Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,434)

Search Parameters:
Keywords = academia–industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1124 KB  
Review
From Mathematical Modeling and Simulation to Digital Twins: Bridging Theory and Digital Realities in Industry and Emerging Technologies
by Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis and Michail Papoutsidakis
Appl. Sci. 2025, 15(16), 9213; https://doi.org/10.3390/app15169213 - 21 Aug 2025
Viewed by 290
Abstract
Against the background of the unprecedented advancements related to Industry 4.0 and beyond, transitioning from classical mathematical models to fully embodied digital twins represents a critical change in the planning, monitoring, and optimization of complex industrial systems. This work outlines the subject within [...] Read more.
Against the background of the unprecedented advancements related to Industry 4.0 and beyond, transitioning from classical mathematical models to fully embodied digital twins represents a critical change in the planning, monitoring, and optimization of complex industrial systems. This work outlines the subject within the broader field of applied mathematics and computational simulation while highlighting the critical role of sound mathematical foundations, numerical methodologies, and advanced computational tools in creating data-informed virtual models of physical infrastructures and processes in real time. The discussion includes examples related to smart manufacturing, additive manufacturing technologies, and cyber–physical systems with a focus on the potential for collaboration between physics-informed simulations, data unification, and hybrid machine learning approaches. Central issues including a lack of scalability, measuring uncertainties, interoperability challenges, and ethical concerns are discussed along with rising opportunities for multi/macrodisciplinary research and innovation. This work argues in favor of the continued integration of advanced mathematical approaches with state-of-the-art technologies including artificial intelligence, edge computing, and fifth-generation communication networks with a focus on deploying self-regulating autonomous digital twins. Finally, defeating these challenges via effective collaboration between academia and industry will provide unprecedented society- and economy-wide benefits leading to resilient, optimized, and intelligent systems that mark the future of critical industries and services. Full article
(This article belongs to the Special Issue Feature Review Papers in Section Applied Industrial Technologies)
Show Figures

Figure 1

12 pages, 823 KB  
Article
Enhancing the Resilience of ROS 2-Based Multi-Robot Systems with Kubernetes: A Case Study on UWB-Based Relative Positioning
by Jiaqiang Zhang, Xianjia Yu and Tomi Westerlund
Sensors 2025, 25(16), 5067; https://doi.org/10.3390/s25165067 - 14 Aug 2025
Viewed by 371
Abstract
ROS (Robot Operating System) has become the de facto standard in robotics research and development, with ROS 2, in particular, offering enhanced support for real-time communication, distributed systems, and scalable multi-robot applications. These capabilities have driven its widespread adoption across academia, industry, and [...] Read more.
ROS (Robot Operating System) has become the de facto standard in robotics research and development, with ROS 2, in particular, offering enhanced support for real-time communication, distributed systems, and scalable multi-robot applications. These capabilities have driven its widespread adoption across academia, industry, and the open-source community. However, deploying ROS 2 applications across heterogeneous hardware platforms remains a complex task—especially in scenarios that require tightly coordinated, multi-agent systems. In such cases, the failure of a single agent can propagate disruptions throughout the system. A representative example is Ultra-wideband (UWB)-based multi-robot relative localization, where inter-robot dependencies are essential for maintaining accurate relative positioning. While Kubernetes offers powerful features for automated deployment and orchestration, its integration with ROS 2 has not yet been thoroughly evaluated within the context of specific robotic applications. This paper addresses this gap by integrating Kubernetes with ROS 2 in a UWB-based multi-robot localization system, using UWB ranging error mitigation as a representative application. An edge cluster comprising five NVIDIA Jetson Nano devices and one laptop is orchestrated using Kubernetes, with a Jetson Nano node mounted on each robot. We deploy Long Short-Term Memory (LSTM)-based error mitigation modules on the edge nodes and systematically induce failures in various combinations of these modules. The system’s resilience and robustness are then assessed by analyzing position errors under different failure scenarios. Full article
Show Figures

