Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = ablation damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3731 KiB  
Article
Impact of Intrapericardial Fluid on Lesion Size During Epicardial Radiofrequency Ablation: A Computational Study
by Luis Cuenca-Dacal, Marcela Mercado-Montoya, Tatiana Gómez-Bustamante, Enrique Berjano, Maite Izquierdo, José M. Lozano, Juan J. Pérez and Ana González-Suárez
J. Cardiovasc. Dev. Dis. 2025, 12(8), 283; https://doi.org/10.3390/jcdd12080283 - 24 Jul 2025
Viewed by 222
Abstract
Background and aims: Epicardial RFA is often required when ventricular tachyarrhythmias originate from epicardial or subepicardial substrates that cannot be effectively ablated endocardially. Our objective was to evaluate the impact of intrapericardial fluid accumulation on the lesion size in the myocardium and the [...] Read more.
Background and aims: Epicardial RFA is often required when ventricular tachyarrhythmias originate from epicardial or subepicardial substrates that cannot be effectively ablated endocardially. Our objective was to evaluate the impact of intrapericardial fluid accumulation on the lesion size in the myocardium and the extent of thermal damage to adjacent structures, particularly the lung. Methods: An in silico model of epicardial RFA was developed, featuring an irrigated-tip catheter placed horizontally on the epicardium. A 50 W–30 s RF pulse was simulated. Temperature distributions and resultant thermal lesions in both the myocardium and lung were computed. Results: An increase in pericardial space from 2.5 mm to 4.5 mm resulted in a reduction of myocardial lesion depth by up to 1 mm, while the volume of lung damage decreased from 200 to 300 mm3 to nearly zero, irrespective of myocardial or epicardial fat thickness. Myocardial lesion size was markedly influenced by the thickness of the epicardial fat layer. In the absence of fat and with a narrow pericardial space, lesions reached up to 262 mm3 in volume and 6.1 mm in depth. With 1 mm of fat, lesion volume decreased to below 100 mm3 and depth to 3 mm; with 2 mm, to under 40 mm3 and 2 mm; and with 3 mm, to less than 16 mm3 and 1.2 mm. Lung damage increased moderately with greater fat thickness. Cooling the irrigation fluid from 37 °C to 5 °C reduced lung damage by up to 51%, while myocardial lesion size decreased by only 15%. Conclusions: Intrapericardial fluid accumulation can limit myocardial lesion formation while protecting adjacent structures. Cooling the irrigation fluid may reduce collateral damage without compromising myocardial lesion depth. Full article
(This article belongs to the Section Electrophysiology and Cardiovascular Physiology)
Show Figures

Figure 1

16 pages, 10306 KiB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Viewed by 371
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

13 pages, 386 KiB  
Article
Overall Survival and Complication Rates in the Treatment of Liver Carcinoma: A Comparative Study of Ultrasound, Computed Tomography, and Combined Ultrasound and Computed Tomography Guidance for Radiofrequency Ablation
by Chia-Hsien Chien, Chia-Ling Chiang, Huei-Lung Liang, Jer-Shyung Huang and Chia-Jung Tsai
Diagnostics 2025, 15(14), 1754; https://doi.org/10.3390/diagnostics15141754 - 11 Jul 2025
Viewed by 328
Abstract
Background: Liver cancer is a major health concern worldwide. Radiofrequency ablation is a safe treatment option that can be guided by either ultrasound, computer tomography (CT), or fluoroscopy. Although ultrasound-guided radiofrequency ablation is commonly used in clinical practice, radiofrequency ablation guided by CT [...] Read more.
Background: Liver cancer is a major health concern worldwide. Radiofrequency ablation is a safe treatment option that can be guided by either ultrasound, computer tomography (CT), or fluoroscopy. Although ultrasound-guided radiofrequency ablation is commonly used in clinical practice, radiofrequency ablation guided by CT is more precise but requires more time and does not offer real-time monitoring, which may result in complications such as pneumothorax or organ damage. Objectives: In this study, we investigated the effect of ultrasound, CT, and combined ultrasound/CT guidance on patient survival and complication development. Methods: A total of 982 radiofrequency ablation sessions conducted on 553 patients were analyzed. Clinical outcomes were assessed during follow-up to determine the survival and recurrence rates of malignant tumors. Results: Overall, the three guidance approaches exhibited significant differences in terms of tumor size, number, complication development, and treatment duration. However, no significant differences were observed in survival rate. A comparison of the effect of CT guidance and ultrasound guidance on complication development revealed a higher odds ratio for CT guidance in some cases. A comparison of combined ultrasound/CT guidance and ultrasound guidance revealed nonsignificant differences in complication development. A comparison of CT guidance and combined ultrasound/CT guidance revealed a higher odds ratio for CT guidance in some cases. Radiofrequency ablation is a safe and effective treatment for liver tumors. However, CT has an increased incidence of complications. Conclusions: Combined ultrasound/computer tomography guidance is recommended for patients with multiple or large tumors or tumors near the hepatic dome or diaphragm. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

