The Structural and Biological Effects of Zinc and Titanium Oxide Nanoparticles on the Condition of Activated Sludge from a Municipal Wastewater Treatment Plant
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Substrate
2.2. Analytical Methods
2.3. Experimental Setup
3. Results
3.1. Biological Assessment of Activated Sludge Based on the IBIO Index
3.2. Determination of Reaction Time and DHA Activity of Activated Sludge
3.3. Determination of Sludge Settleability and Sludge Volume Index (SVI)
3.4. Laser Diffraction Particle Size Analysis of Activated Sludge and Supernatant Water
- A.
- Effect of TiO2-NPs on activated sludge:
- 1.
- In the control sample, the dominant particle size was within the 10–30 μm range (27%).
- 2.
- The addition of 0.05 g/L TiO2-NPs resulted in a 10% increase in particles sized 0.1–0.3 μm and fragmentation of larger particles (>5 μm), while the 10–30 μm range remained dominant.
- 3.
- At 0.1 g/L TiO2, complete fragmentation of particles > 3 μm was observed, with 77.6% of particles falling within the 0.1–0.3 μm range.
- 4.
- No significant changes were observed at 0.2 g/L and 0.3 g/L compared to 0.1 g/L, apart from a gradual increase in particles < 0.01 μm (22%, 26%, and 29%, respectively).
- B.
- Effect of ZnO-NPs on activated sludge:
- 1.
- A clear dose-dependent relationship was observed between ZnO concentration and particle fragmentation.
- 2.
- The addition of 0.05 g/L ZnO-NPs slightly reduced the number of particles in the 5–30 μm range and increased the proportion of particles sized 0.1–5 μm.
- 3.
- At 0.1 g/L, more intense fragmentation of particles > 5 μm was observed, increasing the share of 0.1–5 μm particles.
- 4.
- A dose of 0.2 g/L resulted in a fivefold increase in particles < 0.01 μm and an increase in the 0.1–0.3 μm fraction to 74%.
- 5.
- At 0.3 g, further fragmentation was observed, with 22% of particles < 0.01 μm and 78% within the 0.1–0.3 μm range.
- C.
- Particle size distribution in supernatant water after TiO2-NPs addition:
- 1.
- The control sample was dominated by particles > 10 μm, particularly in the 10–30 μm range.
- 2.
- The addition of 0.05 g/L TiO2-NPs resulted in a minor (3%) increase in particles sized 0.1–1 μm, with larger particles still predominant.
- 3.
- At 0.1 g/L, a slight increase in particles < 5 μm and the appearance of a 0.3% fraction < 0.01 μm were observed.
- 4.
- The 0.2 g/L dose caused fragmentation of larger particles (>5 μm), generating more 1–3 μm particles and doubling the <0.01 μm fraction to 0.6%.
- 5.
- At 0.3 g/L, a 10% increase in the 0.01–1 μm fraction was noted, along with the appearance of a significant 50–100 μm fraction (over 32%), suggesting complex aggregation or restructuring processes.
- D.
- Particle size distribution in supernatant water after ZnO-NPs addition:
- 1.
- The addition of 0.05 g ZnO-NPs reduced the quantity of large particles (30–100 μm) by ~20%, with a slight increase in smaller fractions.
- 2.
- Increasing the dose to 0.1 g/L resulted in fragmentation of 5–30 μm particles and a 20% increase in the 1–3 μm range.
- 3.
- At 0.2 g/L, a 40% increase in 1–3 μm particles was observed, along with an average 7% increase in smaller fractions.
- 4.
- The highest dose (0.3 g/L) produced no significant changes relative to 8 g/L; the 1–3 μm fraction remained dominant, with a slight reduction in particles > 10 μm.
Particle Size Analysis of Activated Sludge and Supernatant Water—Critical Review
4. Conclusions
4.1. Comparison of ZnO-NPs and TiO2-NPs Effect on Activated Sludge
4.2. Structural Alterations and Floc Fragmentation
4.3. Implications for Wastewater Treatment
- Comparative toxicity: Both ZnO-NPs and TiO2-NPs negatively affected the biological and structural stability of activated sludge, with ZnO-NPs exerting stronger toxicity. Enzymatic inhibition (DHA), reductions in microfaunal diversity (IBIO), and severe floc fragmentation were most pronounced under ZnO exposure.
- Operational implications: The observed changes in sludge settleability and enzymatic activity suggest potential risks for nutrient removal efficiency and effluent quality in wastewater treatment plants. Therefore, regular monitoring of nanoparticle concentrations in influent, effluent, and activated sludge is recommended to ensure stable process operation under real plant conditions.
