Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (158)

Search Parameters:
Keywords = ZnO/GO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

30 pages, 6093 KiB  
Article
Investigation of Antioxidative Enzymes and Transcriptomic Analysis in Response to Foliar Application of Zinc Oxide Nanoparticles and Salinity Stress in Solanum lycopersicum
by Mostafa Ahmed, Zoltán Tóth, Roquia Rizk, Donia Abdul-Hamid and Kincső Decsi
Agronomy 2025, 15(7), 1715; https://doi.org/10.3390/agronomy15071715 - 16 Jul 2025
Viewed by 374
Abstract
Farmers commonly throw away tomato leaves when they harvest tomatoes, although they are a good source of vital biomolecules. ZnO nanoparticles (ZnO NPs) enhance plant growth by regulating abiotic stress and scavenging reactive oxygen species. In the current article, the activities of five [...] Read more.
Farmers commonly throw away tomato leaves when they harvest tomatoes, although they are a good source of vital biomolecules. ZnO nanoparticles (ZnO NPs) enhance plant growth by regulating abiotic stress and scavenging reactive oxygen species. In the current article, the activities of five antioxidant enzymes—glutathione reductase (GR), peroxidase (POX), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT)—were determined spectrophotometrically to study the interaction between foliar fertilization of ZnO NPs and salt stress in tomato plants. We employed the next-generation sequencing (NGS) technique to investigate the gene expression. It was also used to generate a de novo supertranscript and then determine the sequences modulated by treatments. Differential expression analysis was used to identify increased and reduced gene clusters, and gene enrichment analysis was used to identify over- and under-expressed genes under the treatment. Gene Ontology (GO) was used to identify the functions and regulatory pathways of the differentially expressed genes (DEGs). It was found that ZnO nanoparticles had the capability to overcome the reduction in antioxidant enzyme production levels in the case of the salinity-stressed treatments and enhance the secretion of those enzymes in the non-stressed but sprayed treatments. The ZnO NPs also enhanced the reduction in stress-responsive genes associated with salt stress resistance. The results revealed the impact of ZnO nanoparticles on alleviating the salinity stress reductive effects in antioxidative enzymes and regulating the mechanism by which metabolically relevant genes adaptively respond to salt stress in tomato plants. So, spraying tomato plants (stressed or not) with ZnO NPs is a promising agricultural technique in improving different metabolic pathways that are responsible for plants’ resistance. Full article
Show Figures

Figure 1

26 pages, 9900 KiB  
Article
The Preparation of a GO/ZnO/nHAp Composite Coating and the Study of Its Performance Optimization for Pure Titanium Implants
by Jiang Wu, Yu Zuo, Zhaoxi Xu, Lang Wang, Jiaju Zou, Zijian Jia, Chunmei Wang and Guoliang Zhang
Micromachines 2025, 16(6), 637; https://doi.org/10.3390/mi16060637 - 28 May 2025
Viewed by 714
Abstract
In this study, a graphene oxide (GO)/zinc oxide (ZnO)/hydroxyapatite (nHAp) composite coating was constructed on a pure titanium surface by microarc oxidation (MAO) pretreatment combined with hydrothermal technology (HT), thereby making it possible to explore the performance optimization of this coating for Ti-based [...] Read more.
In this study, a graphene oxide (GO)/zinc oxide (ZnO)/hydroxyapatite (nHAp) composite coating was constructed on a pure titanium surface by microarc oxidation (MAO) pretreatment combined with hydrothermal technology (HT), thereby making it possible to explore the performance optimization of this coating for Ti-based implants. Scanning electron microscopy (SEM), an energy dispersion spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), Ramam spectroscopy (Ramam), etc., confirmed that the GO/ZnO/nHAp composites were successfully loaded onto the pure Ti surfaces. Through nanoindentation, differential thermal analysis (DiamondTG/DTA), and dynamic polarization potential detection, the GO/ZnO/nHAp composite coating imparts excellent nanohardness (2.7 + 1.0 GPa), elastic modulus (53.5 + 1.0 GPa), thermal stability, and corrosion resistance to pure Ti implants; hemolysis rate analysis, CCK-8, alkaline phosphatase (ALP) detection, alizarin red staining, and other experiments further show that the coating improves the hemocompatibility, biocompatibility, and bone guidance of the Ti implant surface. Studies have shown that GO/ZnO/nHAp composite coatings can effectively optimize the mechanical properties, corrosion resistance, biocompatibility, and bone guidance of pure Ti implants, so that they can obtain an elastic modulus that matches human bone. Full article
Show Figures