Figure 1

36 pages, 367 KB  
Conference Report
Abstracts of the 2025 51st Annual NATAS Conference
by Kenneth L. Kearns, Camille Bishop, Lawrence Judovits, John Rosener, Cathy Stewart and Tina Adams
Polymers 2025, 17(16), 2196; https://doi.org/10.3390/polym17162196 - 11 Aug 2025
Viewed by 313
Abstract
The North American Thermal Analysis Society (NATAS) is pleased to announce its 51st Annual Conference, held jointly with the IX International Baekeland Symposium. This premier event unites scientists, practitioners, and students from academia, industry, and government to explore the forefront of materials science. [...] Read more.
The North American Thermal Analysis Society (NATAS) is pleased to announce its 51st Annual Conference, held jointly with the IX International Baekeland Symposium. This premier event unites scientists, practitioners, and students from academia, industry, and government to explore the forefront of materials science. The NATAS conference provides a dynamic forum for attendees to delve into the latest advancements in thermal analysis, rheology, and materials characterization. The technical program will highlight new developments in instrumentation and software, alongside practical applications across a wide range of industries. Concurrently, the Baekeland Symposium will showcase cutting-edge scientific, technical, and industrial innovations in the field of high-performance thermosetting polymers. The synergy of this joint meeting creates a unique platform for cross-disciplinary collaboration, fostering the exchange of novel ideas and sparking new research opportunities. Featuring technical presentations, poster sessions, and plenary lectures from renowned experts and emerging graduate students, the conference offers an ideal environment for networking and professional development. We invite you to join us to discover state-of-the-art techniques, discuss groundbreaking research, and connect with peers and leaders in the thermal and materials community. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
25 pages, 5457 KB  
Article
Determining the Sulfate Content in Phosphogypsum and Cement-Based Materials Based on Conductivity Titration
by Dafu Wang, Jieming Zhang, Jingting Zhou, Yudong Sun, Jun Ren, Xincheng Li and Zhiyong Liu
Materials 2025, 18(16), 3758; https://doi.org/10.3390/ma18163758 - 11 Aug 2025
Viewed by 314
Abstract
Accurate determination of sulfate content in phosphogypsum (PG) and cement-based materials is crucial for understanding the corrosion mechanisms of cement-based materials, developing corrosion models, establishing durability design methods, and implementing maintenance strategies. To overcome the limitations of traditional gravimetric and EDTA titration methods [...] Read more.
Accurate determination of sulfate content in phosphogypsum (PG) and cement-based materials is crucial for understanding the corrosion mechanisms of cement-based materials, developing corrosion models, establishing durability design methods, and implementing maintenance strategies. To overcome the limitations of traditional gravimetric and EDTA titration methods in accurately quantifying low-concentration SO42− in PG and cement-based materials, an IoT-enabled conductometric titration system was developed to improve precision and automation. First, the principle of conductivity titration is introduced, in which Ba(NO3)2 is used as the titrant. Second, a method for eliminating the effects of H+, Cl, and Ca2+ ions is proposed. The impact of the titration rate, volume of liquid to be measured, titrant concentration, and other interfering ions on the results is discussed. Finally, the conductivity titration method was successfully applied to determine sulfate content in PG and cement-based materials. The results demonstrate that the self-developed conductivity titrator exhibits high testing accuracy, with a standard deviation of 0.013 for 15 repeated titrations, a coefficient of variation of 0.52%, and a recovery rate between 103.2% and 103.9%. The optimal solution volume to be determined was 5 mL. Ba(NO3)2, at approximately twice the sulfate concentration, enhances endpoint sensitivity and minimizes precipitation interference. Ag2O and CO2 significantly reduce the interference from H+, Cl, and Ca2+ ions by generating weakly conductive substances, such as H2O, AgCl, Ag3PO4, CaF2, and CaCO3. Conductometric titration demonstrated accurate SO42− quantification in PG and cement-based materials, enabling standardized protocols. This approach provides both theoretical and technical support for rapid sulfate detection in complex systems, with significant implications for both industry and academia. For the industry, it offers a reliable and standardized method for sulfate detection, enhancing quality control and process efficiency. For academia, it establishes a foundation for further research in civil engineering and environmental material analysis, contributing to both practical applications and theoretical advancements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

