Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (377)

Search Parameters:
Keywords = ZnONPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4618 KB  
Article
Phyto-Mediated Zinc Oxide Nanoparticles from Raphanus sativus (L.): Metabolomic Insights, Gastroprotective Potential, and Docking-Supported Evidence
by Doaa K. Alsayed, Seham S. El-Hawary, Mohamed A. El Raey, Gihan Fouad, Mohamed F. Abdelhameed, Ahmed F. Essa, Yasmine H. Ahmed, Saad A. Alshehri, Mohamed A. Rabeh and Amira K. Elmotayam
Life 2025, 15(11), 1710; https://doi.org/10.3390/life15111710 - 5 Nov 2025
Viewed by 369
Abstract
This study aimed to synthesize zinc oxide nanoparticles (ZnO-NPs) via a green sustainable approach using Raphanus sativus (L.) root extract and evaluate their gastroprotective effect against ethanol-induced gastric injury in rats. ZnO-NPs were characterized through UV–Vis spectroscopy, FT-IR, TEM, zeta potential analysis, and [...] Read more.
This study aimed to synthesize zinc oxide nanoparticles (ZnO-NPs) via a green sustainable approach using Raphanus sativus (L.) root extract and evaluate their gastroprotective effect against ethanol-induced gastric injury in rats. ZnO-NPs were characterized through UV–Vis spectroscopy, FT-IR, TEM, zeta potential analysis, and XRD. LC- MS-coupled metabolic profiling was employed to identify different phytochemical compounds in the plant. Oxidative stress biomarkers (GSSG, GPX, and CAT), gastric secretions (gastrin and histamine), inflammatory cytokines (TNF-α and NF-κB), and molecular markers (MMP-10 and pERK1/2) were evaluated. Treatment with ZnO-NPs and plant extract restored antioxidant enzyme activity in a dose-dependent manner and decreased oxidative and inflammatory markers. Histopathological and histochemical analyses confirmed the protection of the gastric mucosa. The ZnO-NPs at (200 mg/kg), showed superior efficacy over the extract and, in some cases, displayed equivalent or enhanced effects relative to the reference drug omeprazole. In silico findings support the gastroprotective potential of the plant by demonstrating strong binding associations for major phytochemicals. This paper highlights that green-synthesized ZnO-NPs exhibit a significant gastroprotective effect through the modulation of oxidative stress and inflammatory pathways, indicating their promise as a safe and effective alternative treatment for gastric ulcers. Full article
Show Figures

Figure 1

32 pages, 18102 KB  
Article
Sustainable Concrete Using Porcelain and Clay Brick Waste as Partial Sand Replacement: Evaluation of Mechanical and Durability Properties
by Mustafa Thaer Hasan, Alaa A. Abdul-Hamead and Farhad M. Othman
Constr. Mater. 2025, 5(4), 78; https://doi.org/10.3390/constrmater5040078 - 29 Oct 2025
Viewed by 318
Abstract
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving [...] Read more.
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving sustainability and preserving mechanical and durability characteristics. The experimental program was conducted in three consecutive phases. During the initial phase, natural sand was partially substituted with porcelain waste powder (PWP) and brick waste powder (BWP) in proportions of 25%, 50%, and 75% of the weight of the fine aggregate. During the second phase, polypropylene fibers were mixed at a dosage of 0.5% by volume fraction to enhance tensile and flexural properties. During the third phase, zinc oxide nanoparticles (ZnO-NPs) were utilized as a partial substitute for cement at concentrations of 0.5% and 1% to improve microstructure and strength progression. Concrete samples were tested at curing durations of 7, 28, and 91 days. The assessed qualities encompassed workability, density, water absorption, porosity, compressive strength, flexural strength, and splitting tensile strength. Microstructural characterization was conducted utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicated that porcelain waste powder markedly surpassed brick waste powder in all mechanical and durability-related characteristics, particularly at 25% and 50% sand replacement ratios. The integration of polypropylene fibers enhanced fracture resistance and ductility. Moreover, the incorporation of zinc oxide nanoparticles improved hydration, optimized the pore structure, and resulted in significant enhancements in compressive and tensile strength throughout prolonged curing durations. The best results were obtained with a mix of 50% porcelain sand aggregate, 1% zinc oxide nanoparticles as cement replacement, and 0.5% polypropylene fibers, for which the improvements in compressive strength, flexural strength, and splitting tensile strength were 39.5%, 46.2%, and 60%, respectively, at 28 days. The results confirm the feasibility of using porcelain and brick waste as sand replacements in concrete, as well as polypropylene fiber-reinforced concrete and polypropylene fiber-reinforced concrete mixed with zinc oxide nanoparticles as a sustainable option for construction purposes. Full article
Show Figures