Figure 1

23 pages, 2027 KiB  
Article
Development and Evaluation of a Novel Self-Etch Dental Adhesive Incorporating Graphene Oxide–Zirconia (GO-ZrO2) and Hydroxyapatite–Zinc (HA-Zn) for Enhanced Bond Strength, Biocompatibility, and Long-Term Stability
by Norbert Erich Serfözö, Marioara Moldovan, Doina Prodan and Nicoleta Ilie
Nanomaterials 2025, 15(11), 803; https://doi.org/10.3390/nano15110803 - 27 May 2025
Viewed by 507
Abstract
The aim of this study was to develop an experimental self-etch dental adhesive (SE) by synthesizing graphene oxide–functionalized zirconia (GO-ZrO2) and hydroxyapatite–functionalized zinc (HA-Zn) as inorganic powders together with bis-GMA (0–2) (bisphenol A-glycidyl methacrylate) oligomers as main components of the organic [...] Read more.
The aim of this study was to develop an experimental self-etch dental adhesive (SE) by synthesizing graphene oxide–functionalized zirconia (GO-ZrO2) and hydroxyapatite–functionalized zinc (HA-Zn) as inorganic powders together with bis-GMA (0–2) (bisphenol A-glycidyl methacrylate) oligomers as main components of the organic matrix. The adhesive was compared to the current gold standard adhesive Clearfill SE Bond 2 (CSE) using cytotoxicity assays, shear bond strength (SBS) tests, and resin–dentin interface analyses. Cytotoxicity assays with human gingival fibroblasts (HGF-1) revealed reduced cell viability at early time points but indicated favourable biocompatibility and potential cell proliferation at later stages. SBS values for the experimental adhesive were comparable to CSE after 24 h of storage while aging did not significantly affect its bond strength. However, SBS exhibited more consistent resin tag formation and higher Weibull modulus values post-aging. A scanning electron microscopy (SEM) analysis highlighted differences in resin tag formation, suggesting the experimental adhesive relies more on chemical bonding than micromechanical interaction. The experimental adhesive demonstrated promising potential clinical properties and bond durability due to the integration of GO-ZrO2 and HA-Zn fillers into the adhesive. Full article
Show Figures

Graphical abstract

10 pages, 3906 KiB  
Article
Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight
by Huan Chen, Shengfeng Chen, Qun Fang and Chuansheng Chen
C 2025, 11(2), 33; https://doi.org/10.3390/c11020033 - 6 May 2025
Viewed by 895
Abstract
To enhance the photocatalytic performance of ZnO, the ZnO/g-C3N4 (ZCN) composite was prepared by ZnO and g-C3N4 under ball milling, and then the ternary graphene oxide (GO)/ZnO/g-C3N4 (GZCN) composite was achieved by using sonicating, [...] Read more.
To enhance the photocatalytic performance of ZnO, the ZnO/g-C3N4 (ZCN) composite was prepared by ZnO and g-C3N4 under ball milling, and then the ternary graphene oxide (GO)/ZnO/g-C3N4 (GZCN) composite was achieved by using sonicating, stirring, and liquid phase evaporating. The photocatalytic performance was tested under UV light and natural solar light, respectively. The experimental results displayed that the GZCN composite revealed excellent photocatalytic performance under UV light and natural sunlight. When the ratio of ZnO to g-C3N4 is 1:0.2 and the mass fraction of graphene oxide is 0.25% in GZCN composite, the modified ZnO possesses optimal photocatalytic activity under UV light or natural solar light. RhB dye is degraded by 94% within 20 min under UV light, which is 3.41 times that of pure ZnO. Moreover, GZCN can degrade 88% of RhB in 60 min under natural sunlight. The enhancement for photocatalytic activity is attributed to the excellent conductivity of GO and heterojunction interaction between ZnO and g-C3N4, where the special electronic structure of g-C3N4 expands the spectral response range of ZnO and accelerates the transmission of photogenerated electrons and holes. Full article
Show Figures