- Future perspectives: The results emphasize the importance of developing strategies to mitigate nanoparticle effects, including advanced treatment systems, such as membrane filtration or adsorption, may mitigate the entry of nanoparticles into biological reactors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cervantes-Avilés, P.; Caretta, C.A.; Brito, E.M.S.; Bertin, P.; Cuevas-Rodríguez, G.; Duran, R. Changes in Bacterial Diversity of Activated Sludge Exposed to Titanium Dioxide Nanoparticles. Biodegradation 2021, 32, 313–326. [Google Scholar] [CrossRef]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. J. Nanoparticle Res. 2012, 14, 1109. [Google Scholar] [CrossRef]
- Grosser, A.; Grobelak, A.; Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemière, S.; Guyoneaud, R.; Attard, E.; Celary, P. Effects of Silver Nanoparticles on Performance of Anaerobic Digestion of Sewage Sludge and Associated Microbial Communities. Renew. Energy 2021, 171, 1014–1025. [Google Scholar] [CrossRef]
- Keller, A.A.; Lazareva, A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environ. Sci. Technol. Lett. 2014, 1, 65–70. [Google Scholar] [CrossRef]
- Kiser, M.A.; Westerhoff, P.; Benn, T.; Wang, Y.; Pérez-Rivera, J.; Hristovski, K. Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants. Environ. Sci. Technol. 2009, 43, 6757–6763. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, T.; Sun, Y.; Geng, H.; Li, B.; Dai, H. Effects of Nano Metal Oxide Particles on Activated Sludge System: Stress and Performance Recovery Mechanism. Environ. Pollut. 2021, 285, 117408. [Google Scholar] [CrossRef] [PubMed]
- Madeła, M. Effect of Copper Nanoparticles on Biological Wastewater Treatment. Desalination Water Treat. 2020, 199, 493–498. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and Implications of Nanotechnologies for the Food Sector. Food Addit. Contam. Part A 2008, 25, 241–258. [Google Scholar] [CrossRef]
- Husen, A. Gold Nanoparticles from Plant System: Synthesis, Characterization and Their Application. In Nanoscience and Plant–Soil Systems; Ghorbanpour, M., Manika, K., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 48, pp. 455–479. ISBN 978-3-319-46833-4. [Google Scholar]
- Siddiqi, K.S.; ur Rahman, A.; Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Madeła, M.; Grobelak, A.; Neczaj, E. Impact of Selected Nanoparticles on Wastewater Treatment Efficiency. Desalination Water Treat. 2018, 134, 115–120. [Google Scholar] [CrossRef]
- Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 Nanoparticle Emission from Exterior Facades into the Aquatic Environment. Environ. Pollut. 2008, 156, 233–239. [Google Scholar] [CrossRef]
- Keller, A.A.; Wang, H.; Zhou, D.; Lenihan, H.S.; Cherr, G.; Cardinale, B.J.; Miller, R.; Ji, Z. Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environ. Sci. Technol. 2010, 44, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, R.; Kwarciak-Kozłowska, A. Nanoparticles from the Cosmetics and Medical Industries in Legal and Environmental Aspects. Sustainability 2021, 13, 5805. [Google Scholar] [CrossRef]
- Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a Therapeutic Tool to Combat Microbial Resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Ma, B.; Wang, S.; Zheng, D.; She, Z.; Guo, L.; Zhao, Y.; Xu, Q.; Jin, C.; et al. Long-Term Impacts of Titanium Dioxide Nanoparticles (TiO2 NPs) on Performance and Microbial Community of Activated Sludge. Bioresour. Technol. 2017, 238, 361–368. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered Nanoparticles in Wastewater and Wastewater Sludge—Evidence and Impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef]