Figure 1

13 pages, 8193 KB  
Article
Green-Synthesized Zinc Oxide Nanoparticles with Enhanced Release Behavior for Sustainable Agricultural Applications
by Riyad Al Sharif, Ayman S. Ayesh, Muayad Esaifan, Naem Mazahrih, Nabeel Bani Hani, Bayan Al Rjoub, Eva Rayya and Majd Abu Salem
Solids 2025, 6(4), 59; https://doi.org/10.3390/solids6040059 - 26 Oct 2025
Viewed by 567
Abstract
This study presents a green and sustainable approach for synthesizing zinc oxide nanoparticles (ZnO-NPs) using Melia azedarach leaf extract as a reducing and stabilizing agent, with zinc acetate as the precursor. The synthesized nanoparticles were thoroughly characterized to assess their structural, morphological, and [...] Read more.
This study presents a green and sustainable approach for synthesizing zinc oxide nanoparticles (ZnO-NPs) using Melia azedarach leaf extract as a reducing and stabilizing agent, with zinc acetate as the precursor. The synthesized nanoparticles were thoroughly characterized to assess their structural, morphological, and physicochemical properties, revealing nanoscale dimensions, enhanced crystallinity, and improved stability compared to commercial ZnO. Controlled release experiments under plant-relevant pH conditions demonstrated a gradual and sustained release of Zn2+ ions, accompanied by buffering effects and re-precipitation of Zn(OH)2, highlighting their potential for long-term nutrient availability in soil systems. Unlike conventional studies that focus mainly on synthesis or characterization, this work emphasizes the functional performance of ZnO-NPs as nanofertilizers, combining eco-friendly production with practical agricultural applications. The plant-mediated synthesis yielded nanoparticles with uniform size distribution, enhanced dispersion, and stability, which are critical for efficient nutrient delivery and persistence in soil. Overall, this study provides a cost-effective, scalable, and environmentally benign strategy for producing ZnO nanoparticles and offers valuable insights into the development of sustainable nanofertilizers aimed at improving crop nutrition, soil fertility, and agricultural productivity. Full article
Show Figures

Graphical abstract

22 pages, 4812 KB  
Article
Physiological, Productive, and Nutritional Performance of Tomato Plants Treated with Iron and Zinc Nanoparticles via Foliar Application Under Deficit Irrigation
by Erika Caminha Almeida, Francisco Hevilásio Freire Pereira, Kaiki Nogueira Ferreira, Antonio Carlos de Sena Rodrigues, Railene Hérica Carlos Rocha Araújo, José Ebson Janoca de Souza, Carlos Sávio Gomes Ramos, Guilherme Lopes, Leônidas Canuto dos Santos, Francisco Bezerra Neto, Francisco Vaniés da Silva Sá, José Zilton Lopes Santos, Ronaldo do Nascimento and Josinaldo Lopes Araujo Rocha
Horticulturae 2025, 11(10), 1228; https://doi.org/10.3390/horticulturae11101228 - 11 Oct 2025
Viewed by 740
Abstract
Water deficit in the semi-arid region of Brazil is a critical limiting factor for tomato (Solanum lycopersicum Mill.), plant development and productivity. We evaluated whether foliar zinc (ZnO NPs) and iron (Fe2O3NPs) nano-oxides and their conventional salts (ZnSO [...] Read more.
Water deficit in the semi-arid region of Brazil is a critical limiting factor for tomato (Solanum lycopersicum Mill.), plant development and productivity. We evaluated whether foliar zinc (ZnO NPs) and iron (Fe2O3NPs) nano-oxides and their conventional salts (ZnSO4·7H2O and FeSO4·7H2O) mitigate water deficit effects on tomato (hybrid HM 2798). A split-plot field experiment was conducted with two irrigation levels (50% and 100% ETc) and five foliar treatments: control (no application), FeSO4·7H2O (T1), Fe2O3NPs (T2), ZnONPs (T3), ZnSO4·7H2O (T4), with four replications, totaling 40 experimental plots (2 irrigation levels × 5 foliar treatments × 4 replicates). The water deficit significantly reduced the leaf area index, photosynthetic rate, membrane stability, calcium and boron contents in fruits, and total and marketable yield. Foliar application of iron and zinc nano-oxides and their conventional sources had a limited effect on tomato plant growth but increased the photosynthetic rate under both irrigation levels. Under full irrigation, ZnSO4·7H2O increased total fruit production by 61% and fruit Zn content by 18.1%. In turn, Fe2O3 NPs (T2) led increases in fruit iron content by 117.3% under water deficit and 135.2% under full irrigation. Foliar application of Fe as Fe2O3 NPs is promising to promote the biofortification of tomato fruits with this micronutrient, especially in regions with deficiency problems of this micronutrient. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Graphical abstract

