Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = above-ground storage tanks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4417 KiB  
Review
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
by Xiaojun Qian, Shaohua You, Ruizhe Wang, Yunzhi Yue, Qinzhuo Liao, Jiacheng Dai, Shouceng Tian and Xu Liu
Sustainability 2025, 17(13), 5900; https://doi.org/10.3390/su17135900 - 26 Jun 2025
Cited by 1 | Viewed by 1105
Abstract
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, [...] Read more.
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, leveraging the unique geomechanical properties of salt formations—including low permeability, self-healing capabilities, and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage, such as rapid injection and extraction capabilities, cost-effectiveness compared to other storage methods (e.g., hydrogen storage in depleted oil and gas reservoirs, aquifers, and aboveground tanks), and minimal environmental impact. It also addresses critical challenges, including hydrogen embrittlement, microbial activity, and regulatory fragmentation. Through global case studies, best operational practices for risk mitigation in real-world applications are highlighted, such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential, this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan, Hubei Yunying, and Henan Pingdingshan. By integrating technological innovation, policy coordination, and cross-sector collaboration, salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy, bridging the gap between renewable energy production and industrial decarbonization. Full article
Show Figures

Figure 1

28 pages, 3583 KiB  
Review
A Review of Seasonal Energy Storage for Net-Zero Industrial Heat: Thermal and Power-to-X Storage Including the Novel Concept of Renewable Metal Energy Carriers
by Yvonne I. Baeuerle, Cordin Arpagaus and Michel Y. Haller
Energies 2025, 18(9), 2204; https://doi.org/10.3390/en18092204 - 26 Apr 2025
Viewed by 1431
Abstract
Achieving net-zero greenhouse gas emissions by 2050 requires CO2-neutral industrial process heat, with seasonal energy storage (SES) playing a crucial role in balancing supply and demand. This study reviews thermal energy storage (TES) and Power-to-X (P2X) technologies for applications without thermal [...] Read more.
Achieving net-zero greenhouse gas emissions by 2050 requires CO2-neutral industrial process heat, with seasonal energy storage (SES) playing a crucial role in balancing supply and demand. This study reviews thermal energy storage (TES) and Power-to-X (P2X) technologies for applications without thermal grids, assessing their feasibility, state of the art, opportunities, and challenges. Underground TES (UTES), such as aquifer and borehole storage, offer 1–26 times lower annual heat storage costs than above-ground tanks. For P2X, hydrogen storage in salt caverns is 80% less expensive than in high-pressure tanks. Methane and methanol storage costs depend on CO2 sourcing, while Renewable Metal Energy Carriers (ReMECs), such as aluminum and iron, offer high energy density and up to 580 times lower storage volume, with aluminum potentially achieving the lowest Levelized Cost of X Storage (LCOXS) at a rate of 180 EUR/MWh of energy discharged. Underground TES and hydrogen caverns are cost-effective but face spatial/geological constraints. P2X alternatives have established infrastructure but have lower efficiency, whereas ReMECs show promise for large-scale storage. However, economic viability remains a challenge due to very few annual cycles, which require significant reductions of investment cost and annual cost of capital (CAPEX), as well as improvements in overall system efficiency to minimize losses. These findings highlight the trade-offs between cost, space requirements, and the feasibility of SES deployment in industry. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

