Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (639)

Search Parameters:
Keywords = acceleration metric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1728 KiB  
Article
Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping
by Jorge Davalos-Guzman, Jose L. Chavez-Hurtado and Zabdiel Brito-Brito
Electronics 2025, 14(15), 3097; https://doi.org/10.3390/electronics14153097 (registering DOI) - 3 Aug 2025
Abstract
The optimization of high-frequency circuits remains a computationally intensive task due to the need for repeated high-fidelity electromagnetic (EM) simulations. To address this challenge, we propose a novel integration of machine learning-generated inverse maps within the space mapping (SM) optimization framework to significantly [...] Read more.
The optimization of high-frequency circuits remains a computationally intensive task due to the need for repeated high-fidelity electromagnetic (EM) simulations. To address this challenge, we propose a novel integration of machine learning-generated inverse maps within the space mapping (SM) optimization framework to significantly accelerate circuit optimization while maintaining high accuracy. The proposed approach leverages Bayesian Neural Networks (BNNs) and surrogate modeling techniques to construct an inverse mapping function that directly predicts design parameters from target performance metrics, bypassing iterative forward simulations. The methodology was validated using a low-pass filter optimization scenario, where the inverse surrogate model was trained using electromagnetic simulations from COMSOL Multiphysics 2024 r6.3 and optimized using MATLAB R2024b r24.2 trust region algorithm. Experimental results demonstrate that our approach reduces the number of high-fidelity simulations by over 80% compared to conventional SM techniques while achieving high accuracy with a mean absolute error (MAE) of 0.0262 (0.47%). Additionally, convergence efficiency was significantly improved, with the inverse surrogate model requiring only 31 coarse model simulations, compared to 580 in traditional SM. These findings demonstrate that machine learning-driven inverse surrogate modeling significantly reduces computational overhead, accelerates optimization, and enhances the accuracy of high-frequency circuit design. This approach offers a promising alternative to traditional SM methods, paving the way for more efficient RF and microwave circuit design workflows. Full article
(This article belongs to the Special Issue Advances in Algorithm Optimization and Computational Intelligence)
Show Figures

Figure 1

20 pages, 4472 KiB  
Article
Exploring Scientific Collaboration Patterns from the Perspective of Disciplinary Difference: Evidence from Scientific Literature Data
by Jun Zhang, Shengbo Liu and Yifei Wang
Big Data Cogn. Comput. 2025, 9(8), 201; https://doi.org/10.3390/bdcc9080201 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
With the accelerating globalization and rapid development of science and technology, scientific collaboration has become a key driver of knowledge production, yet its patterns vary significantly across disciplines. This study aims to explore the disciplinary differences in scholars’ scientific collaboration patterns and their [...] Read more.
With the accelerating globalization and rapid development of science and technology, scientific collaboration has become a key driver of knowledge production, yet its patterns vary significantly across disciplines. This study aims to explore the disciplinary differences in scholars’ scientific collaboration patterns and their underlying mechanisms. Data were collected from the China National Knowledge Infrastructure (CNKI) database, covering papers from four disciplines: mathematics, mechanical engineering, philosophy, and sociology. Using social network analysis, we examined core network metrics (degree centrality, neighbor connectivity, clustering coefficient) in collaboration networks, analyzed collaboration patterns across scholars of different academic ages, and compared the academic age distribution of collaborators and network characteristics across career stages. Key findings include the following. (1) Mechanical engineering exhibits the highest and most stable clustering coefficient (mean 0.62) across all academic ages, reflecting tight team collaboration, with degree centrality increasing fastest with academic age (3.2 times higher for senior vs. beginner scholars), driven by its reliance on experimental resources and skill division. (2) Philosophy shows high degree centrality in early career stages (mean 0.38 for beginners) but a sharp decline in clustering coefficient in senior stages (from 0.42 to 0.17), indicating broad early collaboration but loose later ties due to individualized knowledge production. (3) Mathematics scholars prefer collaborating with high-centrality peers (higher neighbor connectivity, mean 0.51), while sociology shows more inclusive collaboration with dispersed partner centrality. Full article
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Quantifying Ozone-Driven Forest Losses in Southwestern China (2019–2023)
by Qibing Xia, Jingwei Zhang, Zongxin Lv, Duojun Wu, Xiao Tang and Huizhi Liu
Atmosphere 2025, 16(8), 927; https://doi.org/10.3390/atmos16080927 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3 [...] Read more.
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3’s impacts on forest ecosystems in Southwestern China (Yunnan, Guizhou, Sichuan, and Chongqing), which harbors crucial forest resources. We analyzed high-resolution monitoring data from over 200 stations (2019–2023), employing spatial interpolation to derive the regional maximum daily 8 h average O3 (MDA8-O3, ppb) and accumulated O3 exposure over 40 ppb (AOT40) metrics. Through AOT40-based exposure–response modeling, we quantified the forest relative yield losses (RYL), economic losses (ECL) and ECL/GDP (GDP: gross domestic product) ratios in this region. Our findings reveal alarming O3 increases across the region, with a mean annual MDA8-O3 anomaly trend of 2.4% year−1 (p < 0.05). Provincial MDA8-O3 anomaly trends varied from 1.4% year−1 (Yunnan, p = 0.059) to 4.3% year−1 (Guizhou, p < 0.001). Strong correlations (r > 0.85) between annual RYL and annual MDA8-O3 anomalies demonstrate the detrimental effects of O3 on forest biomass. The RYL trajectory showed an initial decline during 2019–2020 and accelerated losses during 2020–2023, peaking at 13.8 ± 6.4% in 2023. Provincial variations showed a 5-year averaged RYL ranging from 7.10% (Chongqing) to 15.85% (Yunnan). O3 exposure caused annual ECL/GDP averaging 4.44% for Southwestern China, with Yunnan suffering the most severe consequences (ECL/GDP averaging 8.20%, ECL averaging CNY 29.8 billion). These results suggest that O3-driven forest degradation may intensify, potentially undermining the regional carbon sequestration capacity, highlighting the urgent need for policy interventions. We recommend enhanced monitoring networks and stricter control methods to address these challenges. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