18 pages, 3853 KiB  
Article
Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass
by Huaye Kong, Xijing Zhu, Yao Liu, Dekang Zhang and Xingqi Du
Coatings 2025, 15(7), 802; https://doi.org/10.3390/coatings15070802 - 9 Jul 2025
Viewed by 600
Abstract
This study is based on the laser-induced thermal-crack propagation (LITP) technology, focusing on the issues of deviation and thermal damage during the transverse crack propagation process, with the aim of achieving high-purity, non-destructive, and high-precision cutting of glass. A 50 W, 1064 nm [...] Read more.
This study is based on the laser-induced thermal-crack propagation (LITP) technology, focusing on the issues of deviation and thermal damage during the transverse crack propagation process, with the aim of achieving high-purity, non-destructive, and high-precision cutting of glass. A 50 W, 1064 nm fiber laser is used for S-pattern scanning cutting of soda–lime glass. A moving heat source model is established and analyzed via MATLAB R2022a numerical simulation. Combined with the ABAQUS 2019 software, the relationships among temperature field, stress field, crack propagation, and deviation during laser-induced thermal crack cutting are deeply explored. Meanwhile, laser thermal fracture experiments are also carried out. A confocal microscope detects glass surface morphology, cross-sectional roughness and hardness under different heat flux densities (HFLs), determining the heat flux density threshold affecting the glass surface quality. Through a comprehensive study of theory, simulation, and experiments, it is found that with an increase in the HFL value of the material, the laser-induced thermal crack propagation can be divided into four stages. When the heat flux density value is in the range of 47.2 to 472 W/m2, the glass substrate has good cross-sectional characteristics. There is no ablation phenomenon, and the surface roughness of the cross-section is lower than 0.15 mm. The hardness decreases by 9.19% compared with the reference value. Full article
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 327
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

15 pages, 14270 KiB  
Article
Repetition Frequency-Dependent Formation of Oxidized LIPSSs on Amorphous Silicon Films
by Liye Xu, Wei Yan, Weicheng Cui and Min Qiu
Photonics 2025, 12(7), 667; https://doi.org/10.3390/photonics12070667 - 1 Jul 2025
Viewed by 298
Abstract
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently [...] Read more.
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently explored. In this study, we systematically investigate the effects of varying the femtosecond laser repetition frequency from 1 kHz to 100 kHz while keeping the total pulse number constant on the oxidation-induced LIPSSs formed on amorphous silicon films. Scanning electron microscopy and Fourier analysis reveal a transition between two morphological regimes with increasing repetition frequency: at low frequencies, the long inter-pulse intervals result in irregular, disordered oxidation patterns; at high frequencies, closely spaced pulses promote the formation of highly ordered, periodic surface structures. Statistical measurements show that the laser-modified area decreases with frequency, while the LIPSS period remains relatively stable and the ridge width exhibits a peak at 10 kHz. Finite-difference time-domain (FDTD) and finite-element simulations suggest that the observed patterns result from a dynamic balance between light-field modulation and oxidation kinetics, rather than thermal accumulation. These findings advance the understanding of oxidation-driven LIPSS formation dynamics and provide guidance for optimizing femtosecond laser parameters for precise surface nanopatterning. Full article
Show Figures