- Chaúque, E.; Zvimba, J.; Ngila, J.; Musee, N. Fate, Behaviour, and Implications of ZnO Nanoparticles in a Simulated Wastewater Treatment Plant. Water SA 2016, 42, 72. [Google Scholar] [CrossRef]
- Musee, N. Simulated Environmental Risk Estimation of Engineered Nanomaterials: A Case of Cosmetics in Johannesburg City. Hum. Exp. Toxicol. 2011, 30, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, R.A.; Wang, L.; Govind, R. Sorption of Toxic Organic Compounds on Wastewater Solids: Correlation with Fundamental Properties. Environ. Sci. Technol. 1989, 23, 1092–1097. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Zhang, M.-L.; Yu, H.-Q. Characterization of Adsorption Properties of Extracellular Polymeric Substances (EPS) Extracted from Sludge. Colloids Surf. B Biointerfaces 2008, 62, 83–90. [Google Scholar] [CrossRef]
- Banerjee, A. The Design, Fabrication, and Photocatalytic Utility of Nanostructured Semiconductors: Focus on TiO2-Based Nanostructures. Nanotechnol. Sci. Appl. 2011, 4, 35–65. [Google Scholar] [CrossRef]
- Minetto, D.; Libralato, G.; Volpi Ghirardini, A. Ecotoxicity of Engineered TiO2 Nanoparticles to Saltwater Organisms: An Overview. Environ. Int. 2014, 66, 18–27. [Google Scholar] [CrossRef]
- Sundaram, B.; Kumar, A. Long-Term Effect of Metal Oxide Nanoparticles on Activated Sludge. Water Sci. Technol. 2017, 75, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, D.; Zhu, X.; Zheng, X.; Feng, L. Long-Term Effects of Copper Nanoparticles on Wastewater Biological Nutrient Removal and N2O Generation in the Activated Sludge Process. Environ. Sci. Technol. 2012, 46, 12452–12458. [Google Scholar] [CrossRef] [PubMed]
- Liwarska-Bizukojc, E. Nano- and Microparticles-Induced Effect on Activated Sludge Properties. Int. J. Environ. Sci. Technol. 2019, 16, 8663–8670. [Google Scholar] [CrossRef]
- DIN 38412-3:2010-10; Deutsche Einheitsverfahren Zur Wasser-, Abwasser-Und Schlammuntersuchung_-Testverfahren Mit Wasserorganismen (Gruppe_L)_-Teil_3: Toxizitätstest Zur Bestimmung Der Dehydrogenasenaktivitätshemmung in Belebtschlamm (TTC-Test) (L_3). DIN Media GmbH: Berlin, Germany, 2010. [CrossRef]
- PN-EN 12879:2004; Charakterystyka Osadów Ściekowych: Oznaczanie Straty Przy Prazeniu Suchej Masy Osadu. Polski Komitet Normalizacyjny: Warszawa, Poland, 2004.
- Madoni, P. A Sludge Biotic Index (SBI) for the Evaluation of the Biological Performance of Activated Sludge Plants Based on the Microfauna Analysis. Water Res. 1994, 28, 67–75. [Google Scholar] [CrossRef]
- Kocwa-Haluch, R.; Woźniakiewicz, T. Analiza Mikroskopowa Osadu Czynnego i Jej Rola w Kontroli Procesu Technologicznego Oczyszczania Ścieków. Czas. Tech. Śr. 2011, 108, 141–162. [Google Scholar]
- Daraei, H.; Toolabian, K.; Thompson, I.; Qiu, G. Biotoxicity Evaluation of Zinc Oxide Nanoparticles on Bacterial Performance of Activated Sludge at COD, Nitrogen, and Phosphorus Reduction. Front. Environ. Sci. Eng. 2022, 16, 19. [Google Scholar] [CrossRef]
- Serov, D.A.; Gritsaeva, A.V.; Yanbaev, F.M.; Simakin, A.V.; Gudkov, S.V. Review of Antimicrobial Properties of Titanium Dioxide Nanoparticles. Int. J. Mol. Sci. 2024, 25, 10519. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, R.; Chen, Y. Effects of ZnO Nanoparticles on Wastewater Biological Nitrogen and Phosphorus Removal. Environ. Sci. Technol. 2011, 45, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cui, F.; Zhao, Z.; Liu, D.; Xu, Y.; Li, H.; Yang, X. The Impact of Titanium Dioxide Nanoparticles on Biological Nitrogen Removal from Wastewater and Bacterial Community Shifts in Activated Sludge. Biodegradation 2014, 25, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, H.; Mahmood, Z.; Wang, Q.; Ma, H. Biocompatibility and Biodegradability of Polyacrylate/ZnO Nanocomposite during the Activated Sludge Treatment Process. PLoS ONE 2018, 13, e0205990. [Google Scholar] [CrossRef]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-1-135-46223-9. [Google Scholar]