17 pages, 3906 KiB  
Technical Note
Storage Tank Target Detection for Large-Scale Remote Sensing Images Based on YOLOv7-OT
by Yong Wan, Zihao Zhan, Peng Ren, Lu Fan, Yu Liu, Ligang Li and Yongshou Dai
Remote Sens. 2024, 16(23), 4510; https://doi.org/10.3390/rs16234510 - 1 Dec 2024
Cited by 1 | Viewed by 1487
Abstract
Since industrialization, global greenhouse gas emissions have gradually increased. Storage tanks, as industrial facilities for storing fossil energy, are one of the main sources of greenhouse gas emissions. Using remote sensing images to detect and locate storage tank targets over a large area [...] Read more.
Since industrialization, global greenhouse gas emissions have gradually increased. Storage tanks, as industrial facilities for storing fossil energy, are one of the main sources of greenhouse gas emissions. Using remote sensing images to detect and locate storage tank targets over a large area can provide data support for regional air pollution prevention, control, and monitoring. Due to the circular terrain on the ground and the circular traces caused by human activities, the target detection model has a high false detection rate when detecting tank targets in large-scale remote sensing images. To address the above problems, a YOLOv7-OT model for tank target detection in large-scale remote sensing images is proposed. This model proposes a data pre-processing method of edge re-stitching for large-scale remote sensing images, which reduces the target loss caused by the edge of the image without losing the target information. In addition, to address the problem of small target detection, the CBAM is added to the YOLOv7 backbone network to improve the target detection accuracy under complex backgrounds. Finally, in response to the model’s misjudgment of targets during detection, a data post-processing method combining the spatial distribution characteristics of tanks is proposed to eliminate the misdetected targets. The model was evaluated on a self-built large-scale remote sensing dataset, the model detection accuracy reached 90%, and the precision rate reached 95.9%. Its precision rate and detection accuracy are better than those of the other three classic target detection models. Full article
Show Figures

Figure 1

22 pages, 7016 KiB  
Review
Key Issues of Salt Cavern Flow Battery
by Si Huang, Yinping Li, Xilin Shi, Yahua Liu, Hongling Ma, Peng Li, Yuanxi Liu, Xin Liu, Mingnan Xu and Chunhe Yang
Energies 2024, 17(20), 5190; https://doi.org/10.3390/en17205190 - 18 Oct 2024
Cited by 2 | Viewed by 1448
Abstract
Salt cavern flow batteries (SCFBs) are an energy storage technology that utilize salt caverns to store electrolytes of flow batteries with a saturated NaCl solution as the supporting electrolyte. However, the geological characteristics of salt caverns differ significantly from above-ground storage tanks, leading [...] Read more.
Salt cavern flow batteries (SCFBs) are an energy storage technology that utilize salt caverns to store electrolytes of flow batteries with a saturated NaCl solution as the supporting electrolyte. However, the geological characteristics of salt caverns differ significantly from above-ground storage tanks, leading to complex issues in storing electrolytes within salt caverns. Therefore, investigating and summarizing these issues is crucial for the advancement of SCFB technology. This paper’s innovation lies in its comprehensive review of the current state and development trends in SCFBs both domestically and internationally. First, the current development status of SCFB energy storage technology both domestically and internationally is summarized. Then, eight main issues are proposed from the perspectives of salt cavern geological characteristics (tightness, conductivity, ions, and temperature) and electrolyte properties (selection, permeability, corrosion, and concentration). Finally, a novel SCFB system is proposed to address the most critical issue, which is the low concentration and uneven distribution of active materials in the current SCFB system. The review in this paper not only comprehensively summarizes the development status of SCFBs both domestically and internationally, but also points out the direction for the future research focussing on SCFBs. Full article
(This article belongs to the Special Issue Electrochemical Conversion and Energy Storage System)
Show Figures