Figure 1

9 pages, 2559 KiB  
Case Report
Endocardial Ablation of Atrial Flutter with Involvement of the Vein of Marshall: A Case Report
by Lucio Addeo, Konstantinos Triantafyllou, Hellen Dockx, Monika Shumkova, Antonio Rapacciuolo, Stefano Nardi, Vittoria Marino, Luigi Argenziano, Pasquale Guarini, Laura Adelaide Dalla Vecchia, Francesco Donatelli and Tom De Potter
J. Clin. Med. 2025, 14(13), 4598; https://doi.org/10.3390/jcm14134598 - 29 Jun 2025
Viewed by 397
Abstract
Background: Atypical atrial flutter (AFL) is a complex clinical challenge, particularly in patients with prior atrial fibrillation (AF) treated with pulmonary vein isolation (PVI). Arrhythmias involving the vein of Marshall (VOM) often require extensive lesion sets, including ethanol infusion, to effectively target the [...] Read more.
Background: Atypical atrial flutter (AFL) is a complex clinical challenge, particularly in patients with prior atrial fibrillation (AF) treated with pulmonary vein isolation (PVI). Arrhythmias involving the vein of Marshall (VOM) often require extensive lesion sets, including ethanol infusion, to effectively target the epicardial substrate. To minimize tissue damage, an alternative strategy has been proposed, emphasizing advanced electroanatomical mapping, entrainment maneuvers, and highly targeted ablation techniques. Case Presentation: We describe a 72-year-old woman with recurrent atrial arrhythmias following pulmonary vein isolation (PVI), who presented with palpitations as her primary symptom. After ineffective pharmacological therapy, she underwent a catheter ablation procedure. Electroanatomical mapping revealed significant left atrial scarring and suggested a macroreentrant circuit involving the VOM. Entrainment maneuvers confirmed the VOM’s involvement. A single targeted endocardial ablation guided by the ablation index terminated the arrhythmia within 12 s, without the need for ethanol infusion or extensive lesion sets. Discussion: This case underscores the VOM’s role in sustaining atypical AFL post-PVI and highlights the effectiveness of precise electroanatomical mapping combined with targeted endocardial ablation. Unlike broader ablation or ethanol infusion strategies, a focused lesion at the critical isthmus achieved arrhythmia termination with minimal tissue damage. Conclusions: Endocardial ablation at the site of entrainment can safely and effectively treat VOM-related AFL, offering symptom relief and restoration of sinus rhythm. This approach may reduce procedural risks and expand the feasibility of VOM-related arrhythmia management in centers without access to ethanol infusion. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