- Mu, H.; Chen, Y. Long-Term Effect of ZnO Nanoparticles on Waste Activated Sludge Anaerobic Digestion. Water Res. 2011, 45, 5612–5620. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, F.; Gao, Y.; Mao, X.; Hu, X. Sequestration of Nanoparticles by an EPS Matrix Reduces the Particle-Specific Bactericidal Activity. Sci. Rep. 2016, 6, 21379. [Google Scholar] [CrossRef]
- Ye, J.; Gao, H.; Wu, J.; Yu, R. Effects of ZnO Nanoparticles on Flocculation and Sedimentation of Activated Sludge in Wastewater Treatment Process. Environ. Res. 2021, 192, 110256. [Google Scholar] [CrossRef]
- Liu, G.; Wang, D.; Wang, J.; Mendoza, C. Effect of ZnO Particles on Activated Sludge: Role of Particle Dissolution. Sci. Total Environ. 2011, 409, 2852–2857. [Google Scholar] [CrossRef]
- Meli, K.; Kamika, I.; Keshri, J.; Momba, M.N.B. The Impact of Zinc Oxide Nanoparticles on the Bacterial Microbiome of Activated Sludge Systems. Sci. Rep. 2016, 6, 39176. [Google Scholar] [CrossRef]
- Mendes, C.R.; Dilarri, G.; Forsan, C.F.; Sapata, V.D.M.R.; Lopes, P.R.M.; De Moraes, P.B.; Montagnolli, R.N.; Ferreira, H.; Bidoia, E.D. Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Sci. Rep. 2022, 12, 2658. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, G.; Yu, R. Fates and Impacts of Nanomaterial Contaminants in Biological Wastewater Treatment System: A Review. Water Air Soil Pollut. 2018, 229, 9. [Google Scholar] [CrossRef]
- Choi, S.; Johnston, M.; Wang, G.-S.; Huang, C.-P. The Uptake of Engineered Nanoparticles by Sludge Particulates. Water 2023, 15, 2872. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Y.; Zeng, T.; Wang, D.; Liu, X.; Xu, Q.; Yang, Q.; Yang, F.; Chen, H. Revealing How the Entering Nano-Titanium Dioxide in Wastewater Worsened Sludge Dewaterability. Chem. Eng. J. 2021, 411, 128465. [Google Scholar] [CrossRef]
- Li, H.; Chang, F.; Li, Z.; Cui, F. The Role of Extracellular Polymeric Substances in the Toxicity Response of Anaerobic Granule Sludge to Different Metal Oxide Nanoparticles. Int. J. Environ. Res. Public Health 2022, 19, 5371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Trzcinski, A.P.; Oh, H.-S.; Chew, E.; Liu, Y.; Tan, S.K.; Ng, W.J. Comparison of the Effects and Distribution of Zinc Oxide Nanoparticles and Zinc Ions in Activated Sludge Reactors. J. Environ. Sci. Health Part A 2017, 52, 1073–1081. [Google Scholar] [CrossRef]
- Zhou, L.; Zhuang, W.-Q.; De Costa, Y.; Xia, S. Potential Effects of Suspended TiO2 Nanoparticles on Activated Sludge Floc Properties in Membrane Bioreactors. Chemosphere 2019, 223, 148–156. [Google Scholar] [CrossRef]
Dominant Group and Microfauna Density Determining the Order | Total Number of Taxonomic Units Forming the Microfauna of Activated Sludge and Abundance of Small Flagellates F Counted in the Belt | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dominant key group | Total organisms in L | >10 | 8–10 | 5–7 | <5 | ||||
F < 10 10 < F < 100 | F < 10 10 < F < 100 | F < 10 10 < F < 100 | F < 10 10 < F < 100 | ||||||
House amoebas, sessile and crawling ciliates | 106 | 10 | 8 | 9 | 7 | 8 | 6 | 7 | 5 |
<106 | 9 | 7 | 8 | 6 | 7 | 5 | 6 | 4 | |
Sedimentary >80% | 106 | 9 | 7 | 8 | 6 | 7 | 6 | 6 | 4 |
