Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,941)

Search Parameters:
Keywords = absorption study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2401 KiB  
Article
Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers
by Ayaka Yamaji, Yui Okuda, Chikaho Kobayashi, Rikako Kurahashi, Kyoko Kazuma, Kazuki Chiba, Mitsuhiro Hirata, Yuka Ikemoto, Keiichi Osaka, Jiacheng Gao, Harumi Sato and Go Matsuba
Polymers 2025, 17(15), 2015; https://doi.org/10.3390/polym17152015 - 23 Jul 2025
Abstract
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit [...] Read more.
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit improved elasticity and reduced swelling in aqueous environments. Scanning electron microscopy revealed the adsorption of CNF components onto the fiber surfaces. Microbeam X-ray diffraction indicated structural differences between untreated and CNF-treated fibers, with the latter containing cellulose I crystals. Small-angle X-ray scattering revealed alterations in the internal fibrillar structure due to CNF treatment. FT-IR spectroscopy highlighted humidity-dependent variations in molecular vibrations, with peak intensities increasing under higher humidity conditions. Additionally, CNF treatment inhibited water absorption in high-humidity conditions, contributing to reduced expansion rates and increased elastic modulus during water absorption. Overall, CNF treatment enhanced both the mechanical strength and water resistance of regenerated cellulose fibers, making them suitable for advanced textile applications. This study provides valuable insights into the role of CNF-treated fibers in improving the durability and functional performance of regenerated cellulose-based textile. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

13 pages, 3360 KiB  
Article
Effect of Edge-Oxidized Graphene Oxide (EOGO) on Fly Ash Geopolymer
by Hoyoung Lee, Junwoo Shin, Byoung Hooi Cho and Boo Hyun Nam
Materials 2025, 18(15), 3457; https://doi.org/10.3390/ma18153457 - 23 Jul 2025
Abstract
In this study, edge-oxidized graphene oxide (EOGO) was used as an additive in fly ash (FA) geopolymer paste. The effect of EOGO on the properties of the fly ash geopolymer was investigated. EOGO was added to the FA geopolymer at four different percentages [...] Read more.
In this study, edge-oxidized graphene oxide (EOGO) was used as an additive in fly ash (FA) geopolymer paste. The effect of EOGO on the properties of the fly ash geopolymer was investigated. EOGO was added to the FA geopolymer at four different percentages (0%, 0.1%, 0.5% and 1%), and the mixture was cured under two different conditions: room curing (~20 °C) and heat curing (~60 °C). To characterize the FA-EOGO geopolymer, multiple laboratory tests were employed, including compressive strength, Free-Free Resonance Column (FFRC), density, water absorption, and setting tests. The FFRC test was used to evaluate the stiffness at small strain (Young’s modulus) via the resonance of the specimen. The mechanical test results showed that the strength and elastic modulus were high during heat curing, and the highest compressive strength and elastic modulus were achieved at 0.1% EOGO. In the physical test, 0.1% EOGO had the highest density and the lowest porosity and water absorption. As a result of the setting time test, as the EOGO content increased, the setting time was shortened. It is concluded that the optimum proportion of EOGO is 0.1% in FA geopolymer paste. Full article
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
Enhanced Mechanical and Electromagnetic Shielding Properties of Mg Matrix Layered Composites Reinforced with Hybrid Graphene Nanosheet (GNS)–Carbon Nanotube (CNT) Networks
by Hailong Shi, Jiancheng Zhao, Zhenming Sun, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3455; https://doi.org/10.3390/ma18153455 - 23 Jul 2025
Abstract
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of [...] Read more.
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs. The objective was to determine the benefits of hybrid reinforcements on the mechanical strength and EMI shielding capability of the composites. The results indicated that the GNS-CNT/Mg composite, at a nanocarbon content of 0.5 wt.% and a GNS-CNT ratio of 1:2, achieved optimal performance, with a 55% increase in tensile strength and an EMI shielding effectiveness of 70 dB. The observed enhancements can be attributed to several key mechanisms: effective load transfer, which promotes tensile twinning, along with improved impedance matching and multiple internal reflections within the GNS-CNT network, which enhance absorption loss. These significant improvements position the composite as a promising candidate for advanced applications requiring high strength, toughness, and efficient electromagnetic shielding, providing valuable insights into the design of high-performance lightweight materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
by Abraham Addo-Bediako, Thato Matita and Wilmien Luus-Powell
Water 2025, 17(15), 2200; https://doi.org/10.3390/w17152200 - 23 Jul 2025
Abstract
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of [...] Read more.
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of pollution and assessed human health risk in the Moopetsi River, an intermittent river in the Limpopo Province of South Africa. Chemical analyses were conducted on water and sediment samples collected during high-flow, low-flow and intermittent-flow regimes. The findings showed seasonal variations in the chemical pollution levels in the sediments and the highest contamination was measured during intermittent flow. The enrichment factor and geoaccumulation index values identified chromium and nickel as major contributors to sediment contamination. The mean arsenic, chromium and nickel levels exceeded the established guideline values. An evaluation of human health risk was conducted using ingestion and dermal absorption pathways. The results showed that ingestion has greater non-carcinogenic and carcinogenic risks than dermal exposure, especially for children during intermittent flow. The elements of great concern for non-carcinogenic risk were chromium, manganese and nickel and for carcinogenic risk, they were arsenic, chromium, nickel and lead. The outcome of this study is useful for waste management and conservation to reduce environmental degradation and human health risk. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