19 pages, 4360 KiB  
Article
A Feasibility Study on UV Nanosecond Laser Ablation for Removing Polyamide Insulation from Platinum Micro-Wires
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(7), 208; https://doi.org/10.3390/jmmp9070208 - 21 Jun 2025
Cited by 1 | Viewed by 555
Abstract
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must [...] Read more.
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must not only ensure the complete removal of the polyamide insulation but also maintain the tensile strength of the wire to withstand mechanical handling in subsequent manufacturing stages. Additionally, the exposed platinum surface must exhibit low surface roughness to enable effective soldering and be free of thermal damage or residual debris to pass strict visual inspections. The wires have a total diameter of 65 µm, consisting of a 50 µm platinum core encased in a 15 µm polyamide coating. By utilizing a UV laser with a wavelength of 355 nm, average power of 3 W, a repetition rate range of 20 to 200 kHz, and a high-speed marking system, the process parameters were systematically refined. Initial attempts to perform the ablation in an air medium were unsuccessful due to inadequate thermal control and incomplete removal of the polyamide coating. Hence, a water-assisted ablation technique was explored to address these limitations. Experimental results demonstrated that a scanning speed of 1200 mm/s, coupled with a line spacing of 1 µm and a single ablation pass, resulted in complete coating removal while ensuring the integrity of the platinum substrate. The incorporation of a water layer above the ablation region was considered crucial for effective heat dissipation, preventing substrate overheating and ensuring uniform ablation. The laser’s spot diameter of 20 µm in air and a focal length of 130 mm introduced challenges related to overlap control between successive passes, requiring precise calibration to maintain consistency in coating removal. This research demonstrates the feasibility and reliability of water-assisted laser ablation as a method for a high-precision, non-contact coating material. Full article
(This article belongs to the Special Issue Advances in Laser-Assisted Manufacturing Techniques)
Show Figures

Figure 1

19 pages, 2303 KiB  
Article
ANOVA Based Optimization of UV Nanosecond Laser for Polyamide Insulation Removal from Platinum Wires Under Water Confinement
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(6), 201; https://doi.org/10.3390/jmmp9060201 - 18 Jun 2025
Viewed by 365
Abstract
Platinum wires, known for their excellent electrical conductivity and durability, are widely used in high-precision industries, such as aerospace and automotive. These wires are typically coated with polyamide for protection; however, specific manufacturing processes require the coating to be selectively removed. Although traditional [...] Read more.
Platinum wires, known for their excellent electrical conductivity and durability, are widely used in high-precision industries, such as aerospace and automotive. These wires are typically coated with polyamide for protection; however, specific manufacturing processes require the coating to be selectively removed. Although traditional chemical stripping methods are effective, they are associated with high costs, safety concerns, and long processing times. As a result, laser ablation has emerged as a more efficient, precise, and cleaner alternative, especially at the microscale. In this study, ultraviolet nanosecond laser ablation was applied to remove polyamide coatings from ultra-thin platinum wires in a water-assisted environment. The presence of water enhances the process by promoting thermal management and minimizing debris. Key processing parameters, including the scanning speed, overlap percentage, and line distance, were evaluated. The optimal result was achieved at a scanning speed of 1200 mm/s, line distance of 1 µm, and single loop in water-ambient, where coating removal was complete, surface roughness remained low, and wire tensile strength was preserved. This performance is attributed to the effective energy distribution across the wire surface and reduced thermal damage due to the heat dissipation role of water, along with controlled overlap that ensured full coverage without overexposure. A thin, well-maintained water layer confined above the apex of the wire played a crucial role in regulating the thermal flow during ablation. This setup helped shield the delicate platinum substrate from overheating, thereby maintaining its mechanical integrity and preventing substrate damage throughout the process. This study primarily focused on analyzing the main effects and two-factor interactions of these parameters using Analysis of Variance (ANOVA). Interactions such as Speed × Overlap and Speed × Line Distance were statistically examined to identify the influence of combined factors on tensile strength and surface roughness. In the second phase of experimentation, the parameter space was further expanded by increasing the line distance and number of loops to reduce the overlap in the X-direction. This allowed for a more comprehensive process evaluation. Again, conditions around 1200 mm/s and 1500 mm/s with 2 µm line distance and two loops offered favorable outcomes, although 1200 mm/s was selected as the optimal speed due to better consistency. These findings contribute to the development of a robust, high-precision laser processing method for ultra-thin wire applications. The statistical insights gained through ANOVA offer a data-driven framework for optimizing future laser ablation processes. Full article
Show Figures