Figure 1

16 pages, 3480 KiB  
Article
Evaluating the Seismic Resilience of Above-Ground Liquid Storage Tanks
by Emanuele Brunesi and Roberto Nascimbene
Buildings 2024, 14(10), 3212; https://doi.org/10.3390/buildings14103212 - 9 Oct 2024
Cited by 4 | Viewed by 1579
Abstract
Historical seismic events have repeatedly highlighted the susceptibility of above-ground liquid storage steel tanks, underscoring the critical need for their proper design to minimize potential damage due to seismic forces. A significant failure mechanism in these structures, which play essential roles in the [...] Read more.
Historical seismic events have repeatedly highlighted the susceptibility of above-ground liquid storage steel tanks, underscoring the critical need for their proper design to minimize potential damage due to seismic forces. A significant failure mechanism in these structures, which play essential roles in the extraction and distribution of various raw or refined materials—many of which are flammable or environmentally hazardous—is the dynamic buckling of the tank walls. This study introduces a numerical framework designed to assess the earthquake-induced hydrodynamic pressures exerted on the walls of cylindrical steel tanks. These pressures result from the inertial forces generated during seismic activity. The computational framework incorporates material and geometric nonlinearities and models the tanks using four-node shell elements with two-point integration, specifically Belytschko shell elements. The Arbitrary Lagrangian–Eulerian (ALE) method is employed to accommodate substantial structural and fluid deformations, enabling a full simulation of fluid–structure interaction through highly nonlinear algorithms. Experimental test data are utilized to validate the proposed modeling approach, particularly in replicating sloshing phenomena and identifying stress concentrations that may lead to wall buckling. The study further presents results from a parametric analysis that varies the height-to-radius and radius-to-thickness ratios of a typical anchored flat-bottomed tank, examining the seismic performance of this common storage system. These results provide insights into the relationship between tank properties and mechanical behavior under dynamic loading conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 6046 KiB  
Article
Seismic Response Analysis of Underground Large Liquefied Natural Gas Tanks Considering the Fluid–Structure–Soil Interaction
by Guolong Jin, Yonglai Zhang, Mingrui Zhao, Xiongyao Xie and Hongqiao Li
Appl. Sci. 2024, 14(11), 4753; https://doi.org/10.3390/app14114753 - 31 May 2024
Cited by 3 | Viewed by 1600
Abstract
The seismic response of underground liquefied natural gas (LNG) storage tanks has been a significant focus in both academic and engineering circles. This study utilized Ansys (2021R1) to conduct seismic analyses of large-capacity LNG tanks, considering the fluid–structure–soil coupling interaction (FSSI), and it [...] Read more.
The seismic response of underground liquefied natural gas (LNG) storage tanks has been a significant focus in both academic and engineering circles. This study utilized Ansys (2021R1) to conduct seismic analyses of large-capacity LNG tanks, considering the fluid–structure–soil coupling interaction (FSSI), and it was solved using the Volume of Fluid model (VOF) and Finite Element Method (FEM). The mechanical properties of both the LNG tank structure and soil were simulated using solid elements, and seismic acceleration loads were applied. An analysis of liquefied natural gas was performed using fluid elements within FLUENT. Initially, a modal analysis of the tank was conducted, which revealed lower frequencies for a full-liquid tank (3.193 Hz) compared to an empty tank (3.714 Hz). Subsequently, the seismic responses of both the aboveground and underground LNG tank structures were separately simulated, comparing the acceleration, stress, and displacement of the tank wall structures. The findings indicate that the peak relative displacement of the aboveground empty tank wall is 122 mm, less than that of a full tank (136 mm), while the opposite holds true for underground tanks. The period and wave height of LNG liquid shaking in underground tanks are lower than those in aboveground tanks, which is more conducive to tank safety. The deformation and acceleration of underground tanks are lower than those of aboveground tanks, but the Mises stress is higher. The results indicate that underground LNG tank structures are safer under earthquake conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 5738 KiB  
Article
Assessing the Effectiveness of Regional Storm Surge Reduction Strategies and Tank Level Structural Mitigation Measures for Aboveground Storage Tanks
by Santosh Ghimire and Sabarethinam Kameshwar
J. Mar. Sci. Eng. 2024, 12(3), 401; https://doi.org/10.3390/jmse12030401 - 26 Feb 2024
Cited by 3 | Viewed by 1532
Abstract
The effectiveness of regional storm surge reduction strategies and tank-level structural mitigation measures in reducing the failure probability of aboveground storage tanks (ASTs) were studied. Given past failures during flood and hurricane events, several studies have developed fragility models for ASTs. However, the [...] Read more.
The effectiveness of regional storm surge reduction strategies and tank-level structural mitigation measures in reducing the failure probability of aboveground storage tanks (ASTs) were studied. Given past failures during flood and hurricane events, several studies have developed fragility models for ASTs. However, the suitability of these fragility models for different hurricane hazard scenarios is unknown. Furthermore, to combat climate change and sea level rise, several regional storm surge reduction strategies are being proposed. However, the effectiveness of these strategies in improving the safety of ASTs is also unknown. So, herein, a framework was proposed that facilitates assessing the suitability of fragility models and the quantification of AST failures and their consequences while propagating uncertainties using Monte Carlo simulations. The application of the proposed framework to Cameron, Louisiana, provided several key insights: (1) fragility models that do not model wave loads and dislocation failure are not suitable for the region; (2) a regional risk mitigation strategy was insufficient for lowering future spill volume, repair, and cleanup costs; and (3) considering bottom-plate failure of anchored tanks—a structural risk mitigation measure—would lead to a 47–72% reduction in the consequences of tank failure. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4546 KiB  
Article
The Static and Dynamic Behavior of Steel Storage Tanks over Different Types of Clay Soil
by Tarek N. Salem, Ayman El-Zohairy and Ahmed M. Abdelbaset
CivilEng 2023, 4(4), 1169-1181; https://doi.org/10.3390/civileng4040064 - 22 Nov 2023
Viewed by 1617
Abstract
Steel storage tanks are widely used in different fields. Most of these tanks contain hazardous materials, which may lead to disasters and environmental damage for any design errors. There are many reasons which cause the failure of these tanks such as excessive base [...] Read more.
Steel storage tanks are widely used in different fields. Most of these tanks contain hazardous materials, which may lead to disasters and environmental damage for any design errors. There are many reasons which cause the failure of these tanks such as excessive base plate settlement, shear failure of soil, liquid sloshing, and buckling of the tank shell. In this study, five models of above-ground steel storage tanks resting over different types of clay soils (medium-stiff clay, stiff clay, and very stiff clay soils) are analyzed using the finite element program ADINA under the effect of static and dynamic loading. The soil underneath the tank is truly simulated using a 3D solid (porous media) element and the used material model is the Cam-clay soil model. The fluid in the tank is modeled depending on the Navier–Stokes fluid equation. Moreover, the earthquake record used in this analysis is the horizontal component of the Loma Prieta Earthquake. The analyzed tanks are circular steel tanks with the same height (10 m) and different diameters (ranging from 15 m to 40 m). The soil under the tanks has a noticeable effect on the dynamic behavior of the studied tanks. The tanks resting over the medium-stiff clay (the weakest soil) give a lower permanent settlement after the earthquake because of its low elastic modulus which leads to the absorption of the earthquake waves in comparison to the other types of soil. There are 29.6% and 35.6% increases in the peak dynamic stresses under the tanks in the cases of stiff clay and very stiff clay soils, respectively. The maximum values of the dynamic vertical stresses occur at a time around 13.02 s, which is close to the peak ground acceleration of the earthquake. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