14 pages, 2929 KiB  
Article
Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer
by Miyu Ueda, Ryo Nagayama, Masaki Nagaoka, Naoya Suzuki, Shintaro Kodama, Takeshi Maeda, Shin-ichiro Kato and Shigeyuki Yagi
Molecules 2025, 30(15), 3084; https://doi.org/10.3390/molecules30153084 - 23 Jul 2025
Abstract
In this study, we synthesized novel donor–π–acceptor (D–π–A) functional dyes bearing a carbonyl-bridged bithiophene as a π-conjugated spacer and evaluated the absorption and fluorescence properties as well as the photostability. The developed dyes 1-CO3-CO possess an N,N-diphenylaminophenyl electron [...] Read more.
In this study, we synthesized novel donor–π–acceptor (D–π–A) functional dyes bearing a carbonyl-bridged bithiophene as a π-conjugated spacer and evaluated the absorption and fluorescence properties as well as the photostability. The developed dyes 1-CO3-CO possess an N,N-diphenylaminophenyl electron donor unit and an electron acceptor unit such as a formyl group (1-CO), an (N,N-diethylthiobarbituryl)methylene moiety (2-CO), or a (3-dicyanomethylidene-1-indanon-2-yl)methylene moiety (3-CO). The absorption spectra of 1-CO3-CO in dichloromethane at room temperature showed absorption maxima at 569 nm, 631 nm, and 667 nm, respectively, and the stronger acceptors in 2-CO and 3-CO led to enhancement of the ICT character. In addition, 2-CO and 3-CO had a second absorption band in the visible region, showing panchromatic absorption properties. Electrochemical analyses of the developed dyes revealed that the carbonyl bridging group in the π-spacer contributes to stabilization of the frontier orbitals such as the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively), in comparison with the referential dyes bearing a dibutylmethylene-bridged bithiophene spacer, 1-CBu23-CBu2. The HOMO/LUMO stabilization brought about high photostability in the doped poly(methyl methacrylate) film. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