18 pages, 3921 KB  
Article
ZnONPs Alleviates Salt Stress in Maize Seedlings by Improving Antioxidant Defense and Photosynthesis Potential
by Siqi Sun, Xiaoqiang Zhao, Xin Li, Meiyue He, Jing Wang, Xinxin Xiang and Yining Niu
Plants 2025, 14(19), 3104; https://doi.org/10.3390/plants14193104 - 9 Oct 2025
Viewed by 605
Abstract
Salt stress is a significant environmental factor that inhibits maize growth and development, severely affecting yield formation. Interestingly, nanomaterials, particularly ZnONPs, can enhance resistance to various stresses and support healthy crop growth. However, the effects of ZnONPs on maize under salt stress remain [...] Read more.
Salt stress is a significant environmental factor that inhibits maize growth and development, severely affecting yield formation. Interestingly, nanomaterials, particularly ZnONPs, can enhance resistance to various stresses and support healthy crop growth. However, the effects of ZnONPs on maize under salt stress remain unclear. This study investigates the effect of foliar and seed exposure to zinc oxide nanoparticles (ZnONPs) on reducing NaCl-induced salt stress in two maize inbred lines (NKY298-1 and NKY211). Over a period of seven days, under 120 mM NaCl, we measured growth, reactive oxygen species (ROS), malondialdehyde (MDA), membrane stability index (MSI), water status (relative water content, RWC), photosynthetic pigments and parameters, selected photosynthetic enzymes, and antioxidant enzyme activities. Then, we propose four composite indices, including stress improvement index (SII), alleviation capacity index (ACI), comprehensive improvement effects (CIE), and comprehensive alleviation capacity (CAC), to rank the effectiveness of ZnONP doses. The findings suggested that 50–100 μM ZnONPs significantly mitigate salt damage, with optimal doses varying by genotype (50 μM for NKY211 and 100 μM for NKY298-1). Notably, the study’s originality lies in its side-by-side composite scoring across 26 traits in two maize genotypes’ seedlings. In conclusion, the findings will provide a new idea for research on the molecular mechanism by which exogenous ZnONPs application improves the salt tolerance of maize seedlings. Full article
Show Figures

Figure 1

17 pages, 2276 KB  
Article
Top-Down Ultrasonication Method for ZnO Nanoparticles Fabrication and Their Application in Developing Pectin-Glycerol Bionanocomposite Films
by Maulida Nur Astriyani, Nugraha Edhi Suyatma, Vallerina Armetha, Eko Hari Purnomo, Tjahja Muhandri, Faleh Setia Budi, Boussad Abbes and Ahmed Tara
Physchem 2025, 5(4), 42; https://doi.org/10.3390/physchem5040042 - 3 Oct 2025
Viewed by 698
Abstract
Ultrasonication offers a safer, lower-temperature method for synthesizing zinc oxide nanoparticles (ZnO-NPs). This study details the development of a pectin-glycerol bionanocomposite film reinforced with ZnO-NPs produced using the top-down ultrasonication method. ZnO-NPs were fabricated with varying ultrasonication durations (0, 30, and 60 min) [...] Read more.
Ultrasonication offers a safer, lower-temperature method for synthesizing zinc oxide nanoparticles (ZnO-NPs). This study details the development of a pectin-glycerol bionanocomposite film reinforced with ZnO-NPs produced using the top-down ultrasonication method. ZnO-NPs were fabricated with varying ultrasonication durations (0, 30, and 60 min) and the addition of pectin as a capping agent. Extended ultrasonication duration resulted in smaller particle size and more defined morphology. Bionanocomposite films were prepared using the solvent casting method by incorporating ZnO-NPs (0, 0.5, 1, 2.5% w/w) and glycerol (0, 10, 20% w/w) as a plasticizer to a pectin base. The inclusion of ZnO-NPs and glycerol did not affect the shear-thinning behavior of the film-forming solution. FTIR analysis indicated interactions between ZnO-NPs, glycerol, and pectin. The addition of ZnO-NPs and glycerol reduced tensile strength but increased flexibility. ZnO-NPs improved barrier and thermal properties by reducing water vapor permeability and increasing melting point, whereas glycerol lowered glass transition temperature, thus enhancing film flexibility. The best film performance was observed with a combination of 0.5% ZnO and 20% glycerol. These results highlight the effectiveness of the top-down ultrasonication method as a sustainable approach for ZnO-NPs fabrication, supporting the development of pectin/ZnO-NPs/glycerol films as a promising material for eco-friendly packaging. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Graphical abstract