20 pages, 3272 KiB  
Article
Mobile Robot Path Planning Based on Fused Multi-Strategy White Shark Optimisation Algorithm
by Dazhang You, Junjie Yu, Zhiyuan Jia, Yepeng Zhang and Zhiyuan Yang
Appl. Sci. 2025, 15(15), 8453; https://doi.org/10.3390/app15158453 - 30 Jul 2025
Viewed by 214
Abstract
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle [...] Read more.
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle avoidance, and smooth motion through innovative strategies. A novel multi-strategy fusion white shark optimization algorithm is proposed, focusing on actual scenario requirements, to provide optimal solutions for mobile robot path planning. First, the Chaotic Elite Pool strategy is employed to generate an elite population, enhancing population diversity and improving the quality of initial solutions, thereby boosting the algorithm’s global search capability. Second, adaptive weights are introduced, and the traditional simulated annealing algorithm is improved to obtain the Rapid Annealing Method. The improved simulated annealing algorithm is then combined with the White Shark algorithm to avoid getting stuck in local optima and accelerate convergence speed. Finally, third-order Bézier curves are used to smooth the path. Path length and path smoothness are used as fitness evaluation metrics, and an evaluation function is established in conjunction with a non-complete model that reflects actual motion to assess the effectiveness of path planning. Simulation results show that on the simple 20 × 20 grid map, the fusion of the Fused Multi-strategy White Shark Optimisation algorithm (FMWSO) outperforms WSO, D*, A*, and GWO by 8.43%, 7.37%, 2.08%, and 2.65%, respectively, in terms of path length. On the more complex 40 × 40 grid map, it improved by 6.48%, 26.76%, 0.95%, and 2.05%, respectively. The number of turning points was the lowest in both maps, and the path smoothness was lower. The algorithm’s runtime is optimal on the 20 × 20 map, outperforming other algorithms by 40.11%, 25.93%, 31.16%, and 9.51%, respectively. On the 40 × 40 map, it is on par with A*, and outperforms WSO, D*, and GWO by 14.01%, 157.38%, and 3.48%, respectively. The path planning performance is significantly better than other algorithms. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