Graphical abstract

21 pages, 3744 KiB  
Article
Modeling and Analysis of KSnI3 Perovskite Solar Cells Yielding Power Conversion Efficiency of 30.21%
by Bonginkosi Vincent Kheswa, Siyabonga Ntokozo Thandoluhle Majola, Hmoud Al-Dmour, Nolufefe Muriel Ndzane and Lucky Makhathini
Nanomaterials 2025, 15(8), 580; https://doi.org/10.3390/nano15080580 - 11 Apr 2025
Cited by 2 | Viewed by 667
Abstract
KSnI3-based perovskite solar cells have attracted a lot of research interest due their unique electronic, optical, and thermal properties. In this study, we optimized the performance of various lead-free perovskite solar cell structures—specifically, FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, [...] Read more.
KSnI3-based perovskite solar cells have attracted a lot of research interest due their unique electronic, optical, and thermal properties. In this study, we optimized the performance of various lead-free perovskite solar cell structures—specifically, FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, FTO/ZnO/KSnI3/rGO/Se, and FTO/SnO2/KSnI3/rGO/Se, using the SCAPS-1D simulation tool. The optimization focused on the thicknesses and dopant densities of the rGO, KSnI3, Al–ZnO, LiTiO2, ZnO, and SnO2 layers, the thickness of the FTO electrode, as well as the defect density of KSnI3. This yielded PCE values of 27.60%, 24.94%, 27.62%, and 30.21% for the FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, FTO/ZnO/KSnI3/rGO/Se, and FTO/SnO2/KSnI3/rGO/Se perovskite solar cell configurations, respectively. The FTO/SnO2/KSnI3/rGO/Se device is 7.43% more efficient than the FTO/SnO2/3C-SiC/KSnI3/NiO/C device, which is currently the highest performing KSnI3-based perovskite solar cell in the literature. Thus, our FTO/SnO2/KSnI3/rGO/Se perovskite solar cell structure is now, by far, the most efficient PSC design. Its best performance is achieved under ideal conditions of a series resistance of 0.5 Ω cm2, a shunt resistance of 107 Ω cm2, and a temperature of 371 K. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 986
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

13 pages, 2577 KiB  
Article
Photocatalytic Degradation of Ciprofloxacin by GO/ZnO/Ag Composite Materials
by Haonan Chi, Pan Cao, Qi Shi, Chaoyu Song, Yuguang Lv and Tai Peng
Nanomaterials 2025, 15(5), 383; https://doi.org/10.3390/nano15050383 - 1 Mar 2025
Cited by 4 | Viewed by 1358
Abstract
This study synthesized graphene oxide (GO)/zinc oxide (ZnO)/silver (Ag) composite materials and investigated their photocatalytic degradation performance for ciprofloxacin (CIP) under visible light irradiation. GO/ZnO/Ag composites with different ratios were prepared via an impregnation and chemical reduction method and characterized using X-ray diffraction [...] Read more.
This study synthesized graphene oxide (GO)/zinc oxide (ZnO)/silver (Ag) composite materials and investigated their photocatalytic degradation performance for ciprofloxacin (CIP) under visible light irradiation. GO/ZnO/Ag composites with different ratios were prepared via an impregnation and chemical reduction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that under optimal conditions (20 mg/L CIP concentration, 15 mg catalyst dosage, GO/ZnO-3%/Ag-doping ratio, and pH 5), the GO/ZnO/Ag composite exhibited the highest photocatalytic activity, achieving a maximum degradation rate of 82.13%. This catalyst effectively degraded ciprofloxacin under light irradiation, showing promising potential for water purification applications. Full article
Show Figures