20 pages, 7109 KB  
Article
The Structural and Biological Effects of Zinc and Titanium Oxide Nanoparticles on the Condition of Activated Sludge from a Municipal Wastewater Treatment Plant
by Anna Kwarciak-Kozłowska and Krzysztof Łukasz Fijałkowski
Materials 2025, 18(19), 4523; https://doi.org/10.3390/ma18194523 - 29 Sep 2025
Viewed by 465
Abstract
The increasing environmental presence of metal oxide nanoparticles (NMOPs) raises concerns regarding their influence on biological wastewater treatment. This study comparatively evaluates the structural and biological effects of zinc oxide (ZnO-NPs) and titanium dioxide (TiO2-NPs) nanoparticles on activated sludge from a [...] Read more.
The increasing environmental presence of metal oxide nanoparticles (NMOPs) raises concerns regarding their influence on biological wastewater treatment. This study comparatively evaluates the structural and biological effects of zinc oxide (ZnO-NPs) and titanium dioxide (TiO2-NPs) nanoparticles on activated sludge from a wastewater treatment plant. Experimental exposure covered nanoparticle concentrations of 0.05–0.3 g/L and contact times up to 180 min, with analysis of enzymatic activity (dehydrogenase activity, TTC-SA method), sludge settleability, and particle size distribution. Inhibition of microbial metabolic activity was observed in a clear dose- and time-dependent manner, with ZnO-NPs showing stronger toxicity than TiO2-NPs. At the highest dose (0.3 g/L), enzymatic activity nearly disappeared after 90 min (0.04 µg TPF/mg MLSS). Both nanoparticles caused floc fragmentation, decreased sludge volume index (SVI), and increased the proportion of ultrafine particles (<0.3 µm). ZnO-NPs induced more severe destabilization, while TiO2-NPs showed partial re-aggregation of suspended particles at higher concentrations. Additionally, particle size distribution in the supernatant was analyzed, revealing distinct aggregation and fragmentation patterns for ZnO- and TiO2-NPs. These structural and functional alterations suggest potential risks for treatment efficiency, including reduced nutrient removal and impaired sludge settleability. The study provides a comparative contribution to understanding toxicity mechanisms of ZnO- and TiO2-NPs and emphasizes the need to monitor NMOPs in wastewater and to develop mitigation strategies to ensure stable plant operation Full article
Show Figures