32 pages, 1314 KB  
Review
Telemedicine, eHealth, and Digital Transformation in Poland (2014–2024): Trends, Specializations, and Systemic Implications
by Wojciech M. Glinkowski, Tomasz Cedro, Agnieszka Wołk, Rafał Doniec, Krzysztof Wołk and Szymon Wilk
Appl. Sci. 2025, 15(16), 8793; https://doi.org/10.3390/app15168793 - 8 Aug 2025
Viewed by 828
Abstract
Background: Between 2014 and 2024, Poland underwent a significant digital transformation in its healthcare sector, evolving from isolated initiatives to a cohesive national eHealth ecosystem. This review examines the development, clinical significance, and research trends in telemedicine in Poland, providing comparative insights [...] Read more.
Background: Between 2014 and 2024, Poland underwent a significant digital transformation in its healthcare sector, evolving from isolated initiatives to a cohesive national eHealth ecosystem. This review examines the development, clinical significance, and research trends in telemedicine in Poland, providing comparative insights from 1995 to 2015 and assessing the impact of the COVID-19 pandemic. Methods: A narrative review was conducted using the PubMed, Scopus, EMBASE, and Web of Science databases to identify peer-reviewed articles published between January 2014 and December 2024. A total of 1012 records were identified, and 212 articles were included after applying predefined inclusion criteria. These articles were categorized by medical specialty, study type, COVID-19 relevance, and clinical versus nonclinical focus. Gray literature and policy reports were examined only to provide a context for the findings. Results: Ninety-six publications were included in the clinical studies. The most common specialties are cardiology, psychiatry, geriatrics, general practice, and rehabilitation. In earlier years, survey-based and observational designs were predominant, whereas later years saw an increase in interventional trials and studies enabled by Artificial Intelligence (AI). The COVID-19 pandemic has had a significant impact on research activity, accelerating the adoption of digital technologies in previously underrepresented fields, such as pulmonology and palliative care, as well as in the routine use of modern Internet communication technologies for daily patient–doctor interactions. Discussion: Advancements in digital health (including eHealth and telemedicine) in Poland have been driven by policy reforms, technological advancements, and epidemiological events, such as COVID-19. Various fields have evolved from feasibility studies to clinical trials, and emerging specialties have focused on user experience and implementation. However, the adoption of AI and its interoperability remains underdeveloped, primarily because of regulatory and reimbursement challenges. Conclusions: Poland has made significant strides in institutionalizing digital health; however, ongoing innovation necessitates regulatory alignment, strategic funding, and enhanced collaboration between academia and industry. As the country aligns with the European Union (EU) initiatives, such as the European Health Data Space, it has the potential to lead to regional integration in digital health. Full article
Show Figures

Figure 1

21 pages, 736 KB  
Article
RiscADA: RISC-V Extension for Optimized Control of External D/A and A/D Converters
by Cosmin-Andrei Popovici, Andrei Stan, Nicolae-Alexandru Botezatu and Vasile-Ion Manta
Electronics 2025, 14(15), 3152; https://doi.org/10.3390/electronics14153152 - 7 Aug 2025
Viewed by 298
Abstract
The increasing interest shared by academia and industry in the development of RISC-V cores, extensions and accelerators becomes fructified by collaborative efforts, like the EU’s ChipsJU, which leverages the design of building blocks, IPs and cores based on RISC-V architecture. A domain capable [...] Read more.
The increasing interest shared by academia and industry in the development of RISC-V cores, extensions and accelerators becomes fructified by collaborative efforts, like the EU’s ChipsJU, which leverages the design of building blocks, IPs and cores based on RISC-V architecture. A domain capable of benefiting from the RISC-V extensibility is the control of external DACs and ADCs. The proposed solution is an open-source RISC-V extension for optimized control of external DACs and ADCs called RiscADA. The extension supports a parametrizable number of DACs and ADCs, is integrated as a coprocessor beside CVA6 in a SoC by using the CV-X-IF interface, deployed on a Kintex UltraScale+ FPGA and implements ISA extension instructions. After benchmarks with commercial solutions, the results show that CVA6 using RiscADA extension configures external DACs 38.6× and 10.9× times faster than MicroBlaze V and simple CVA6, both using AXI SPI peripherals. The proposed extension achieves 5.35× and 3.05× times higher sample rates of external ADCs than the two configurations mentioned above. RiscADA extension performs digital signal conditioning 4.52× and 3.1× times faster than the MicroBlaze V and CVA6, both using AXI SPI peripherals. It computes statistics for external ADC readings (minimum, maximum, simple-moving average and over-threshold duration). Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