Graphical abstract

20 pages, 4906 KiB  
Article
Antibacterial Properties and Long-Term Corrosion Resistance of Bioactive Coatings Obtained by Matrix-Assisted Pulsed Laser Evaporation on TiZrTaAg
by Andrei Bogdan Stoian, Mariana Prodana, Radu Nartita, Daniela Ionita and Madalina Simoiu
Metals 2025, 15(3), 253; https://doi.org/10.3390/met15030253 - 27 Feb 2025
Cited by 1 | Viewed by 871
Abstract
The long-term corrosion and antibacterial evaluation of bioactive coating obtained by matrix-assisted pulsed laser evaporation (MAPLE) on TiZrTaAg is crucial for assessing its potential in biomedical applications. The MAPLE deposition technique involves the formation of a dense and adherent layer on the surface [...] Read more.
The long-term corrosion and antibacterial evaluation of bioactive coating obtained by matrix-assisted pulsed laser evaporation (MAPLE) on TiZrTaAg is crucial for assessing its potential in biomedical applications. The MAPLE deposition technique involves the formation of a dense and adherent layer on the surface of the alloy which can include a multitude of components such as bioactive glass, ZnO and graphene oxide. Long-term corrosion studies in simulated body fluids evaluate the stability and integrity of the coating over extended periods, ensuring its durability in the physiological environment. The results showed that the coatings, especially the one incorporating graphene oxide (GO), significantly reduced the corrosion rate of TiZrTaAg compared to the uncoated alloy. Antibacterial evaluation assesses the coating’s ability to inhibit bacterial colonization and biofilm formation, which are major concerns in implant-associated infections. The coatings demonstrated high antibacterial activity, with the one with the GO-containing film exhibiting the highest bacterial inhibition, achieving 83% against Staphylococcus aureus and 71% against Escherichia coli. The study concluded that the MAPLE-modified TiZrTaAg alloy with bioactive coatings, particularly the one with GO, shows promising potential for biomedical applications due to enhanced corrosion resistance and strong antibacterial properties. Full article
Show Figures

Figure 1

10 pages, 4365 KiB  
Article
Construction of ZnO/r-GO Composite Photocatalyst for Improved Photodegradation of Organic Pollutants
by Yun Ding, Wenzhen Qin, Huihua Zhu, Yuhua Dai, Xiaowei Hong, Suqin Han and Yu Xie
Molecules 2025, 30(5), 1008; https://doi.org/10.3390/molecules30051008 - 21 Feb 2025
Cited by 2 | Viewed by 674
Abstract
In this work, a simple hydrothermal method was used to prepare a series of ZnO/r-GO (ZGO-x) catalysts. The obtained products were subjected to a series of characterizations, which showed that the zinc oxide particles were deposited onto r-GO and that the crystal structure [...] Read more.
In this work, a simple hydrothermal method was used to prepare a series of ZnO/r-GO (ZGO-x) catalysts. The obtained products were subjected to a series of characterizations, which showed that the zinc oxide particles were deposited onto r-GO and that the crystal structure was not disrupted. In addition, due to the large specific surface area and the good electrical conductivity of r-GO, more photogenerated electrons can be rapidly transferred from ZnO to r-GO to participate in the reaction, thus improving the photocatalytic performance. The degradation rate of the ZGO-3 sample reached 100% for RhB after simulated sunlight irradiation for 150 min, whereas the pure ZnO degraded RhB by about 83% under the same environment. ZGO-3 also showed the best photocatalytic degradation of methyl orange, with 100% degradation in 180 min, whereas pure ZnO degraded only 87.64% of methyl orange under solar irradiation. Full article
Show Figures

Figure 1

10 pages, 8909 KiB  
Article
Flexible Electrospun Polyacrylonitrile/ZnO Nanofiber Membrane as Separator for Sodium-Ion Batteries with Cycle Stability
by Xin Mu, Xiangyu Yin, Meili Qi, Abdulla Yusuf and Shibin Liu
Coatings 2025, 15(2), 141; https://doi.org/10.3390/coatings15020141 - 25 Jan 2025
Cited by 1 | Viewed by 936
Abstract
In sodium-ion batteries, the research of electrode and separator materials must work in tandem. However, the existing separators still need to go through a drawn-out procedure in order to satisfy the engineering and technological standards of sodium-ion batteries. A new sodium-ion battery separator [...] Read more.
In sodium-ion batteries, the research of electrode and separator materials must work in tandem. However, the existing separators still need to go through a drawn-out procedure in order to satisfy the engineering and technological standards of sodium-ion batteries. A new sodium-ion battery separator was created for this investigation. Electrostatic spinning was used to create polyacrylonitrile (PAN)/ZnO nanofiber films, and varying the ZnO nanoparticle doping level enhanced the nanofiber separator’s cyclic stability. A new flexible PAN separator for sodium-ion batteries is presented in this study. It has good commercial value and may find use in flexible, high safety sodium-ion battery systems. Additionally, it offers some theoretical direction for creating organic polymer separators with excellent safety. Full article
Show Figures