30 pages, 599 KiB  
Article
Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience
by Jing-Yan Ma and Tae-Won Kang
Sustainability 2025, 17(15), 6706; https://doi.org/10.3390/su17156706 - 23 Jul 2025
Abstract
Healthcare supply chain management operates amid fluctuating patient demand, rapidly advancing biotechnologies, and unpredictable supply disruptions pose high risks and create an imperative for sustainable resource optimization. This study investigates the underlying mechanisms through which digital intelligence drives strategic decision optimization in healthcare [...] Read more.
Healthcare supply chain management operates amid fluctuating patient demand, rapidly advancing biotechnologies, and unpredictable supply disruptions pose high risks and create an imperative for sustainable resource optimization. This study investigates the underlying mechanisms through which digital intelligence drives strategic decision optimization in healthcare supply chains. Drawing on the Resource-Based View and Dynamic Capabilities Theory, we develop a chain-mediated model, defined as the multistage indirect path whereby digital intelligence first bolsters innovation capability, which then activates supply chain resilience (absorptive, response, and restorative capability), to improve decision optimization. Data were collected from 360 managerial-level respondents working in healthcare supply chain organizations in China, and the proposed model was tested using structural equation modeling. The results indicate that digital intelligence enhances innovation capability, which in turn activates all three dimensions of resilience, producing a synergistic effect that promotes sustained decision optimization. However, the direct effect of digital intelligence on decision optimization was not statistically significant, suggesting that its impact is primarily mediated through organizational capabilities, particularly supply chain resilience. Practically, the findings suggest that in the process of deploying digital intelligence systems and platforms, healthcare organizations should embed technological advantages into organizational processes, emergency response mechanisms, and collaborative operations, so that digitalization moves beyond the technical system level and is truly internalized as organizational innovation capability and resilience, thereby leading to sustained improvement in decision-making performance. Full article
(This article belongs to the Section Sustainable Management)
18 pages, 480 KiB  
Article
Effects of Creep Feeding from Birth to Suckling Period on Hanwoo Calves’ Growth Performance and Microbiota
by SoHee Lee, Young Lae Kim, Gi Hwal Son, Eui Kyung Lee, Nam Oh Kim, Chang Sik Choi, Kyung Hoon Lee, Hyeon Ji Cha, Jong-Suh Shin, Min Ji Kim and Byung Ki Park
Animals 2025, 15(15), 2169; https://doi.org/10.3390/ani15152169 - 23 Jul 2025
Abstract
This study evaluated the effects of early-life creep feeding with a high-protein, high-energy diet on growth performance, ruminal fermentation, and gut microbiota in Hanwoo calves (n = 10). Calves were assigned to control or treatment groups from birth to 6 months of age. [...] Read more.
This study evaluated the effects of early-life creep feeding with a high-protein, high-energy diet on growth performance, ruminal fermentation, and gut microbiota in Hanwoo calves (n = 10). Calves were assigned to control or treatment groups from birth to 6 months of age. No significant differences were observed in body weight, average daily gain (ADG), or feed conversion ratio (FCR), but ADG and dry matter intake (DMI) tended to be higher in the treatment group. Ruminal pH, NH3-N, and volatile fatty acid (VFA) concentrations showed no significant differences. Fecal VFA profiles exhibited numerical trends suggesting higher propionate at 3 months and lower acetate, butyrate, and total VFA at 6 months in the treatment group, potentially reflecting altered substrate availability or absorption capacity, though these mechanisms were not directly measured. Microbiota analysis indicated stable ruminal alpha diversity, with numerical increases in fecal Bacteroidetes and genera such as Fournierella and Flavonifractor in the treatment group. These results suggest that early creep feeding with high-nutrition diets can support intake and promote potential shifts in hindgut microbiota composition without compromising overall microbial stability. Further research with larger sample sizes is needed to confirm these trends and assess long-term impacts on calf health and productivity. Full article
Show Figures