Figure 1

22 pages, 18692 KiB  
Article
An Improved CNN-Based Algorithm for Quantitative Prediction of Impact Damage Depth in Civil Aircraft Composites via Multi-Domain Terahertz Spectroscopy
by Huazhong Zhang, Hongbiao Yin, Xia Lei, Xiaoqing Xing, Mian Zhong, Rong Yang, Zeguo Liu, Shouqing Li and Zhenguang Mo
Electronics 2025, 14(12), 2412; https://doi.org/10.3390/electronics14122412 - 12 Jun 2025
Viewed by 485
Abstract
To address the issue of low accuracy and stability in traditional Convolutional Neural Networks (CNN)-based defect depth prediction for civil aircraft composites, we propose an improved Feature Enhancement Network (FEN)-CNN-Bidirectional Long Short-Term Memory (BiLSTM) impact damage depth prediction method. By integrating terahertz (THz) [...] Read more.
To address the issue of low accuracy and stability in traditional Convolutional Neural Networks (CNN)-based defect depth prediction for civil aircraft composites, we propose an improved Feature Enhancement Network (FEN)-CNN-Bidirectional Long Short-Term Memory (BiLSTM) impact damage depth prediction method. By integrating terahertz (THz) time-domain, frequency-domain, and absorbance spectroscopy with Confocal Laser Scanning Microscopy (CLSM) depth measurements, the correlation between THz spectral features and impact damage defect depth is systematically elucidated, thereby constructing a “THz features-depth” dataset. Furthermore, by leveraging the FEN model’s feature enhancement and denoising capabilities, along with the BiLSTM model’s bidirectional sequence modeling capability, the underlying relationship between terahertz spectral features and defect depth is deeply learned. This approach improves the stability and accuracy of spectral feature extraction by the CNN model under complex conditions. Ablation experiments revealed the improved model, compared to traditional CNN, reduced Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) by 43.08%, 44.4%, 57.18%, and 34.56%, respectively. Additionally, it decreased the Relative Standard Deviation (RSD) by 32.14%, and increased the Coefficient of Determination (R2) by 6.8%. Comparative experiments demonstrated the proposed model achieved an MSE of 0.0075 and an R2 of 0.9539, outperforming other models. This study provides a novel method for precise low-velocity impact damage assessment in carbon fiber reinforced composites, enhancing safety evaluation for civil aircraft composite structures and contributing to aviation safety. Full article
(This article belongs to the Special Issue Terahertz Optics and Spectroscopy)
Show Figures