Figure 1

23 pages, 5279 KB  
Article
Green Synthesis of Zinc Oxide Nanoparticles: Physicochemical Characterization, Photocatalytic Performance, and Evaluation of Their Impact on Seed Germination Parameters in Crops
by Hanan F. Al-Harbi, Manal A. Awad, Khalid M. O. Ortashi, Latifah A. AL-Humaid, Abdullah A. Ibrahim and Asma A. Al-Huqail
Catalysts 2025, 15(10), 924; https://doi.org/10.3390/catal15100924 - 28 Sep 2025
Viewed by 1525
Abstract
This study reports on green-synthesized zinc oxide nanoparticles (ZnONPs), focusing on their physicochemical characterization, photocatalytic properties, and agricultural applications. Dynamic light scattering (DLS) analysis revealed a mean hydrodynamic diameter of 337.3 nm and a polydispersity index (PDI) of 0.400, indicating moderate polydispersity and [...] Read more.
This study reports on green-synthesized zinc oxide nanoparticles (ZnONPs), focusing on their physicochemical characterization, photocatalytic properties, and agricultural applications. Dynamic light scattering (DLS) analysis revealed a mean hydrodynamic diameter of 337.3 nm and a polydispersity index (PDI) of 0.400, indicating moderate polydispersity and nanoparticle aggregation, typical of biologically synthesized systems. High-resolution transmission electron microscopy (HR-TEM) showed predominantly spherical particles with an average diameter of ~28 nm, exhibiting slight agglomeration. Energy-dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of zinc and oxygen, while X-ray diffraction (XRD) analysis identified a hexagonal wurtzite crystal structure with a dominant (002) plane and an average crystallite size of ~29 nm. Photoluminescence (PL) spectroscopy displayed a distinct near-band-edge emission at ~462 nm and a broad blue–green emission band (430–600 nm) with relatively low intensity. The ultraviolet–visible spectroscopy (UV–Vis) absorption spectrum of the synthesized ZnONPs exhibited a strong absorption peak at 372 nm, and the optical band gap was calculated as 2.67 eV using the Tauc method. Fourier-transform infrared spectroscopy (FTIR) analysis revealed both similarities and distinct differences to the pigeon extract, confirming the successful formation of nanoparticles. A prominent absorption band observed at 455 cm−1 was assigned to Zn–O stretching vibrations. X-ray photoelectron spectroscopy (XPS) analysis showed that raw pigeon droppings contained no Zn signals, while their extract provided organic biomolecules for reduction and stabilization, and it confirmed Zn2+ species and Zn–O bonding in the synthesized ZnONPs. Photocatalytic degradation assays demonstrated the efficient removal of pollutants from sewage water, leading to significant reductions in total dissolved solids (TDS), chemical oxygen demand (COD), and total suspended solids (TSS). These results are consistent with reported values for ZnO-based photocatalytic systems, which achieve biochemical oxygen demand (BOD) levels below 2 mg/L and COD values around 11.8 mg/L. Subsequent reuse of treated water for irrigation yielded promising agronomic outcomes. Wheat and barley seeds exhibited 100% germination rates with ZnO NP-treated water, which were markedly higher than those obtained using chlorine-treated effluent (65–68%) and even the control (89–91%). After 21 days, root and shoot lengths under ZnO NP irrigation exceeded those of the control group by 30–50%, indicating enhanced seedling vigor. These findings demonstrate that biosynthesized ZnONPs represent a sustainable and multifunctional solution for wastewater remediation and agricultural enhancement, positioning them as a promising candidate for integration into green technologies that support sustainable urban development. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

15 pages, 1666 KB  
Article
Physiological and Biochemical Responses of Nostoc linckia to Metal Oxide Nanoparticles
by Liliana Cepoi, Vera Potopová, Ludmila Rudi, Tatiana Chiriac, Svetlana Codreanu, Ana Valuta and Valeriu Rudic
Life 2025, 15(9), 1477; https://doi.org/10.3390/life15091477 - 20 Sep 2025
Viewed by 432
Abstract
Metal oxide nanoparticles, such as ZnONPs and TiO2NPs, are increasingly applied in various industries. However, their effects on photosynthetic microorganisms at environmentally relevant concentrations remain poorly understood. This study evaluated the impact of ZnONPs and TiO2NPs, at concentrations ranging [...] Read more.
Metal oxide nanoparticles, such as ZnONPs and TiO2NPs, are increasingly applied in various industries. However, their effects on photosynthetic microorganisms at environmentally relevant concentrations remain poorly understood. This study evaluated the impact of ZnONPs and TiO2NPs, at concentrations ranging from 0.1 to 30 mg/L, on the cyanobacterium Nostoc linckia (strain CNMN-CB-03), a species recognized for its adaptability and biotechnological potential. The nanoparticles were added to controlled cultures, and changes in biomass composition and pigment content were assessed using spectrophotometric assays. Both nanoparticle types significantly affected the physiological and biochemical profile of Nostoc linckia. Low concentrations of ZnONPs stimulated the accumulation of biomass, chlorophyll, carotenoids, and lipids, while higher doses caused a reduction in phycocyanin and in total phycobiliproteins content. TiO2NPs consistently promoted biomass growth across all tested concentrations, with decrease in carotenoids and total phycobiliproteins observed at the highest concentrations. For both nanoparticle types, malondialdehyde (MDA) levels decreased compared to the control, indicating reduced oxidative stress and effective cellular adaptation. The results highlight the remarkable resilience and metabolic flexibility of Nostoc linckia in the presence of nanoparticles, supporting its potential as a biotechnological platform for the sustainable production of valuable metabolites under controlled stress conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 3168 KB  
Article
Nanozinc Ecotoxicity in the Freshwater Invasive Bivalve Limnoperna fortunei Under a Climate Change Scenario
by Analía Ale, Victoria S. Andrade, Florencia M. Rojas Molina, Luciana Montalto, Lucía M. Odetti, Pablo E. Antezana, Martín F. Desimone and María Fernanda Simoniello
Animals 2025, 15(18), 2734; https://doi.org/10.3390/ani15182734 - 19 Sep 2025
Cited by 1 | Viewed by 463
Abstract
In a changing world where temperature is expected to increase, emerging nanopollutants could affect the biota in complex ways. With zinc oxide nanoparticles (ZnONP) being one of the most applied nanomaterials, we exposed the freshwater invasive bivalve Limnoperna fortunei to 0 (control), 25, [...] Read more.
In a changing world where temperature is expected to increase, emerging nanopollutants could affect the biota in complex ways. With zinc oxide nanoparticles (ZnONP) being one of the most applied nanomaterials, we exposed the freshwater invasive bivalve Limnoperna fortunei to 0 (control), 25, and 250 µg/L of ZnONP at 27 or 31 °C for 96 h. In parallel, a 24 h bioassay was performed to calculate filtration rate. After 96 h, in soft tissue of the bivalves, tissue-damage-related enzyme activities (aspartate aminotransferase and alkaline phosphatase) were inhibited at both concentrations and temperatures. Oxidative stress was observed through increased superoxide dismutase activity after both ZnONP concentrations at 27 °C and decreased catalase activity after 250 µg/L at 31 °C, while glutathione-S-transferase activity showed opposing significant tendencies depending on temperature. After 6 h, the filtration rate differed significantly between control groups, as it was higher at 31 °C. However, in case of 31 °C, bivalves exposed to ZnONP drastically decreased their filtration rate compared to control. Our study highlights nanotoxicological implications of ZnONP; as even at environmentally relevant concentrations (such as the lowest applied in this study), they exert deleterious effects on freshwater organisms, which could be worsened in a climate-change scenario. Full article
Show Figures

