanol

Comp1 358 0.8839 H→L 70% 363 1.1034 H→L 70%
281 0.2282 H→L + 1 30% 281 0.1313 H→L + 1 29%

Comp2 357 0.8301 H→L 70% 359 1.0638 H→L 70%
278 0.2280 H→L + 1 35% 277 0.1452 H→L + 1 39%

Comp3 451 0.6867 H→L 70% 481 0.8210 H→L 70%
323 0.4853 H→L + 1 27% 335 0.4279 H→L + 1 23%

Comp4 362 0.9571 H→L 70% 367 1.1864 H→L 70%
284 0.2341 H→L + 1 29% 283 0.1312 H→L + 1 31%

Comp λmax f Tran %Con λmax f Tran %Con
In acetone In DMF

Comp1 363 1.1018 H→L 70% 364 1.1213 H→L 70%
281 0.1323 H→L + 1 29% 281 0.1280 H→L + 1 29%

Comp2 359 1.0620 H→L 70% 360 1.0840 H→L 70%
277 0.1461 H→L + 1 39% 277 0.1429 H→L + 1 39%

Comp3 481 0.8202 H→L 70% 484 0.8388 H→L 70%
335 0.4287 H→L + 1 23% 336 0.4224 H→L + 1 23%

Comp4 367 1.1847 H→L 70% 368 1.2041 H→L 70%
283 0.1322 H→L + 1 31% 283 0.1280 H→L + 1 31%

Comp λmax f Tran %Con
In DMSO

Comp1 364 1.1189 H→L 70%
281 0.1278 H→L + 1 29%

Comp2 360 1.0813 H→L 70%
277 0.1425 H→L + 1 39%

Comp3 484 0.8357 H→L 70%
336 0.4228 H→L + 1 23%

Comp4 368 1.2018 H→L 70%
283 0.1278 H→L + 1 31%

The lowest energy gaps were the π to π* for Comp3 (2.8 eV), while the other ben-
zothiazole derivatives showed larger band gaps as established from the absorption values
(see Table 3). These results clearly showed that the interaction between the donor and the
acceptor, either in an alternating manner or in a separate block in the molecule, played an
important role in controlling the planarity and the photophysical properties [58].

3.3. Charge Transport Properties

Charge transports are sensitive to internal traps [59] as well as transport within p-
type materials from low ionization potential levels, making the filling of deep traps less
attractive. Likewise, materials of n-type benefit from a larger EA, where there are also fewer
available traps. The hole injection from an electrode to a semiconductor HOMO is more
effective when the electrode is closer, or even greater than a semiconductor IP. Similarly,
for better electron injection, larger EA values would be suitable. For better stability of the
device, it was certified that its charged and neutral states do not contribute to chemical
reactions [60]. To preclude the thermodynamically efficient reaction (which contains oxygen
and water), a neutral semiconductor is expected to require an ionization potential greater
than 4.9 eV [60]. The shallow HOMO may diminish ambient O2 in the H2O existence to
form OH−. The semiconductors having a deep HOMO can receive holes that oxidize the
H2O in the atmosphere. Obstacles encountered during such an undesirable reaction by
chance lead to overpotentials, which permits organic semiconductors to gently make redox
to unveil the stabilities. Electron transport is most affected by the reaction with air, and it is
important to prevent the electron polaron from degrading the material. To achieve this, the
LUMO must be low to avert excited electrons from reducing the water-soluble O2 systems
to O2

− [61] or H2O to OH−. These undesirable electrochemical processes can reduce charge
transfer and set about irreversible changes within the semiconductor. Defining the exact
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amount of EA that needs to be skipped to prevent this redox reaction requires consideration
of the maximum response power and device morphology. It has been suggested that high
EA can put down oxidation reactions [62].

The values of the ionization potential (IP) and the electron affinity (EA) are among
the most important factors of organic compounds in xerography and electroluminescence.
These parameters were interconnected to the amount of energy required to add or remove
electrons and thus were considered as molecular stability with respect to donating or
receiving electrons to create an exciton. The IPs and EAs for all systems are listed in
Table 4. In addition, this entailed a positive correlation between the LUMO level and EAs.
We set them as the injection of an electron is affected by the HOMO and LUMO levels.
The π-conjugated organic materials with an electronic charge motion were created by a
hopping mechanism. The reorganization energy (λ) as an important factor influencing
the rate of the hopping charge because of its structural variation from neutral to ionic
states (cation and/or anion). In order to have a high degree of material mobility, the λ

must be reduced. The λ is a significant parameter for the estimation of the rate of charge
transfer. Previously, it was discovered that the DFT can be a reliable way to replicate the
experimental data [63–66]. The internal reorganization (λint) and external polarization (λext)
are two components of λ [67]. Here, λint was projected for the hole (λhole) and electron
(λelec). The λhole was estimated by Equations (1) and (2) [68]:

λ1 = E+ (B) − E+ (B+), (1)

λ2 = E (B+) − E (B) (2)

where E+ (B), E+ (B+), E (B+), and E (B) are the energies of the cation at neutral optimized ge-
ometry, neutral at the cationic optimized geometry, optimized cation, and optimized neutral
geometry, respectively. Correspondingly, λelec was estimated by Equations (3) and (4):

λ3 = E− (B) − E− (B−), (3)

λ4 = E (B−) − E (B) (4)

where E− (B), E− (B−), and E (B−) are energies of the anion at neutral optimized geometry,
neutral at anionic optimized geometry, and the anionic optimized geometry.