25 pages, 8280 KiB  
Article
Field Inspection of High-Density Polyethylene (HDPE) Storage Tanks Using Infrared Thermography and Ultrasonic Methods
by Amir Behravan, Thien Q. Tran, Yuhao Li, Mitchell Davis, Mohammad Shadab Shaikh, Matthew M. DeJong, Alan Hernandez and Alexander S. Brand
Appl. Sci. 2023, 13(3), 1396; https://doi.org/10.3390/app13031396 - 20 Jan 2023
Cited by 5 | Viewed by 4220
Abstract
High-density polyethylene (HDPE) is widely used for above-ground storage tanks (ASTs). However, there are currently no guidelines for the non-destructive testing (NDT) and evaluation (NDE) of HDPE ASTs. Moreover, the feasibility, limitations, and challenges of using NDT techniques for the field inspection of [...] Read more.
High-density polyethylene (HDPE) is widely used for above-ground storage tanks (ASTs). However, there are currently no guidelines for the non-destructive testing (NDT) and evaluation (NDE) of HDPE ASTs. Moreover, the feasibility, limitations, and challenges of using NDT techniques for the field inspection of HDPE ASTs have not been well established. This study used both infrared thermography (IRT) and ultrasonic testing (UT) for the field inspection of HDPE ASTs. Highlighting the implementation challenges in the field, this study determined that: (1) ambient environmental parameters can affect IRT accuracy; (2) there is an ideal time during the day to perform IRT; (3) the heating source and infrared camera orientation can affect IRT accuracy; and (4) with proper measures taken, IRT is a promising method for flaw detection in HDPE ASTs. Additionally, UT can be used following IRT for detailed investigation to quantify the size and depth of defects. The manuscript concludes with a discussion of the limitations and best practices for the implementing of IRT and UT for HDPE AST inspections in the field. Full article
(This article belongs to the Special Issue Advances in Nondestructive Testing and Evaluation)
Show Figures