<106 | 8 | 6 | 7 | 5 | 6 | 4 | 5 | 3 | |
Opercularia spp. | 106 | 7 | 5 | 6 | 4 | 5 | 3 | 4 | 2 |
<106 | 6 | 4 | 5 | 3 | 4 | 2 | 3 | 1 | |
Vorticella microstoma | 106 | 6 | 3 | 5 | 3 | 4 | 2 | 3 | 1 |
<106 | 5 | 3 | 4 | 2 | 3 | 1 | 2 | 0 | |
Freely swimming bacteriophagous ciliates | 106 | 5 | 3 | 4 | 2 | 3 | 1 | 2 | 0 |
<106 | 4 | 2 | 3 | 1 | 2 | 0 | 1 | 0 |
Reaction Time [min] | Titanium Oxide Nanoparticle Dose [g/L] | ||||
---|---|---|---|---|---|
0 | 0.05 | 0.1 | 0.2 | 0.3 | |
DHA Activity [µg TPF/mg MLSS] | |||||
15 | 4.58 ± 0.06 | 4.31 ± 0.09 | 2.21 ± 0.03 | 1.49 ± 0.04 | 1.03 ± 0.09 |
90 | 4.68 ± 0.06 | 4.46 ± 0.08 | 1.93 ± 0.02 | 0.77 ± 0.09 | 0.04 ± 0.03 |
180 | 4.39 ± 0.07 | 3.9 ± 0.06 | 1.04 ± 0.03 | 0.37 ± 0.03 | 0 ± 0.000 |
Reaction Time [min] | Zinc Oxide Nanoparticle Dose [g/L] | ||||
---|---|---|---|---|---|
0 | 0.05 | 0.1 | 0.2 | 0.3 | |
DHA Activity [μg TPF/mg MLSS] | |||||
15 | 4.58 ± 0.09 | 3.63 ± 0.08 | 2.01 ± 0.04 | 1.24 ± 0.07 | 0.85 ± 0.06 |
90 | 4.48 ± 0.05 | 3.35 ± 0.10 | 1.37 ± 0.07 | 0.18 ± 0.08 | 0.1 ± 0.02 |
180 | 4.39 ± 0.11 | 3.17 ± 0.09 | 0.87 ± 0.05 | 0 ± 0.000 | 0 ± 0.000 |
Section A: Effects on Activated Sludge | ||
---|---|---|
Parameter | TiO2-NPs | ZnO-NPs |
Threshold dose for visible sludge disintegration | 0.1 g/L | 0.1 g/L |
Dominant particle size after 0.1 g/L dose | 0.1–0.3 μm (77.6%) | 0.1–0.3 μm (74%) |
Increase in ultrafine particles (<0.01 μm) | Gradual: 22–29% for 0.2–0.3 g/L | Strong: fivefold increase at 0.2 g/L |
Residual large particles (>5 μm) at 0.3 g/L | Absent | Absent |
Particle destabilization mechanism | Surface erosion, EPS interference, ROS generation | Zn2+ release, oxidative stress, cell membrane disruption |
Effect on microbial diversity | Moderate, dose-dependent | Strong reduction in diversity and abundance |
Observed in the literature | Yes [39,40] | Yes |
Section B: Effects on supernatant water | ||
Parameter | TiO2-NPs | ZnO-NPs |
Secondary aggregation | Yes—50–100 μm particles at 0.3 g/L (32%) | No |
Peak in 1–3 μm fraction | Moderate increase at 0.2 g/L | Strong increase (40%) at 0.2 g/L |
Dominant change at high doses | Emergence of large and ultrafine particles | Fragmentation toward small and medium sizes |
Presence of particles < 0.01 μm | Appeared from 0.1 g/L, increased with dose | Significant from 0.2 g/L |
Observed in the literature | Yes [39,40] | Yes [41,42] |
References: [1,19,35,40,41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwarciak-Kozłowska, A.; Fijałkowski, K.Ł. The Structural and Biological Effects of Zinc and Titanium Oxide Nanoparticles on the Condition of Activated Sludge from a Municipal Wastewater Treatment Plant. Materials 2025, 18, 4523. https://doi.org/10.3390/ma18194523
Kwarciak-Kozłowska A, Fijałkowski KŁ. The Structural and Biological Effects of Zinc and Titanium Oxide Nanoparticles on the Condition of Activated Sludge from a Municipal Wastewater Treatment Plant. Materials. 2025; 18(19):4523. https://doi.org/10.3390/ma18194523
Chicago/Turabian StyleKwarciak-Kozłowska, Anna, and Krzysztof Łukasz Fijałkowski. 2025. "The Structural and Biological Effects of Zinc and Titanium Oxide Nanoparticles on the Condition of Activated Sludge from a Municipal Wastewater Treatment Plant" Materials 18, no. 19: 4523. https://doi.org/10.3390/ma18194523
APA StyleKwarciak-Kozłowska, A., & Fijałkowski, K. Ł. (2025). The Structural and Biological Effects of Zinc and Titanium Oxide Nanoparticles on the Condition of Activated Sludge from a Municipal Wastewater Treatment Plant. Materials, 18(19), 4523. https://doi.org/10.3390/ma18194523