Figure 1

12 pages, 6641 KiB  
Article
Effect of Electrodeposition Conditions on Adsorption and Photocatalytic Properties of ZnO
by Alina Pruna, Iulian Poliac, David Busquets-Mataix and Antonio Ruotolo
Materials 2025, 18(3), 497; https://doi.org/10.3390/ma18030497 - 22 Jan 2025
Cited by 1 | Viewed by 912
Abstract
The electrodeposition of ZnO films was studied using potentiostatic mode in varying conditions including the presence of graphene oxide (GO) as a buffer layer and an additional deposition step. The obtained films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier [...] Read more.
The electrodeposition of ZnO films was studied using potentiostatic mode in varying conditions including the presence of graphene oxide (GO) as a buffer layer and an additional deposition step. The obtained films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform Infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of electrodeposition conditions on the adsorption and photocatalytic properties of ZnO nanostructured films was analyzed by using methylene blue (MB) as a model dye molecule and exposure to UV light. The results indicated a marked effect of GO content in the buffer layer and the duration of nucleation on the properties of electrodeposited ZnO films. Lower GO content and an additional deposition step of 60 s resulted in the best adsorption and photocatalytic activity, these being 7 and 5-folds, respectively, in comparison to ZnO in absence of these adjustments. The MB photodegradation was found to follow first-order kinetics, the rate constant reaching a value of 2.38 × 10−3 min−1. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Figure 1

17 pages, 5952 KiB  
Article
Enhancement of Biopolymer Film Properties Using Spermidine, Zinc Oxide, and Graphene Oxide Nanoparticles: A Study of Physical, Thermal, and Mechanical Characteristics
by Esmaeil Vafaei, Maryam Hasani, Nasrin Salehi, Farzaneh Sabbagh and Shirin Hasani
Materials 2025, 18(2), 225; https://doi.org/10.3390/ma18020225 - 7 Jan 2025
Cited by 2 | Viewed by 1035
Abstract
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of [...] Read more.
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin–chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties. The results show that adding ZnO and GO nanoparticles increased the tensile strength of the layers from 9.203 MPa to 17.787 MPa in films containing graphene oxide and zinc oxide, although the elongation at break decreased. The incorporation of nanoparticles reduced the water vapor permeability from 0.164 to 0.149 (g.m−2.24 h−1). Moreover, the transparency of the layers ranged from 72.67% to 86.17%, decreasing with higher nanoparticle concentrations. The use of nanoparticles enhanced the light-blocking characteristics of the films, making them appropriate for the preservation of light-sensitive food items. The thermal properties improved with an increase in the melting temperature (Tm) up to 115.5 °C and enhanced the thermal stability in the nanoparticle-containing samples. FTIR analysis confirmed the successful integration of all components within the films. In general, the combination of gelatin and chitosan, along with ZnO, GO, and spermidine, significantly enhanced the properties of the layers, making them stronger and more suitable for biodegradable packaging applications. Full article
Show Figures