Figure 1

36 pages, 4856 KiB  
Review
IoT-Based Solutions to Monitor Water Level, Leakage, and Motor Control for Smart Water Tanks
by Farmanullah Jan, Nasro Min-Allah, Saqib Saeed, Sardar Zafar Iqbal and Rashad Ahmed
Water 2022, 14(3), 309; https://doi.org/10.3390/w14030309 - 20 Jan 2022
Cited by 64 | Viewed by 50879
Abstract
Today, a large portion of the human population around the globe has no access to freshwater for drinking, cooking, and other domestic applications. Water resources in numerous countries are becoming scarce due to over urbanization, rapid industrial growth, and current global warming. Water [...] Read more.
Today, a large portion of the human population around the globe has no access to freshwater for drinking, cooking, and other domestic applications. Water resources in numerous countries are becoming scarce due to over urbanization, rapid industrial growth, and current global warming. Water is often stored in the aboveground or underground tanks. In developing countries, these tanks are maintained manually, and in some cases, water is wasted due to human negligence. In addition, water could also leak out from tanks and supply pipes due to the decayed infrastructure. To address these issues, researchers worldwide turned to the Internet-of-Things (IoT) technology to efficiently monitor water levels, detect leakage, and auto refill tanks whenever needed. Notably, this technology can also supply real-time feedback to end-users and other experts through a webpage or a smartphone. Literature reveals a plethora of review articles on smart water monitoring, including water quality, supply pipes leakage, and water waste recycling. However, none of the reviews focus on the IoT-based solution to monitor water level, detect water leakage, and auto control water pumps, especially at the induvial level that form a vast proportion of water consumers worldwide. To fill this gap in the literature, this study presents a review of IoT-controlled water storage tanks (IoT-WST). Some important contributions of our work include surveying contemporary work on IoT-WST, elaborating current techniques and technologies in IoT-WST, targeting proper hardware, and selecting a secure IoT cloud server. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment Ⅱ)
Show Figures

Figure 1

11 pages, 750 KiB  
Article
Research on the Safety and Security Distance of Above-Ground Liquefied Gas Storage Tanks and Dispensers
by Bożena Kukfisz, Aneta Kuczyńska, Robert Piec and Barbara Szykuła-Piec
Int. J. Environ. Res. Public Health 2022, 19(2), 839; https://doi.org/10.3390/ijerph19020839 - 12 Jan 2022
Cited by 5 | Viewed by 4179
Abstract
Many countries lack clear legal requirements on the distance between buildings and petrol station facilities. The regulations in force directly determine the petrol station facilities’ required distance to buildings, and such distances are considered relevant for newly designed and reconstructed buildings. Public buildings [...] Read more.
Many countries lack clear legal requirements on the distance between buildings and petrol station facilities. The regulations in force directly determine the petrol station facilities’ required distance to buildings, and such distances are considered relevant for newly designed and reconstructed buildings. Public buildings must be located no closer than 60 m to the above-ground liquefied gas tanks and liquid gas dispensers. Still, based on engineering calculations and the applied technical measures, it is possible to determine a safe distance for buildings that are constructed, extended and reconstructed, to which superstructures are added or whose utilisation method changes. The paper presents the results of calculations devoted to determining a safe distance between public buildings and LPG filling station facilities, using selected analytical models. The analyses were carried out for the LPG gas system commonly used in petrol stations, consisting of two gas storage tanks of 4.85 m3 capacity each, and a dispenser. It is legitimate to eliminate the obligation to observe the 60 m distance between LPG filling stations and public buildings and the mandatory distance of 60 m between liquefied gas dispensers and public buildings is not justified in light of the implemented requirements to use various protections at self-service liquefied gas filling stands. Full article
(This article belongs to the Special Issue Safety Analytics in Occupational Settings)
Show Figures