Figure 1

53 pages, 7134 KiB  
Review
Effects of Process Parameters on Pulsed Laser Micromachining for Glass-Based Microfluidic Devices
by Mrwan Alayed, Nojoud Al Fayez, Salman Alfihed, Naif Alshamrani and Fahad Alghannam
Materials 2025, 18(11), 2657; https://doi.org/10.3390/ma18112657 - 5 Jun 2025
Viewed by 789
Abstract
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. [...] Read more.
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. By examining three pulse regimes—long (≥nanosecond), short (picosecond), and ultrashort (femtosecond)—this study evaluates how laser parameters (fluence, scanning speed, pulse duration, repetition rate, wavelength) and glass properties influence ablation efficiency and quality. A higher fluence improves the material ablation efficiency across all the regimes but poses risks of thermal damage or plasma shielding in ultrashort pulses. Optimizing the scanning speed balances the depth and the surface quality, with slower speeds enhancing the channel depth but requiring heat accumulation mitigation. Shorter pulses (femtosecond regime) achieve greater precision (feature resolution) and minimal heat-affected zones through nonlinear absorption, while long pulses enable rapid deep-channel fabrication but with increased thermal stress. Elevating the repetition rate improves the material ablation rates but reduces the surface quality. The influence of wavelength on efficiency and quality varies across the three pulse regimes. Material selection is critical to outcomes and potential applications: fused silica demonstrates a superior surface quality due to low thermal expansion, while soda–lime glass provides cost-effective prototyping. The review emphasizes the advantages of laser micromachining and the benefits of a wide range of applications. Future directions should focus on optimizing the process parameters to improve the efficiency and quality of the produced devices at a lower cost to expand their uses in biomedical, environmental, and quantum applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 11736 KiB  
Article
A Precise Detection Method for Tomato Fruit Ripeness and Picking Points in Complex Environments
by Xinfa Wang, Xuan Wen, Yi Li, Chenfan Du, Duokuo Zhang, Chengxiu Sun and Bihua Chen
Horticulturae 2025, 11(6), 585; https://doi.org/10.3390/horticulturae11060585 - 25 May 2025
Cited by 1 | Viewed by 891
Abstract
Accurate identification of tomato ripeness and precise detection of picking points is the key to realizing automated picking. Aiming at the problems faced in practical applications, such as low accuracy of tomato ripeness and picking points detection in complex greenhouse environments, which leads [...] Read more.
Accurate identification of tomato ripeness and precise detection of picking points is the key to realizing automated picking. Aiming at the problems faced in practical applications, such as low accuracy of tomato ripeness and picking points detection in complex greenhouse environments, which leads to wrong picking, missed picking, and fruit damage by robots, this study proposes the YOLO-TMPPD (Tomato Maturity and Picking Point Detection) model. YOLO-TMPPD is structurally improved and algorithmically optimized based on the YOLOv8 baseline architecture. Firstly, the Depthwise Convolution (DWConv) module is utilized to substitute the C2f module within the backbone network. This substitution not only cuts down the model’s computational load but also simultaneously enhances the detection precision. Secondly, the Content-Aware ReAssembly of FEatures (CARAFE) operator is utilized to enhance the up-sampling operation, enabling precise content-aware processing of tomatoes and picking keypoints to improve accuracy and recall. Finally, the Convolutional Attention Mechanism (CBAM) module is incorporated to enhance the model’s ability to detect tomato-picking key regions in a large field of view in both channel and spatial dimensions. Ablation experiments were conducted to validate the effectiveness of each proposed module (DWConv, CARAFE, CBAM), and the architecture was compared with YOLOv3, v5, v6, v8, v9, and v10. The experimental results reveal that, when juxtaposed with the original network model, the YOLO-TMPPD model brings about remarkable improvements. Specifically, it improves the object detection F1 score by 4.48% and enhances the keypoint detection accuracy by 4.43%. Furthermore, the model’s size is reduced by 8.6%. This study holds substantial theoretical and practical value. In the complex environment of a greenhouse, it contributes significantly to computer-vision-enabled detection of tomato ripening. It can also help robots accurately locate picking points and estimate posture, which is crucial for efficient and precise tomato-picking operations without damage. Full article
Show Figures

Graphical abstract

12 pages, 8961 KiB  
Communication
Damage Characteristics in Glass Fiber-Reinforced Epoxy Resin Composites Under Continuous Wave and Pulsed Laser Modes
by Xue Zhang, Jian Peng, Tengfei Li, Jing Xiao, Guiyong Chen, Yanjun Tang, Miao He and Jinghua Han
Photonics 2025, 12(6), 526; https://doi.org/10.3390/photonics12060526 - 22 May 2025
Viewed by 450
Abstract
Composite materials have been extensively utilized in unmanned aerial vehicles (UAVs) and other aerospace applications due to their unique advantages, while laser countermeasures have emerged as a critical approach in anti-UAV warfare. Different laser modes produce significantly different effects. In this study, we [...] Read more.
Composite materials have been extensively utilized in unmanned aerial vehicles (UAVs) and other aerospace applications due to their unique advantages, while laser countermeasures have emerged as a critical approach in anti-UAV warfare. Different laser modes produce significantly different effects. In this study, we have mainly considered the ablation and damage characteristics of composite materials affected by continuous wave (CW) and pulsed laser (PL) modes. Through comparative analysis of damage morphologies and elemental variations, the damage characteristics and mechanisms of composite materials have been studied, and thermodynamic models have been established. The results demonstrate that the damage produced using the CW mode is primarily thermal ablation, induced through power intensification, whereas the PL mode predominantly causes thermal stress fractures via energy concentration. This investigation provides fundamental references for optimizing laser-based counter-UAV systems. Full article
Show Figures