Table 4. Adiabatic/vertical ionization potential (IPa/IPv), adiabatic/vertical electron affinity
(EAa/EAv), and electron/hole reorganization energies (λelec/λhole) in eV of benzothiazoles at the
B3LYP/6-31+G** level.

Compounds IPa EAa IPv EAv λhole λelec ∆λ

Comp1 7.07 0.41 6.96 0.52 0.235 0.327 0.092
Comp2 7.05 0.36 6.95 0.46 0.233 0.340 0.107
Comp3 7.64 2.09 7.52 1.85 0.216 0.487 0.271
Comp4 6.98 0.39 6.88 0.51 0.249 0.320 0.071

The vertical and adiabatic EA and IP were assessed by applying the following equations:

IPa = E(B+) − E(B), (5)

EAa = E(B) − E(B−), (6)

IPv = E+(B) − E(B), (7)

IPv = E+(B) − E(B), (8)

The computed (λhole and λelec) and λint of the benzothiazole derivatives at the level
of B3LYP/6-31+G** are shown in Table 4. The λhole was calculated to be much smaller
than the λelec, with the difference in the range of 0.071 to 0.271 eV. Hitherto, it was pointed
out that lower λ values can increase the charge transfer rate [65,69]. The substitution
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of -NO2 at position 5 of the furan in Comp3 led to a decrease in the polarization of the
neutral to cation state, which meant that the λhole values were lower compared with other
compounds, suggesting that this compound was a good choice for the hole transfer. It
may turn out that the -CH3 group at position 5 of furan in Comp4 led to a decrease in the
polarization of the neutral to anion, which will result in a lower λelec value in comparison
with other compounds, suggesting that this compound may be a good candidate for
electron transport. Here we also compared the λhole value of the benzothiazole derivatives
with TPD (λhole = 0.290 eV) [70]. The λhole values of the benzothiazole derivatives were
much lower than those of the best practice TPD, which suggested that the compounds we
studied may be better hole transfer contenders.

3.4. Molecular Electrostatic Potential

Earlier works reported that diffraction methods would experimentally determine the
molecular electrostatic potential (MEP) [62,63]. In addition, it could be tested by simulation.
The MEP measures the widespread electronic distribution across the board, which is a broad
aspect of understanding and predicting the reactivity of different compounds [64]. Figure 7
contains the MEP map in color. Red represents regions with high negative potential and
blue indicates regions with high positive potential. The high potentials of negative/positive
regions are ideal for electrophilic/nucleophilic attacks. The MEP decreases in the order
blue > green > yellow > orange > red; red indicates the greatest repulsion while blue
indicates the most attractive phase of the nucleophilic attack.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Molecular electrostatic potential surfaces views of benzothiazole derivatives. 

3.5. UV–vis Experiment, Thin Film Preparation and Characterization 
3.5.1. UV–vis Experiment 

A set of UV–vis experiments was performed in various polar solvents to gain insight 
into the effect of solvent polarity on Comp1–4. Comp1, Comp2, and Comp4 produced 
similar results because of the presence of a similar D-A system as well as methyl substit-
uents. Comp3 produced entirely different results because of the presence of strong accep-
tor -NO2 groups, which facilitated charge transfer more effectively than Comp1, Comp2, 
and Comp4. The peaks at 350–360 nm and 250–270 nm corresponded to the n-p* and p-p* 
transitions for Comp1–4. The additional peak in Comp3 at 430–445 nm was due to the 
presence of charge transfer. In addition, upon increasing the polarity of the solvent, a se-
quential red shift was observed, signifying the effect of solvent polarity on the D-A-based 
materials, see Figures 8 and 9. The experimental results supported the observation made 
from computational data. 

Figure 7. Molecular electrostatic potential surfaces views of benzothiazole derivatives.

Figure 7 reveals that the nitrogen atom in the benzothiazole moiety, in particular,
had negative potential, while -NH on the bridge with the -CH3 group had good positive
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potential. In Comp3, the -NO2 group had a negative potential. These results clearly
indicated that in the event of a nucleophilic attack, the repulsion will be in potentially
negative MEP areas, i.e., the benzothiazole moiety, especially the nitrogen atom and the
-NO2 group, while the main attraction will be on the -NH and -CH3 groups. In addition,
in the event of an electrophilic attack, the attraction may be to the benzothiazole moiety,
especially the nitrogen atom and the -NO2 group, while the greater repulsion may be to the
atoms in the -NH and the -CH3 groups.