Figure 1

6 pages, 1433 KiB  
Proceeding Paper
Performance Analysis of Double-Layered Thin-Walled Hemispherical Shell Structures Under Quasi-Static Compression
by Nalla Mohamed Mohamed Ismail and Kavin Sudha Ramakrishnan
Eng. Proc. 2025, 93(1), 20; https://doi.org/10.3390/engproc2025093020 - 23 Jul 2025
Abstract
Thin-walled hemispherical shell structures are mainly used in the aerospace industry as energy absorbers. However, their thin walls frequently lead to stability problems. To create a stable structure, double-layered thin-walled hemispherical shell structures were developed. In this study, we investigated the deformation behaviors [...] Read more.
Thin-walled hemispherical shell structures are mainly used in the aerospace industry as energy absorbers. However, their thin walls frequently lead to stability problems. To create a stable structure, double-layered thin-walled hemispherical shell structures were developed. In this study, we investigated the deformation behaviors of these structures through both experimental and numerical methods. The shell span diameter is taken as 200 mm. Monolithic layers have thicknesses of 1.0 mm compared with double-layered shells which have thicknesses of 0.5 mm (inner)/0.5 mm (outer). We developed numerical models to simulate the structural responses of monolithic and double-layered spherical shell structures using ABAQUS/CAE® V6.14 software. These models were validated against experimental results. Our results show that double-layered shells absorb more energy compared to monolithic shells. These insights provide a foundation for improved designs of hemispherical structures, ultimately enhancing their energy absorption performance. Full article
Show Figures

Figure 1

16 pages, 2799 KiB  
Article
Electromagnetic Wave-Absorption Properties of FDM-Printed Acrylonitrile–Styrene–Acrylate/Multi-Walled Carbon Nanotube Composite Structures
by Aobo Zhou and Yan Wang
Polymers 2025, 17(15), 2010; https://doi.org/10.3390/polym17152010 - 23 Jul 2025
Abstract
The growing need for lightweight, customizable electromagnetic wave absorbers with weather resistance in aerospace and electromagnetic compatibility applications motivates this study, which addresses the limitations of conventional materials in simultaneously achieving structural efficiency, broadband absorption, and environmental durability. We propose a fused deposition [...] Read more.
The growing need for lightweight, customizable electromagnetic wave absorbers with weather resistance in aerospace and electromagnetic compatibility applications motivates this study, which addresses the limitations of conventional materials in simultaneously achieving structural efficiency, broadband absorption, and environmental durability. We propose a fused deposition modeling (FDM)-based approach for fabricating lightweight wave-absorbing structures using acrylonitrile-styrene-acrylate (ASA)/multi-walled carbon nanotube (MWCNT) composites. Results demonstrate that CST Studio Suite simulations reveal a minimum reflection loss of −18.16 dB and an effective absorption bandwidth (RL < −10 dB) of 3.75 GHz for the 2 mm-thick composite plate when the MWCNT content is 2%. Through FDM fabrication and structural optimization, significant performance enhancements are achieved: The gradient honeycomb design with larger dimensions achieved an effective absorption bandwidth of 6.56 GHz and a minimum reflection loss of −32.60 dB. Meanwhile, the stacked stake structure exhibited a broader effective absorption bandwidth of 10.58 GHz, with its lowest reflection loss reaching −22.82 dB. This research provides innovative approaches for developing and manufacturing tailored lightweight electromagnetic wave-absorbing structures, which could be valuable for aerospace stealth technology and electromagnetic compatibility solutions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