Figure 1

16 pages, 903 KB  
Article
Enhancing Nutraceutical Quality and Antioxidant Activity in Chili Pepper (Capsicum annuum L.) Fruit by Foliar Application of Green-Synthesized ZnO Nanoparticles (ZnONPs)
by Daniela Monserrat Sánchez-Pérez, Jolanta E. Marszalek, Jorge Armando Meza-Velázquez, David Francisco Lafuente-Rincon, Maria Teresa Salazar-Ramírez, Selenne Yuridia Márquez-Guerrero, Maria Guadalupe Pineda-Escareño, Agustina Ramírez Moreno and Erika Flores-Loyola
Nanomaterials 2025, 15(18), 1440; https://doi.org/10.3390/nano15181440 - 18 Sep 2025
Viewed by 678
Abstract
The application of zinc oxide nanoparticles prepared by green synthesis (GS-ZnONPs) has demonstrated essential benefits in boosting the clean and sustainable production of agricultural crops worldwide. In this part of the study we evaluate the effect of GS-ZnONPs foliar spraying on the yield, [...] Read more.
The application of zinc oxide nanoparticles prepared by green synthesis (GS-ZnONPs) has demonstrated essential benefits in boosting the clean and sustainable production of agricultural crops worldwide. In this part of the study we evaluate the effect of GS-ZnONPs foliar spraying on the yield, nutraceutical quality, capsaicin concentration, and antioxidant metabolism of chili fruit (Capsicum annuum L., CHISER-522 variety) grown under greenhouse conditions. GS-ZnONPs treatments were applied at concentrations of 10, 20, 30, 40, and 50 ppm every 15 days post-transplant, with the control group treated only with distilled water. The results indicated that treatments with 40 and 50 ppm of GS-ZnONPs significantly improved fruit yield, length, and fruit amount. At the same time, the concentrations of 30 and 40 ppm significantly increased the levels of vitamin C, bioactive compounds, and antioxidant capacity, indicating a better nutraceutical quality of the fruit. In addition, an increase in the catalase activity and the content of macro and micro-minerals in the fruit treated with GS-ZnONPs was observed. Our results suggest that the foliar application of GS-ZnONPs acts as a nanobioestimulant, offering an excellent biotechnological tool for developing agroecological strategies to increase the nutraceutical and antioxidant quality of chili pepper fruit. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