3.5. UV–vis Experiment, Thin Film Preparation and Characterization
3.5.1. UV–vis Experiment

A set of UV–vis experiments was performed in various polar solvents to gain insight
into the effect of solvent polarity on Comp1–4. Comp1, Comp2, and Comp4 produced
similar results because of the presence of a similar D-A system as well as methyl sub-
stituents. Comp3 produced entirely different results because of the presence of strong
acceptor -NO2 groups, which facilitated charge transfer more effectively than Comp1,
Comp2, and Comp4. The peaks at 350–360 nm and 250–270 nm corresponded to the n-p*
and p-p* transitions for Comp1–4. The additional peak in Comp3 at 430–445 nm was due
to the presence of charge transfer. In addition, upon increasing the polarity of the solvent, a
sequential red shift was observed, signifying the effect of solvent polarity on the D-A-based
materials, see Figures 8 and 9. The experimental results supported the observation made
from computational data.
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3.5.2. Thin Film Preparation

The synthesized compounds Comp1, Comp4, Comp2, and Comp3 were separately
dissolved in chloroform and DMSO to obtain 5 × 10−2 M solutions of the compounds. The
prepared solutions were individually dropped onto a precleaned FTO glass substrate. The
substrate was then placed on the spin coater (Holmarc, Model no-HO-TH-05) and rotated
at 1000 rpm for 30 s. This process was repeated three times to achieve a uniform film on
the substrate. The spin-coated film was then annealed at 70 ◦C in an oven. In addition,
silver contact was provided by applying silver paste on top of the film to fabricate a device
in a sandwich-like fashion (FTO-Comp-Ag). We also used Al contact for HIE and EIE
measurements of the compounds.
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3.5.3. Thin Film Characterization

The current-voltage (I–V) characteristics of the prepared thin films were obtained
using an electrochemical workstation (model CHI608E, CH Instruments) in linear sweep
voltammetry mode at a scan rate of 100 mV/s. All the prepared thin films were subjected to
the applied voltage; however, in response to the applied voltage, the prepared films failed
to provide any output current, as shown in Figure S17. Furthermore, to gain insight into the
conductance property of the prepared compounds in bulk, we performed electrochemical
impedance spectroscopic (EIS) measurements using a 3-electrode system. The prepared
solution of Comp2 in DMF was transferred into a cylindrical cell. The Nyquist impedance
plot shown in Figure 10A provides the resistance of the Comp2 solution as 334 kW. We
also tried I-V measurements on the Comp2 pellet, but there was no current in response to
the applied voltage between −1 and 1 volt. We were likely unable to detect a significant
current from the thin film because of its higher resistance value in bulk. However, further
work related to molecular engineering to engage lone pairs with the objective of improving
current response is under investigation.
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4. Conclusions

The electronic, charge transfer, and optical properties of benzothiazole compounds
were tuned. The absorption wavelengths were tested at the TD-B3LYP/6-31+G** level.
Modification of chemical structures can greatly balance and improve electronic and charge
transfer properties. In fact, the combination of benzothiazole with the furan unit and the
-NO2 group resulted in a better separation of the absorption in the solar spectrum. The
absorption maxima of this compound were red-shifted in the UV–vis region, expecting
the blue region in the range of 481 nm in ethanol at the TD-B3LYP/6-31+G** level, which
makes this material also suitable for efficient OFETs. The introduction of the -NO2 group
into the furan at position 5 in Comp3 led to a red shift in the absorption spectra compared
with other molecules. Comp1, Comp2, and Comp4 produced similar results because of
the presence of a similar D-A system as well as the methyl substituents, while Comp3
produced entirely different results because of the presence of strong acceptor -NO2 groups,
which facilitated charge transfer more effectively than Comp1, Comp2, and Comp4. Values
of hole reorganization energies smaller than those of electrons would improve intrinsic
hole mobility. The smaller electron reorganization energy value for Comp4 compared with
other counterparts might lead to its better electron charge transfer ability. The insignificant
current from the thin film was due to its higher resistance value in bulk. The reason we
obtained insignificant hole/electron injection energy for the synthesized compounds was
likely due to the presence of the free –NH group in the proposed molecules, resulting in
the lowering of hole/electron mobility.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248672/s1, Figures S1–S4: Characteristics of Comp1;
Figures S5–S8: Characteristics of Comp2; Figures S9–S12: Characteristics of Comp3; Figures S13–S16:
Characteristics of Comp4; Figure S17: I-V characteristics of (A) Comp1-film, (B) Comp2-film,
(C) Comp3-film and (D) Comp4-film; Table S1: λmax for all the four compounds in acetone, ethanol,
DMF and DMSO.
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