21 pages, 4324 KiB  
Article
Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development
by Agnieszka Operacz, Bogusław Bielec, Tomasz Operacz, Agnieszka Zachora-Buławska and Karolina Migdał
Energies 2025, 18(15), 3922; https://doi.org/10.3390/en18153922 - 23 Jul 2025
Abstract
The global shift towards the use of renewable energy is essential to ensure sustainable development, and geothermal energy stands out as a suitable option that can support various cascading projects. Spent geothermal water (SGW) requires proper treatment to ensure that it does not [...] Read more.
The global shift towards the use of renewable energy is essential to ensure sustainable development, and geothermal energy stands out as a suitable option that can support various cascading projects. Spent geothermal water (SGW) requires proper treatment to ensure that it does not become an environmental burden. Typically, companies often face the dilemma of choosing between discharging spent geothermal water (SGW) into surface waters or injecting it into rock masses, and the economic and environmental impacts of the decision made determines the feasibility of geothermal plant development. In this study, we aimed to comprehensively assess the technical, economic, and environmental feasibility of SGW injection into rock masses. To this end, we employed a comprehensive analytical approach using the Chochołów GT-1 geothermal injection borehole in Poland as a reference case. We also performed drilling and hydrogeological testing, characterized rock samples in the laboratory, and corrected hydrodynamic parameters for thermal lift effects to ensure accurate aquifer characterization. The results obtained highlight the importance of correcting hydrogeological parameters for thermal effects, which if neglected can lead to a significant overestimation of the calculated hydrogeological parameters. Based on our analysis, we developed a framework for assessing SGW injection feasibility that integrates detailed hydrogeological and geotechnical analyses with environmental risk assessment to ensure sustainable geothermal resource exploitation. This framework should be mandatory for planning new geothermal power plants or complexes worldwide. Our results also emphasize the need for adequate SGW management so as to ensure that the benefits of using a renewable and zero-emission resource, such as geothermal energy, are not compromised by the low absorption capacity of rock masses or adverse environmental effects. Full article
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Micro-Gas Flow Sensor Utilizing Surface Network Density Regulation for Humidity-Modulated Ion Transport
by Chuanjie Liu and Zhihong Liu
Gels 2025, 11(8), 570; https://doi.org/10.3390/gels11080570 - 23 Jul 2025
Abstract
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow [...] Read more.
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow sensor. Prepared by one-pot polymerization, PAA/Fe3+ forms a three-dimensional network through the entanglement of crosslinked and uncrosslinked PAA chains, where the coordination between Fe3+ and carboxyl groups endows the material with excellent mechanical properties (tensile strength of 80 kPa and elongation at break of 1100%). Experiments show that when a gas flow acts on the hydrogel surface, changes in surface humidity alter the density of the network structure, thereby regulating ion migration rates: the network loosens to promote ion transport during water absorption, while it tightens to hinder transport during water loss. This mechanism enables the sensor to exhibit significant resistance responses (ΔR/R0 up to 0.55) to gentle breezes (0–13 m/s), with a response time of approximately 166 ms and a sensitivity 40 times higher than that of bulk deformation. The surface ion transport model proposed in this study provides a new strategy for ultrasensitive gas flow sensing, showing potential application values in intelligent robotics, electronic skin, and other fields. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