19 pages, 660 KiB  
Article
Exploring the Relationship Between Game Performance and Physical Demands in Youth Male Basketball Players
by Javier Espasa-Labrador, Carlos Martínez-Rubio, Franc García, Azahara Fort-Vanmeergaehe, Jordi Guarch and Julio Calleja-González
J. Funct. Morphol. Kinesiol. 2025, 10(3), 293; https://doi.org/10.3390/jfmk10030293 - 29 Jul 2025
Viewed by 267
Abstract
Background: Understanding the relationship between physical demands and game performance is essential to optimize player development and management in basketball. This study aimed to examine the association between game performance and physical demands in youth male basketball players. Methods: Fifteen players (16.3 ± [...] Read more.
Background: Understanding the relationship between physical demands and game performance is essential to optimize player development and management in basketball. This study aimed to examine the association between game performance and physical demands in youth male basketball players. Methods: Fifteen players (16.3 ± 0.7 years) from a Spanish 4th division team were monitored over seven official games. Game performance variables were extracted from official statistics, including traditional and advanced metrics. Physical demands were monitored using an Electronic Performance Tracking System device, combining a positioning system and inertial sensors. Partial correlations, controlling for minutes played, were calculated to explore associations between physical demands and performance variables, both for the entire team and by playing position. Results: Significant correlations between physical demands and game performance were observed. Points scored correlated strongly with total distance and high-intensity accelerations, while assists correlated with high-intensity decelerations. Inertial metrics, such as player load and the number of jumps, showed large correlations with points, two-point attempts, and the efficiency rating. Positional analysis revealed stronger and more numerous correlations for centers compared to guards and forwards. Inertial sensor-derived metrics exhibited a greater number and strength of correlations than positioning metrics. Conclusions: Game performance and physical demands are intrinsically related, with specific patterns varying by playing position. Inertial sensors provide valuable complementary information to positioning systems for assessing physical demands in basketball. These findings can assist practitioners in tailoring monitoring and training strategies to optimize performance and manage player workload effectively. Full article
Show Figures

Figure 1

12 pages, 2309 KiB  
Article
From Youth to Senior: External Load Progression and Positional Differences in Spanish Women’s National Teams During World Cup Competitions
by Ismel Mazola, Miguel Valdés, Blanca Romero-Moraleda and Jaime González-García
Appl. Sci. 2025, 15(15), 8421; https://doi.org/10.3390/app15158421 (registering DOI) - 29 Jul 2025
Viewed by 158
Abstract
The aim of this study was to analyze and compare the external load demands of players from the Spanish women’s national football teams across the U-17, U-20, and senior categories during their respective FIFA World Cup participations. Key kinematic variables were assessed via [...] Read more.
The aim of this study was to analyze and compare the external load demands of players from the Spanish women’s national football teams across the U-17, U-20, and senior categories during their respective FIFA World Cup participations. Key kinematic variables were assessed via global positioning systems (GPS), including total distance (TD), high-speed running (HSR; ≥18 km·h−1), sprint distance (≥21 km·h−1), accelerations (>3 m·s−2), decelerations (<–3 m·s−2), and high metabolic load distance (HMLD) during 3 world cups (U17, U20 and senior). Significant differences were observed between the senior team and both U-20 and U-17 in nearly all variables, with greater magnitude as the intensity of the metrics increased, showing effect sizes ranging from moderate to very large (d = 0.95 to 4.76). Positional analysis by categories showed that senior full backs (FB) and central midfielders (CM) showed higher demands compared to U-20 and U-17. For TD, senior covered more than U-17 (FB: p = 0.001; d = 1.11 | CM: p = 0.023; d = 0.97), with small differences vs. U-20 (d ≤ 0.54). In HSR, both positions outperformed U-17 and U-20 (FB: p ≤ 0.007; d = 0.87–1.15 | CM: p ≤ 0.031; d = 0.71–1.11). In HMLD, both FB and CM displayed very large differences compared to U-17 and U-20 (all p < 0.001; d = 2.54–6.16). These findings underscore the need for progressive development of locomotor capacities from early stages, considering both age category and playing position, to facilitate a more seamless transition to elite-level football. Full article
Show Figures