Figure 1

29 pages, 9688 KiB  
Article
Laboratory Study on Non-Destructive Evaluation of Polyethylene Liquid Storage Tanks by Thermographic and Ultrasonic Methods
by Amir Behravan, Matthew M. deJong and Alexander S. Brand
CivilEng 2021, 2(4), 823-851; https://doi.org/10.3390/civileng2040045 - 28 Sep 2021
Cited by 4 | Viewed by 3293
Abstract
High-density polyethylene (HDPE) above-ground storage tanks (AST) are used by highway agencies to store liquid deicing chemicals for the purpose of road maintenance in the winter. A sudden AST failure can cause significant economic and environmental impacts. While ASTs are routinely inspected to [...] Read more.
High-density polyethylene (HDPE) above-ground storage tanks (AST) are used by highway agencies to store liquid deicing chemicals for the purpose of road maintenance in the winter. A sudden AST failure can cause significant economic and environmental impacts. While ASTs are routinely inspected to identify signs of aging and damage, current methods may not adequately capture all defects, particularly if they are subsurface or too small to be seen during visual inspection. Therefore, to improve the ability to identify potential durability issues with HDPE ASTs, additional non-destructive evaluation (NDE) techniques need to be considered and assessed for applicability. Specifically, this study investigates the efficiency of using infrared thermography (IRT) as a rapid method to simultaneously examine large areas of the tank exterior, which will be followed by closer inspections with conventional and phased array ultrasonic testing (UT) methods. Results show that IRT can help to detect defects that are shallow, specifically located within half of the tank’s wall thickness from the surface. UT has the ability to detect all defects at any depth. Moreover, phased array UT helps to identify stacked defects and characterize each defect more precisely than IRT. Full article
(This article belongs to the Special Issue Early Career Stars in Civil Engineering)
Show Figures

Figure 1

9 pages, 1497 KiB  
Article
Increasing Solar Energy Usage for Dwelling Heating, Using Solar Collectors and Medium Sized Vacuum Insulated Storage Tank
by Janar Kalder, Andres Annuk, Alo Allik and Eugen Kokin
Energies 2018, 11(7), 1832; https://doi.org/10.3390/en11071832 - 12 Jul 2018
Cited by 18 | Viewed by 3541
Abstract
This article describes a method for increasing the solar heat energy share in the heating of a dwelling. Solar irradiation is high in summer, in early autumn, and in spring, but during that same time, the heat demand of dwellings is low. This [...] Read more.
This article describes a method for increasing the solar heat energy share in the heating of a dwelling. Solar irradiation is high in summer, in early autumn, and in spring, but during that same time, the heat demand of dwellings is low. This article describes a solution for storing solar heat energy in summertime as well as the calculations of the heat energy balance of such a storage system. The solar heat energy is stored in a thermally insulated water tank and used in the heating period. The heat is also stored in the ground if necessary, using the ground loop of the heat pump if the water tank’s temperature rises above a certain threshold. The stored heat energy is used directly for heating if the heat carrier temperature inside the tank is sufficient. If the temperature is too low for direct heating, then the heat pump can be used to extract the stored energy. The calculations are based on the solar irradiation measurements and heating demand data of a sample dwelling. The seasonal storing of solar heat energy can increase the solar heat energy usage and decrease the heat pump working time. The long-term storage tank capacity of 15 m3 can increase the direct heating from solar by 41%. The direct heating system efficiency is 51%. Full article
Show Figures

Figure 1

13 pages, 4687 KiB  
Article
Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall
by Premesh S. Lowe, Wenbo Duan, Jamil Kanfoud and Tat-Hean Gan
Sensors 2017, 17(11), 2542; https://doi.org/10.3390/s17112542 - 4 Nov 2017
Cited by 20 | Viewed by 7573
Abstract
There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be [...] Read more.
There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. Full article
Show Figures

Figure 1

Back to TopTop