Figure 1

20 pages, 3732 KiB  
Article
Evaluating the Effectiveness of Aluminum Coatings on Patch-Repaired Composites Using Electro-Thermal Analysis
by Zezhong Shan, Yanghan Zhai, Kai Ma, Tianqin Song, Yigang Sun and Haoran Hun
Appl. Sci. 2025, 15(10), 5529; https://doi.org/10.3390/app15105529 - 15 May 2025
Viewed by 349
Abstract
Lightning-induced ablation can severely compromise the structural integrity of composite materials. While metallic coatings have been widely studied for lightning protection, this study focuses on a different application—applying aluminum coatings to repaired composite materials. The goal is to address the challenge of ensuring [...] Read more.
Lightning-induced ablation can severely compromise the structural integrity of composite materials. While metallic coatings have been widely studied for lightning protection, this study focuses on a different application—applying aluminum coatings to repaired composite materials. The goal is to address the challenge of ensuring that composite structures can withstand subsequent lightning strikes after repair. This study utilized an electro-thermal coupling finite element analysis model to assess the damage to laminates and the effectiveness of identical material patches for repairs. It is found that although patched laminates may experience more severe ablation damage when subjected to the same lightning strike, the application of an aluminum coating can significantly mitigate damage. Furthermore, this study improved the aluminum coating scheme, investigating the impact of coating width and shape on its lightning protection efficacy. The results indicate that a cross-shaped aluminum coating provides significant advantages in protecting repaired laminates against lightning strike, with a significant reduction compared to the uncoated controls. However, it was noted that narrowing the coating width could limit the coating’s ability to handle high current densities, potentially affecting its protective capabilities. These insights may contribute to the advancement of composite material repair strategies and the development of innovative protective structures against lightning damage. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

23 pages, 9052 KiB  
Article
Intelligent Recognition Method for Ferrography Wear Debris Images Using Improved Mask R-CNN Methods
by Xiangwen Xiao, Weixuan Zhang, Qing Wang, Yuan Liu and Yishou Wang
Lubricants 2025, 13(5), 208; https://doi.org/10.3390/lubricants13050208 - 9 May 2025
Viewed by 573
Abstract
The accurate characterization of wear debris is crucial for assessing the health of rotating engine components and for conducting simulation experiments in debris detection. This study proposed an intelligent recognition method for ferrography wear debris images, leveraging several improved Mask Region-based Convolutional Neural [...] Read more.
The accurate characterization of wear debris is crucial for assessing the health of rotating engine components and for conducting simulation experiments in debris detection. This study proposed an intelligent recognition method for ferrography wear debris images, leveraging several improved Mask Region-based Convolutional Neural Network (Mask R-CNN) algorithms to quantitatively calculate both the number of debris particles and their coverage areas. The improvement on the Mask R-CNN focuses on two key aspects: enhancing feature extraction through the feature pyramid network structure and integrating attention mechanisms. The most suitable attention mechanism for wear debris detection was determined through ablation experiments. The improved Mask R-CNN combined with the Convolutional Block Attention Module achieves the best Mean Pixel Accuracy of 87.63% at a processing speed of 7.6 frames per second, demonstrating its high accuracy and efficiency in wear particle segmentation. Furthermore, the quantitative and qualitative analysis of wear debris, including the number and area of debris particles and their classification, provides valuable insights into the severity of wear. These insights are essential for understanding the extent of wear damage and guiding maintenance decisions. Full article
Show Figures

Figure 1

Back to TopTop