Figure 1

19 pages, 650 KiB  
Article
LEMAD: LLM-Empowered Multi-Agent System for Anomaly Detection in Power Grid Services
by Xin Ji, Le Zhang, Wenya Zhang, Fang Peng, Yifan Mao, Xingchuang Liao and Kui Zhang
Electronics 2025, 14(15), 3008; https://doi.org/10.3390/electronics14153008 - 28 Jul 2025
Viewed by 314
Abstract
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time [...] Read more.
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time monitoring, accuracy, and scalability in such environments. This paper proposes a novel service performance anomaly detection system based on large language models (LLMs) and multi-agent systems (MAS). By integrating the semantic understanding capabilities of LLMs with the distributed collaboration advantages of MAS, we construct a high-precision and robust anomaly detection framework. The system adopts a hierarchical architecture, where lower-layer agents are responsible for tasks such as log parsing and metric monitoring, while an upper-layer coordinating agent performs multimodal feature fusion and global anomaly decision-making. Additionally, the LLM enhances the semantic analysis and causal reasoning capabilities for logs. Experiments conducted on real-world data from the State Grid Corporation of China, covering 1289 service combinations, demonstrate that our proposed system significantly outperforms traditional methods in terms of the F1-score across four platforms, including customer services and grid resources (achieving up to a 10.3% improvement). Notably, the system excels in composite anomaly detection and root cause analysis. This study provides an industrial-grade, scalable, and interpretable solution for intelligent power grid O&M, offering a valuable reference for the practical implementation of AIOps in critical infrastructures. Evaluated on real-world data from the State Grid Corporation of China (SGCC), our system achieves a maximum F1-score of 88.78%, with a precision of 92.16% and recall of 85.63%, outperforming five baseline methods. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

27 pages, 30210 KiB  
Article
Research on a Rapid Three-Dimensional Compressor Flow Field Prediction Method Integrating U-Net and Physics-Informed Neural Networks
by Chen Wang and Hongbing Ma
Mathematics 2025, 13(15), 2396; https://doi.org/10.3390/math13152396 - 25 Jul 2025
Viewed by 130
Abstract
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow [...] Read more.
This paper presents a neural network model, PINN-AeroFlow-U, for reconstructing full-field aerodynamic quantities around three-dimensional compressor blades, including regions near the wall. This model is based on structured CFD training data and physics-informed loss functions and is proposed for direct 3D compressor flow prediction. It maps flow data from the physical domain to a uniform computational domain and employs a U-Net-based neural network capable of capturing the sharp local transitions induced by fluid acceleration near the blade leading edge, as well as learning flow features associated with internal boundaries (e.g., the wall boundary). The inputs to PINN-AeroFlow-U are the flow-field coordinate data from high-fidelity multi-geometry blade solutions, the 3D blade geometry, and the first-order metric coefficients obtained via mesh transformation. Its outputs include the pressure field, temperature field, and velocity vector field within the blade passage. To enhance physical interpretability, the network’s loss function incorporates both the Euler equations and gradient constraints. PINN-AeroFlow-U achieves prediction errors of 1.063% for the pressure field and 2.02% for the velocity field, demonstrating high accuracy. Full article
Show Figures

Figure 1

18 pages, 3675 KiB  
Article
Mechanical Property Prediction of Wood Using a Backpropagation Neural Network Optimized by Adaptive Fractional-Order Particle Swarm Algorithm
by Jiahui Huang and Zhufang Kuang
Forests 2025, 16(8), 1223; https://doi.org/10.3390/f16081223 - 25 Jul 2025
Viewed by 211
Abstract
This study proposes a novel LK-BP-AFPSO model for the nondestructive evaluation of wood mechanical properties, combining a backpropagation neural network (BP) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory. The model accurately predicts four key mechanical properties—longitudinal tensile [...] Read more.
This study proposes a novel LK-BP-AFPSO model for the nondestructive evaluation of wood mechanical properties, combining a backpropagation neural network (BP) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory. The model accurately predicts four key mechanical properties—longitudinal tensile strength (SPG), modulus of elasticity (MOE), bending strength (MOR), and longitudinal compressive strength (CSP)—using only nondestructive physical features. Tested across diverse wood types (fast-growing YKS, red-heart CSH/XXH, and iron-heart XXT), the framework demonstrates strong generalizability, achieving an average prediction accuracy (R2) of 0.986 and reducing mean absolute error (MAE) by 23.7% compared to conventional methods. A critical innovation is the integration of LK causal analysis, which quantifies feature–target relationships via information flow metrics, effectively eliminating 29.5% of spurious correlations inherent in traditional feature selection (e.g., PCA). Experimental results confirm the model’s robustness, particularly for heartwood variants, while its adaptive fractional-order optimization accelerates convergence by 2.1× relative to standard PSO. This work provides a reliable, interpretable tool for wood quality assessment, with direct implications for grading systems and processing optimization in the forestry industry. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