16 pages, 738 KB  
Article
Modeling, Simulation, and Techno-Economic Assessment of a Spent Li-Ion Battery Recycling Plant
by Árpád Imre-Lucaci, Florica Imre-Lucaci and Szabolcs Fogarasi
Materials 2025, 18(15), 3715; https://doi.org/10.3390/ma18153715 - 7 Aug 2025
Viewed by 426
Abstract
The literature clearly indicates that both academia and industry are strongly committed to developing comprehensive processes for spent Li-ion battery (LIB) recycling. In this regard, the current study presents an original contribution by providing a quantitative assessment of a large-scale recycling plant designed [...] Read more.
The literature clearly indicates that both academia and industry are strongly committed to developing comprehensive processes for spent Li-ion battery (LIB) recycling. In this regard, the current study presents an original contribution by providing a quantitative assessment of a large-scale recycling plant designed for the treatment of completely spent LIBs. In addition to a concept of the basic process, this assessment also considers a case study of a thermal integration and CO2 capture subsystem. Process flow modeling software was used to evaluate the contribution of all process steps and equipment to overall energy consumption and to mass balance the data required for the technical assessment of the large-scale recycling plant. To underline the advantages and identify the optimal novel process concept, several key performance indicators were determined, such as recovery efficiency, specific energy/material consumption, and specific CO2 emissions. In addition, the economic potential of the recycling plants was evaluated for the defined case studies based on capital and O&M costs. The results indicate that, even with CO2 capture applied, the thermally integrated process with the combustion of hydrogen produced in the recycling plant remains the most promising large-scale configuration for spent LIB recycling. Full article
(This article belongs to the Special Issue Recycling and Electrode Materials of Lithium Batteries)
Show Figures

Figure 1

29 pages, 3842 KB  
Article
SABE-YOLO: Structure-Aware and Boundary-Enhanced YOLO for Weld Seam Instance Segmentation
by Rui Wen, Wu Xie, Yong Fan and Lanlan Shen
J. Imaging 2025, 11(8), 262; https://doi.org/10.3390/jimaging11080262 - 6 Aug 2025
Viewed by 313
Abstract
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, [...] Read more.
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, existing approaches still face significant challenges in boundary perception and structural representation. Due to the inherently elongated shapes, complex geometries, and blurred edges of weld seams, current segmentation models often struggle to maintain high accuracy in practical applications. To address this issue, a novel structure-aware and boundary-enhanced YOLO (SABE-YOLO) is proposed for weld seam instance segmentation. First, a Structure-Aware Fusion Module (SAFM) is designed to enhance structural feature representation through strip pooling attention and element-wise multiplicative fusion, targeting the difficulty in extracting elongated and complex features. Second, a C2f-based Boundary-Enhanced Aggregation Module (C2f-BEAM) is constructed to improve edge feature sensitivity by integrating multi-scale boundary detail extraction, feature aggregation, and attention mechanisms. Finally, the inner minimum point distance-based intersection over union (Inner-MPDIoU) is introduced to improve localization accuracy for weld seam regions. Experimental results on the self-built weld seam image dataset show that SABE-YOLO outperforms YOLOv8n-Seg by 3 percentage points in the AP(50–95) metric, reaching 46.3%. Meanwhile, it maintains a low computational cost (18.3 GFLOPs) and a small number of parameters (6.6M), while achieving an inference speed of 127 FPS, demonstrating a favorable trade-off between segmentation accuracy and computational efficiency. The proposed method provides an effective solution for high-precision visual perception of complex weld seam structures and demonstrates strong potential for industrial application. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

24 pages, 1074 KB  
Article
Effective BIM Curriculum Development for Construction Management Program Transformation Through a Change Management Lens
by Ki Pyung Kim, Rob Freda and Seoung-Wook Whang
Buildings 2025, 15(15), 2775; https://doi.org/10.3390/buildings15152775 - 6 Aug 2025
Viewed by 434
Abstract
Integrating BIM curriculum into traditional construction management (CM) programs is essential to meet the increasing industry demand for BIM-ready graduates. However, academia struggles with BIM curriculum integration due to unfamiliar emerging BIM technologies, and the increased workload associated with curriculum transformation. Disciplines including [...] Read more.
Integrating BIM curriculum into traditional construction management (CM) programs is essential to meet the increasing industry demand for BIM-ready graduates. However, academia struggles with BIM curriculum integration due to unfamiliar emerging BIM technologies, and the increased workload associated with curriculum transformation. Disciplines including nursing, health science, and medical overcame the same challenges using the ability-desire-knowledge-ability-reinforcement (ADKAR) change management model, while CM programs have not explored this model for BIM curriculum development. Thus, this research introduces the ADKAR change management lens to BIM curriculum development by proposing a practically modified and replicable ADKAR model for CM programs. Focus group interviews with 14 academics from the UK, USA, Korea, and Australia, revealed establishing a sense of urgency by appointing a BIM champion is the most critical step before the BIM curriculum development. Instant advice demystifying uncertain BIM concepts is recognised the most effective motivation among academia. Well-balanced BIM concept integrations is ‘sine qua non’ since excessively saturating BIM aspects across the program can dilute students’ essential domain knowledge. Students’ evaluation over the BIM curriculum were collected through a six-year longitudinal focus group interviews, revealing that progressive BIM learnings scaffolded from foundational concepts to advanced applications throughout their coursework is the most valuable. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