20 pages, 3274 KiB  
Article
Investigation of the Influence of Process Parameters on the Physicochemical and Functional Properties of Oil-Based Composites
by Anita Zawadzka and Magda Kijania-Kontak
Materials 2025, 18(15), 3447; https://doi.org/10.3390/ma18153447 - 23 Jul 2025
Abstract
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) [...] Read more.
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) acid, hydrobromic acid, acetic acid, salicylic acid, glycolic acid, zinc acetate, ethanol, hydrogen peroxide, and their selected mixtures. The manufacturing process was optimised, and the composites were evaluated for physicochemical and mechanical properties, including compressive strength, bending strength, and water absorption. The best performance was observed for composites catalysed with a mixture of sulfuric(VI) acid and 20% hydrogen peroxide, cured at 240 °C, yielding compressive and bending strengths of 5.20 MPa and 1.34 MPa, respectively. Under modified curing conditions, a compressive strength of 5.70 MPa and a bending strength of 0.75 MPa were obtained. The composite modified with glycolic acid showed the lowest water absorption (3%). These findings demonstrate how catalyst type and curing parameters influence composite structure, porosity, and mechanical behaviour. The study provides new insights into the process–structure–property relationships in oil-based materials and supports the development of environmentally friendly composites from waste feedstocks. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 3800 KiB  
Article
Influence of Ni and Nb Addition in TiVCr-Based High Entropy Alloys for Room-Temperature Hydrogen Storage
by Srilakshmi Jeyaraman, Dmitri L. Danilov, Peter H. L. Notten, Udaya Bhaskar Reddy Ragula, Vaira Vignesh Ramalingam and Thirugnasambandam G. Manivasagam
Energies 2025, 18(15), 3920; https://doi.org/10.3390/en18153920 - 23 Jul 2025
Abstract
TiVCr-based alloys are well-explored body-centered cubic (BCC) materials for hydrogen storage applications that can potentially store higher amounts of hydrogen at moderate temperatures. The challenge remains in optimizing the alloy-hydrogen stability, and several transition elements have been found to support the reduction in [...] Read more.
TiVCr-based alloys are well-explored body-centered cubic (BCC) materials for hydrogen storage applications that can potentially store higher amounts of hydrogen at moderate temperatures. The challenge remains in optimizing the alloy-hydrogen stability, and several transition elements have been found to support the reduction in the hydride stability. In this study, Ni and Nb transition elements were incorporated into the TiVCr alloy system to thoroughly understand their influence on the (de)hydrogenation kinetics and thermodynamic properties. Three different compositions, (TiVCr)95Ni5, (TiVCr)90 Ni10, and (TiVCr)95Ni5Nb5, were prepared via arc melting. The as-prepared samples showed the formation of a dual-phase BCC solid solution and secondary phase precipitates. The samples were characterized using hydrogen sorption studies. Among the studied compositions, (TiVCr)90Ni10 exhibited the highest hydrogen absorption capacity of 3 wt%, whereas both (TiVCr)95Ni5 and (TiVCr)90Ni5Nb5 absorbed up to 2.5 wt% hydrogen. The kinetics of (de)hydrogenation were modeled using the JMAK and 3D Jander diffusion models. The kinetics results showed that the presence of Ni improved hydrogen adsorption at the interface level, whereas Nb substitution enhanced diffusion and hydrogen release at room temperature. Thus, the addition of Ni and Nb to Ti-V-Cr-based high-entropy alloys significantly improved the hydrogen absorption and desorption properties at room temperature for gas-phase hydrogen storage. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

17 pages, 3345 KiB  
Article
Novel Tetraphenolic Porphyrazine Capable of MRSA Photoeradication
by Wojciech Szczolko, Eunice Zuchowska, Tomasz Koczorowski, Michal Kryjewski, Jolanta Dlugaszewska and Dariusz T. Mlynarczyk
Molecules 2025, 30(15), 3069; https://doi.org/10.3390/molecules30153069 - 22 Jul 2025
Abstract
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic [...] Read more.
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic Synthesis (MAOS) approach. The obtained compounds were characterized using spectral techniques: UV-Vis spectrophotometry, mass spectrometry, 1H and 13C NMR spectroscopy. The porphyrazine derivatives were tested for their electrochemical properties (CV and DPV), which revealed four redox processes, of which in compound 7 positive shifts of oxidation potentials were observed, resulting from the presence of free phenolic hydroxyl groups. In spectroelectrochemical measurements, changes in UV-Vis spectra associated with the formation of positive-charged states were noted. Photophysical studies revealed the presence of characteristic absorption Q and Soret bands, low fluorescence quantum yields and small Stokes shifts. The efficiency of singlet oxygen generation (ΦΔ) was higher for compound 6 (up to 0.06), but compound 7, despite its lower efficiency (0.02), was distinguished by a better biological activity profile. Toxicity tests using the Aliivibrio fischeri bacteria indicated the lower toxicity of 7 compared to 6. The most promising result was the strong photodynamic activity of porphyrazine 7 against the Methicillin-resistant Stapylococcus aureus (MRSA) strain, leading to a more-than-5.6-log decrease in viable counts after the colony forming units (CFU) after light irradiation. Compound 6 did not show any significant antibacterial activity. The obtained data indicate that porphyrazine 7 is a promising candidate for applications in photodynamic therapy of bacterial infections. Full article
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

Back to TopTop