11 pages, 961 KiB  
Article
Viscous Cosmology in f(Q,Lm) Gravity: Insights from CC, BAO, and GRB Data
by Dheeraj Singh Rana, Sai Swagat Mishra, Aaqid Bhat and Pradyumn Kumar Sahoo
Universe 2025, 11(8), 242; https://doi.org/10.3390/universe11080242 - 23 Jul 2025
Viewed by 205
Abstract
In this article, we investigate the influence of viscosity on the evolution of the cosmos within the framework of the newly proposed f(Q,Lm) gravity. We have considered a linear functional form [...] Read more.
In this article, we investigate the influence of viscosity on the evolution of the cosmos within the framework of the newly proposed f(Q,Lm) gravity. We have considered a linear functional form f(Q,Lm)=αQ+βLm with a bulk viscous coefficient ζ=ζ0+ζ1H for our analysis and obtained exact solutions to the field equations associated with a flat FLRW metric. In addition, we utilized Cosmic Chronometers (CC), CC + BAO, CC + BAO + GRB, and GRB data samples to determine the constrained values of independent parameters in the derived exact solution. The likelihood function and the Markov Chain Monte Carlo (MCMC) sampling technique are combined to yield the posterior probability using Bayesian statistical methods. Furthermore, by comparing our results with the standard cosmological model, we found that our considered model supports the acceleration of the universe in late time. Full article
Show Figures

Figure 1

13 pages, 5148 KiB  
Article
Deep Learning-Powered Super Resolution Reconstruction Improves 2D T2-Weighted Turbo Spin Echo MRI of the Hippocampus
by Elisabeth Sartoretti, Thomas Sartoretti, Alex Alfieri, Tobias Hoh, Alexander Maurer, Manoj Mannil, Christoph A. Binkert and Sabine Sartoretti-Schefer
Appl. Sci. 2025, 15(15), 8202; https://doi.org/10.3390/app15158202 - 23 Jul 2025
Viewed by 167
Abstract
Purpose: To assess the performance of 2D T2-weighted (w) Turbo Spin Echo (TSE) MRI reconstructed with a deep learning (DL)-powered super resolution reconstruction (SRR) algorithm combining compressed sensing (CS) denoising and resolution upscaling for high-resolution hippocampal imaging in patients with (epileptic) seizures and [...] Read more.
Purpose: To assess the performance of 2D T2-weighted (w) Turbo Spin Echo (TSE) MRI reconstructed with a deep learning (DL)-powered super resolution reconstruction (SRR) algorithm combining compressed sensing (CS) denoising and resolution upscaling for high-resolution hippocampal imaging in patients with (epileptic) seizures and suspected hippocampal pathology. Methods: A 2D T2w TSE coronal hippocampal sequence with compressed sense (CS) factor 1 (scan time 270 s) and a CS-accelerated sequence with a CS factor of 3 (scan time 103 s) were acquired in 28 patients. Reconstructions using the SRR algorithm (CS 1-SSR-s and CS 3-SSR-s) were additionally obtained in real time. Two readers graded the images twice, based on several metrics (image quality; artifacts; visualization of anatomical details of the internal hippocampal architecture (HIA); visibility of dentate gyrus/pes hippocampi/fornix/mammillary bodies; delineation of gray and white matter). Results: Inter-readout agreement was almost perfect (Krippendorff’s alpha coefficient = 0.933). Compared to the CS 1 sequence, the CS 3 sequence significantly underperformed in all 11 metrics (p < 0.001-p = 0.04), while the CS 1-SRR-s sequence outperformed in terms of overall image quality and visualization of the left HIA and right pes hippocampi (p < 0.001-p < 0.04) but underperformed in terms of presence of artifacts (p < 0.01). Lastly, relative to the CS 1 sequence, the CS 3-SRR-s sequence was graded worse in terms of presence of artifacts (p < 0.003) but with improved visualization of the right pes hippocampi (p = 0.02). Conclusion: DL-powered SSR demonstrates its capacity to enhance imaging performance by introducing flexibility in T2w hippocampal imaging; it either improves image quality for non-accelerated imaging or preserves acceptable quality in accelerated imaging, with the additional benefit of a reduced scan time. Full article
(This article belongs to the Special Issue Advances in Diagnostic Radiology)
Show Figures