22 pages, 322 KB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Viewed by 462
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
42 pages, 5770 KB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 - 2 Aug 2025
Viewed by 463
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

48 pages, 1556 KB  
Review
Extemporaneous Compounding, Pharmacy Preparations and Related Product Care in the Netherlands
by Herman J. Woerdenbag, Boy van Basten, Christien Oussoren, Oscar S. N. M. Smeets, Astrid Annaciri-Donkers, Mirjam Crul, J. Marina Maurer, Kirsten J. M. Schimmel, E. Marleen Kemper, Marjolijn N. Lub-de Hooge, Nanno Schreuder, Melissa Eikmann, Arwin S. Ramcharan, Richard B. Lantink, Julian Quodbach, Hendrikus H. Boersma, Oscar Kelder, Karin H. M. Larmené-Beld, Paul P. H. Le Brun, Robbert Jan Kok, Reinout C. A. Schellekens, Oscar Breukels, Henderik W. Frijlink and Bahez Garebadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(8), 1005; https://doi.org/10.3390/pharmaceutics17081005 - 31 Jul 2025
Viewed by 1149
Abstract
Background/Objectives: In many parts of the world, pharmacists hold the primary responsibility for providing safe and effective pharmacotherapy. A key aspect is the availability of appropriate medicines for each individual patient. When industrially manufactured medicines are unsuitable or unavailable, pharmacists can prepare [...] Read more.
Background/Objectives: In many parts of the world, pharmacists hold the primary responsibility for providing safe and effective pharmacotherapy. A key aspect is the availability of appropriate medicines for each individual patient. When industrially manufactured medicines are unsuitable or unavailable, pharmacists can prepare tailor-made medicines. While this principle applies globally, practices vary between countries. In the Netherlands, the preparation of medicines in pharmacies is well-established and integrated into routine healthcare. This narrative review explores the role and significance of extemporaneous compounding, pharmacy preparations and related product care in the Netherlands. Methods: Pharmacists involved in pharmacy preparations across various professional sectors, including community and hospital pharmacies, central compounding facilities, academia, and the professional pharmacists’ organisation, provided detailed and expert insights based on the literature and policy documents while also sharing their critical perspectives. Results: We present arguments supporting the need for pharmacy preparations and examine their position and role in community and hospital pharmacies in the Netherlands. Additional topics are discussed, including the regulatory and legal framework, outsourcing, quality assurance, standardisation, education, and international context. Specific pharmacy preparation topics, often with a research component and a strong focus on product care, are highlighted, including paediatric dosage forms, swallowing difficulties and feeding tubes, hospital-at-home care, reconstitution of oncolytic drugs and biologicals, total parenteral nutrition (TPN), advanced therapy medicinal products (ATMPs), radiopharmaceuticals and optical tracers, clinical trial medication, robotisation in reconstitution, and patient-centric solid oral dosage forms. Conclusions: The widespread acceptance of pharmacy preparations in the Netherlands is the result of a unique combination of strict adherence to tailored regulations that ensure quality and safety, and patient-oriented flexibility in design, formulation, and production. This approach is further reinforced by the standardisation of a broad range of formulations and procedures across primary, secondary and tertiary care, as well as by continuous research-driven innovation to develop new medicines, formulations, and production methods. Full article
Show Figures