Figure 1

18 pages, 9742 KiB  
Article
Physical and Chemical Approaches of Photovoltaic Parameters in Dye-Sensitized Solar Cells to ZnO/ZnS:rGO-Based Photoelectrodes
by Thiago Kurz Pedra, Ramon Dadalto Carvalho, Cristian Dias Fernandes, Luciano Timm Gularte, Carolina Ferreira de Matos Jauris, Eduardo Ceretta Moreira, Mateus Meneghetti Ferrer, Cristiane Wienke Raubach, Sérgio da Silva Cava, Pedro Lovato Gomes Jardim, Elson Longo and Mario Lucio Moreira
Appl. Sci. 2025, 15(1), 291; https://doi.org/10.3390/app15010291 - 31 Dec 2024
Cited by 1 | Viewed by 1164
Abstract
This study proposes an alternative process for obtaining ZnO/ZnS:rGO heterostructures for use in DSSCs and as promising materials for potential applications in other photonic process, such as photocatalysis and photodetection. The compound was obtained through a microwave-assisted hydrothermal method, where the electromagnetic waves [...] Read more.
This study proposes an alternative process for obtaining ZnO/ZnS:rGO heterostructures for use in DSSCs and as promising materials for potential applications in other photonic process, such as photocatalysis and photodetection. The compound was obtained through a microwave-assisted hydrothermal method, where the electromagnetic waves and temperature were crucial points for forming ZnO, ZnO/ZnS and reducing graphene oxide (GO). The XRD, Raman, FT-IR, and FESEM results presented the structural, morphological, and chemical structures, which suggest the conversion of ZnO to ZnS for samples with higher concentrations of reduced graphene oxide (rGO). Additionally, the optical properties were analyzed through photoluminescence and UV-Vis measurements. The electrical behavior of the photoelectrodes was investigated through J-V measurements in light and dark conditions. In addition, electrochemical impedance spectroscopy (EIS) was performed and Bode phase plots were created, analyzing the recombination processes and electron lifetime. The J-V results showed that for smaller amounts of rGO, the dye-sensitized solar cells (DSSC) efficiency improved compared to the ZnO/ZnS single structure. However, it was observed that with more significant amounts of rGO, the photocurrent value decreased due to the presence of charge-trapping centers. On the other hand, the best results were obtained for the ZnO/ZnS:1% rGO sample, which showed an increase of 14.2% in the DSSC efficiency compared to the pure ZnO/ZnS photoelectrode. Full article
Show Figures

Figure 1

13 pages, 5179 KiB  
Article
Antifungal Chitosan Nanocomposites—A New Perspective for Extending Food Storage
by Natalia Wrońska, Aleksandra Felczak, Katarzyna Niedziałkowska, Marta Kędzierska, Maria Bryszewska, Mohamed Amine Benzaouia, Abdelkrim El Kadib, Katarzyna Miłowska and Katarzyna Lisowska
Int. J. Mol. Sci. 2024, 25(23), 13186; https://doi.org/10.3390/ijms252313186 - 8 Dec 2024
Viewed by 1684
Abstract
Chitosan, a biopolymer derived from chitin, exhibits significant antifungal properties, making it a valuable compound for various applications in agriculture food preservation, and biomedicine. The present study aimed to assess the antifungal properties of chitosan-modified films using sol–gel derivatives (CS:ZnO) or graphene-filled chitosan, [...] Read more.
Chitosan, a biopolymer derived from chitin, exhibits significant antifungal properties, making it a valuable compound for various applications in agriculture food preservation, and biomedicine. The present study aimed to assess the antifungal properties of chitosan-modified films using sol–gel derivatives (CS:ZnO) or graphene-filled chitosan, (CS:GO and CS:rGO) against two strains of fungi that are the most common cause of food spoilage: Aspergillus flavus ATCC 9643 and Penicillium expansum DSM 1282. The results indicate important differences in the antifungal activity of native chitosan films and zinc oxide-modified chitosan films. CS:ZnO nanocomposites (2:1 and 5:1) completely inhibited spore germination of the two tested fungal strains. Furthermore, a decrease in spore viability was observed after exposure to CS:Zn films. Significant differences in the permeability of cell envelopes were observed in the A. flavus. Moreover, the genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. Our studies showed that the tested nanocomposites did not exhibit genotoxicity towards human skin fibroblasts, and significant damage in the DNA of keratinocytes treated with CS:ZnO composites. Nanocomposites based on chitosan may help reduce synthetic fungicides and contribute to sustainable food production and food preservation practices. Full article
(This article belongs to the Special Issue Emerging Trends in Antimicrobial Biomaterials)
Show Figures

Graphical abstract

Back to TopTop