Figure 1

18 pages, 960 KiB  
Article
Hybrid Algorithm via Reciprocal-Argument Transformation for Efficient Gauss Hypergeometric Evaluation in Wireless Networks
by Jianping Cai and Zuobin Ying
Mathematics 2025, 13(15), 2354; https://doi.org/10.3390/math13152354 - 23 Jul 2025
Viewed by 116
Abstract
The rapid densification of wireless networks demands efficient evaluation of special functions underpinning system-level performance metrics. To facilitate research, we introduce a computational framework tailored for the zero-balanced Gauss hypergeometric function [...] Read more.
The rapid densification of wireless networks demands efficient evaluation of special functions underpinning system-level performance metrics. To facilitate research, we introduce a computational framework tailored for the zero-balanced Gauss hypergeometric function Ψ(x,y)F12(1,x;1+x;y), a fundamental mathematical kernel emerging in Signal-to-Interference-plus-Noise Ratio (SINR) coverage analysis of non-uniform cellular deployments. Specifically, we propose a novel Reciprocal-Argument Transformation Algorithm (RTA), derived rigorously from a Mellin–Barnes reciprocal-argument identity, achieving geometric convergence with O1/y. By integrating RTA with a Pfaff-series solver into a hybrid algorithm guided by a golden-ratio switching criterion, our approach ensures optimal efficiency and numerical stability. Comprehensive validation demonstrates that the hybrid algorithm reliably attains machine-precision accuracy (1016) within 1 μs per evaluation, dramatically accelerating calculations in realistic scenarios from hours to fractions of a second. Consequently, our method significantly enhances the feasibility of tractable optimization in ultra-dense non-uniform cellular networks, bridging the computational gap in large-scale wireless performance modeling. Full article
(This article belongs to the Special Issue Advances in High-Performance Computing, Optimization and Simulation)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 352
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 373
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

20 pages, 5671 KiB  
Article
Evaluation of Proppant Placement Efficiency in Linearly Tapering Fractures
by Xiaofeng Sun, Liang Tao, Jinxin Bao, Jingyu Qu, Haonan Yang and Shangkong Yao
Geosciences 2025, 15(7), 275; https://doi.org/10.3390/geosciences15070275 - 21 Jul 2025
Viewed by 165
Abstract
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field [...] Read more.
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field conditions remains insufficiently understood. This study employed computational fluid dynamics to investigate proppant transport and placement in hydraulic fractures of which the aperture tapers linearly along their length. Four taper rate models (δ = 0, 1/1500, 1/750, and 1/500) were analyzed under a range of operational parameters: injection velocities (1.38–3.24 m/s), sand concentrations (2–8%), proppant particle sizes (0.21–0.85 mm), and proppant densities (1760–3200 kg/m3). Equilibrium proppant pack height was adopted as the key metric for pack morphology. The results show that increasing injection rate and taper rate both serve to lower pack heights and enhance downstream transport, while a higher sand concentration, larger particle size, and greater density tend to raise pack heights and promote more stable pack geometries. In tapering fractures, higher δ values amplify flow acceleration and turbulence, yielding flatter, “table-top” proppant distributions and extended placement lengths. Fine, low-density proppants more readily penetrate to the fracture tip, whereas coarse or dense particles form taller inlet packs but can still be carried farther under high taper conditions. These findings offer quantitative guidance for optimizing fracture geometry, injection parameters, and proppant design to improve conductivity and reduce sand-plugging risk in tight formations. These insights address the challenge of achieving effective proppant placement in complex fractures and provide quantitative guidance for tailoring fracture geometry, injection parameters, and proppant properties to improve conductivity and mitigate sand plugging risks in tight formations. Full article
Show Figures

Figure 1

Back to TopTop