Graphical abstract

36 pages, 1411 KB  
Review
A Critical Analysis and Roadmap for the Development of Industry 4-Oriented Facilities for Education, Training, and Research in Academia
by Ziyue Jin, Romeo M. Marian and Javaan S. Chahl
Appl. Syst. Innov. 2025, 8(4), 106; https://doi.org/10.3390/asi8040106 - 29 Jul 2025
Viewed by 823
Abstract
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand [...] Read more.
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand the key features, constraints, and opportunities. This paper presents a systematic literature review of 145 peer-reviewed studies published between 2011 and 2023, which are identified across Scopus, SpringerLink, and Web of Science. As a result, we emphasise the significance of developing Industry 4 learning facilities in academia and outline the main design principles of the Industry 4 ecosystems. We also investigate and discuss the key Industry 4-related technologies that have been extensively used and represented in the reviewed literature, and summarise the challenges and roadblocks that current participants are facing. From these insights, we identify research gaps, outline technology mapping and maturity level, and propose a strategic roadmap for future implementation of Industry 4 facilities. The results of the research are expected to support current and future participants in increasing their awareness of the significance of the development, clarifying the research scope and objectives, and preparing them to deal with inherent complexity and skills issues. Full article
Show Figures

Figure 1

21 pages, 1133 KB  
Article
Research on China’s Innovative Cybersecurity Education System Oriented Toward Engineering Education Accreditation
by Yimei Yang, Jinping Liu and Yujun Yang
Information 2025, 16(8), 645; https://doi.org/10.3390/info16080645 - 29 Jul 2025
Viewed by 313
Abstract
This study, based on engineering education accreditation standards, addresses the supply–demand imbalance in China’s cybersecurity talent cultivation by constructing a sustainable “education-industry-society” collaborative model. Through case studies at Huaihua University and other institutions, employing methods such as literature analysis, field research, and empirical [...] Read more.
This study, based on engineering education accreditation standards, addresses the supply–demand imbalance in China’s cybersecurity talent cultivation by constructing a sustainable “education-industry-society” collaborative model. Through case studies at Huaihua University and other institutions, employing methods such as literature analysis, field research, and empirical investigation, we systematically explore reform pathways for an innovative cybersecurity talent development system. The research proposes a “three-platform, four-module” practical teaching framework, where the coordinated operation of the basic skills training platform, comprehensive ability development platform, and innovation enhancement platform significantly improves students’ engineering competencies (practical courses account for 41.6% of the curriculum). Findings demonstrate that eight industry-academia practice bases established through deep collaboration effectively align teaching content with industry needs, substantially enhancing students’ innovative and practical abilities (172 national awards, 649 provincial awards). Additionally, the multi-dimensional evaluation mechanism developed in this study enables a comprehensive assessment of students’ professional skills, practical capabilities, and innovative thinking. These reforms have increased the employment rate of cybersecurity graduates to over 90%, providing a replicable solution to China’s talent shortage. The research outcomes offer valuable insights for discipline development under engineering education accreditation and contribute to implementing sustainable development concepts in higher education. Full article
(This article belongs to the Topic Explainable AI in Education)
Show Figures

Figure 1

41 pages, 1344 KB  
Article
Strengthening Smart Specialisation Strategies (S3) Through Network Analysis: Policy Insights from a Decade of Innovation Projects in Aragón
by David Rodríguez Ochoa, Nieves Arranz and Marta Fernandez de Arroyabe
Economies 2025, 13(8), 218; https://doi.org/10.3390/economies13080218 - 26 Jul 2025
Viewed by 428
Abstract
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, [...] Read more.
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, and European calls, the study uncovers how all types of local actors organise themselves around key specialisation areas. Moreover, a comparative benchmark is introduced by analysing more than 33,000 Horizon 2020 and Horizon Europe initiatives without Aragonese partners, revealing how to fill structural gaps and enrich the regional ecosystem through international collaboration. Results show strong funding concentration in four fields—Energy, Health, Agri-Food, and Advanced Technologies—while other historically strategic areas like Hydrogen and Water remain underrepresented. Although leading institutions (UNIZAR, CIRCE, ITA, AITIIP) play central roles in connecting academia and industry, direct collaboration among them is limited, pointing to missed synergies. Expanding previous SNA-based assessments, this study introduces a diagnostic tool to guide policy, proposing targeted actions such as challenge-driven calls, dedicated support programs, and cross-border consortia with top EU partners. Applied to two contrasting specialisation areas, the method offers sector-specific recommendations, helping policymakers align Aragón’s innovation capabilities with EU priorities and strengthen its position in both established and emerging domains. Full article
Show Figures

Figure 1

Back to TopTop