17 pages, 3454 KB  
Article
Mitigating Salinity Stress in Solanaceae: The Role of Nanoparticles in Seed Germination and Growth Development
by Chinur Hadi Mahmood, Kamaran Salh Rasul and Hawar Sleman Halshoy
Crops 2025, 5(5), 62; https://doi.org/10.3390/crops5050062 - 12 Sep 2025
Viewed by 764
Abstract
Salinity is a significant challenge that limits agricultural productivity worldwide. This study examined the use of nanoparticles to improve the growth and development of Solanaceae crops under salinity stress. Specifically, titanium dioxide (TiO2NPs), copper oxide (CuONPs), and zinc oxide (ZnONPs) were [...] Read more.
Salinity is a significant challenge that limits agricultural productivity worldwide. This study examined the use of nanoparticles to improve the growth and development of Solanaceae crops under salinity stress. Specifically, titanium dioxide (TiO2NPs), copper oxide (CuONPs), and zinc oxide (ZnONPs) were applied at 750, 1250, and 1500 mg/kg per seed, respectively, to assess their effects on seed germination and growth of tomato, eggplant, and pepper plants. Results showed that tomato plants under salinity stress performed best with CuONPs, which improved key traits. The combination of salinity and TiO2NPs reduced flower abortion and increased seed yield and 1000-Seed weight. In eggplants, CuONPs and ZnONPs, both individually and in combination with salinity, enhanced plant characteristics, with CuONPs showing particularly strong effects. Control plants consistently recorded the lowest values across traits. For peppers, ZnONPs applied individually most effectively improved growth traits, while CuONPs reduced flower abortion and enhanced seed and germination rates. However, salinity stress itself severely reduced pepper growth parameters. The findings highlight the potential of nanoparticle applications to mitigate salinity stress, enhance growth performance, and support sustainable crop production in tomatoes, eggplants, and peppers, offering practical solutions for salinity-affected agriculture. Full article
Show Figures

Figure 1

15 pages, 967 KB  
Systematic Review
Topical Zinc Oxide Nanoparticle Formulations for Acne Vulgaris: A Systematic Review of Pre-Clinical and Early-Phase Clinical Evidence
by Daniela Crainic, Roxana Popescu, Cristina-Daliborca Vlad, Daniela-Vasilica Serban, Daniel Popa, Cristina Annemari Popa and Ana-Olivia Toma
Biomedicines 2025, 13(9), 2156; https://doi.org/10.3390/biomedicines13092156 - 4 Sep 2025
Viewed by 3837
Abstract
Background and objectives: Antibiotic resistance in Cutibacterium acnes is undermining topical macrolides and clindamycin, prompting renewed interest in zinc oxide nanoparticles (ZnO-NPs) as non-antibiotic alternatives. We aimed to (i) determine the antimicrobial and anti-inflammatory performance of topical ZnO-NP formulations across in vitro, animal [...] Read more.
Background and objectives: Antibiotic resistance in Cutibacterium acnes is undermining topical macrolides and clindamycin, prompting renewed interest in zinc oxide nanoparticles (ZnO-NPs) as non-antibiotic alternatives. We aimed to (i) determine the antimicrobial and anti-inflammatory performance of topical ZnO-NP formulations across in vitro, animal and early human models; (ii) identify physicochemical parameters that modulate potency and tolerance; and (iii) delineate translational gaps and priority design elements for randomised trials. Methods: We systematically searched PubMed, Scopus and Web of Science until 1 June 2025 for in vitro, animal and human studies that evaluated ≤100 nm ZnO-NPs applied topically to C. acnes cultures, extracting data on bacterial load, lesion counts, biophysical skin parameters and acute toxicity. Eight eligible investigations (five in vitro, two animal, one exploratory human) analysed particles 20–50 nm in diameter carrying mildly anionic zeta potentials. Results: Hyaluronic acid-coated ZnO-NPs achieved a sixteen-fold higher selective kill ratio over Staphylococcus epidermidis at 32 µg mL1, while centrifugally spun polyvinyl alcohol dressings reduced C. acnes burden by 3.1 log10 on porcine skin within 24 h, and plant-derived nanogels generated inhibition zones that were 11% wider than benzoyl-peroxide’s 5%. In human subjects, twice-daily 0.5% hyaluronic–ZnO nanogel cut inflammatory-lesion counts by 58% at week four and lowered transepidermal water loss without erythema. Preclinical safety was reassuring, zero mortality among animals at 100 µg mL1 and no irritation among patients, although high-dose sunscreen-grade ZnO (20 nm) delayed rat wound closure by 38%, highlighting dose-dependent differences. Conclusions: Collectively, the evidence indicates that nanoscale reformulation markedly augments zinc’s antibacterial and anti-inflammatory performance while maintaining favourable acute tolerance, supporting progression to rigorously designed, adequately powered randomised trials that will benchmark ZnO-NPs against benzoyl peroxide and retinoids, optimise dosing for efficacy versus phototoxicity, and establish long-term dermatological safety. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Figure 1

23 pages, 1749 KB  
Review
ZnO-Based Nanoparticles for Targeted Cancer Chemotherapy and the Role of Tumor Microenvironment: A Systematic Review
by Vasilis-Spyridon Tseriotis, Dimitrios Ampazis, Sofia Karachrysafi, Theodora Papamitsou, Georgios Petrakis, Dimitrios Kouvelas, Paraskevas Mavropoulos, Konstantinos Lallas, Aleksandar Sič, Vasileios Fouskas, Konstantinos Stergiou, Pavlos Pavlidis and Marianthi Arnaoutoglou
Int. J. Mol. Sci. 2025, 26(17), 8417; https://doi.org/10.3390/ijms26178417 - 29 Aug 2025
Viewed by 1250
Abstract
Cancer, a leading global cause of death responsible for nearly 10 million deaths annually, demands innovative therapeutic strategies. Intrinsic cytotoxicity and biocompatibility of zinc oxide nanoparticles (ZnO-NPs) have rendered them promising nanoplatforms in oncology. We herein systematically review their applications for targeted cancer [...] Read more.
Cancer, a leading global cause of death responsible for nearly 10 million deaths annually, demands innovative therapeutic strategies. Intrinsic cytotoxicity and biocompatibility of zinc oxide nanoparticles (ZnO-NPs) have rendered them promising nanoplatforms in oncology. We herein systematically review their applications for targeted cancer chemotherapy, with a focus on physicochemical properties, drug delivery mechanisms, and interactions with the tumor microenvironment (TME). We searched PubMed, SCOPUS, and Web of Science from inception through December 2024 for peer-reviewed preclinical studies on cancer models. Results were qualitatively synthesized. Quality was assessed with the SYRCLE risk of bias tool. Among 20 eligible studies, ZnO-NPs were frequently functionalized with ligands to enhance tumor targeting and minimize systemic toxicity. Chemotherapeutic agents (doxorubicin, 5-fluorouracil, docetaxel, cisplatin, gemcitabine, and tirapazamine) were loaded into ZnO-based carriers, with improved anticancer efficacy compared to free drug formulations, particularly in multidrug-resistant cell lines and in vivo murine xenografts. The mildly acidic TME was exploited for pH-responsive drug release, premature leakage reduction, and improvement of intratumoral accumulation. Enhanced therapeutic outcomes were attributed to reactive oxygen species generation, zinc ion-mediated cytotoxicity, mitochondrial dysfunction, and efflux pump inhibition. Deep tumor penetration, apoptosis induction, and tumor growth suppression were also reported, with minimal toxicity to healthy tissues. ZnO-NPs might constitute a versatile and promising strategy for targeted cancer chemotherapy, offering synergistic anticancer effects and improved safety profiles. Future studies emphasizing long-term toxicity, immune responses, and scalable production could lead to clinical translation of ZnO-based nanomedicine in oncology. Full article
Show Figures

Figure 1

25 pages, 1407 KB  
Review
ZnO Nanoparticles: Advancing Agricultural Sustainability
by Lekkala Venkata Ravishankar, Nidhi Puranik, VijayaDurga V. V. Lekkala, Dakshayani Lomada, Madhava C. Reddy and Amit Kumar Maurya
Plants 2025, 14(15), 2430; https://doi.org/10.3390/plants14152430 - 5 Aug 2025
Cited by 1 | Viewed by 2080
Abstract
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. [...] Read more.
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. Zinc deficiency in plants leads to various physiological abnormalities, ultimately affecting nutritional quality and posing challenges to food security. Biofortification methods have been adopted by agronomists to increase Zn concentrations in crops through optimal foliar and soil applications. Changing climatic conditions and conventional agricultural practices alter edaphic factors, reducing zinc bioavailability in soils due to abrupt weather changes. Precision agriculture emphasizes need-based and site-specific technologies to address these nutritional deficiencies. Nanoscience, a multidimensional approach, reduces particle size to the nanometer (nm) scale to enhance their efficiency in precise amounts. Nanoscale forms of Zn+2 and their broad applications across crops are gaining attention in agriculture under varied application methods. This review focuses on the significance of Zn oxide (ZnO) nanoparticles (ZnONPs) and their extensive application in crop production. We also discuss optimum dosage levels, ZnONPs synthesis, application methods, toxicity, and promising future strategies in this field. Full article
(This article belongs to the Special Issue Nanotechnology in Crop Physiology and Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop