Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of GZCN Material
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hakki, H.K.; Sillanpää, M. Comprehensive analysis of photocatalytic and photoreactor challenges in photocatalytic wastewater treatment: A case study with ZnO photocatalyst. Mater. Sci. Semicond. Process. 2024, 181, 108592. [Google Scholar] [CrossRef]
- Bhapkar, A.R.; Bhame, S. A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. J. Environ. Chem. Eng. 2024, 12, 112553. [Google Scholar] [CrossRef]
- Deng, X.; Chen, C.; Huang, Y.; Zeng, B. Au nanoparticles modified three-dimensional ZnO sheet@ZnO nanorod hybrids for enhancing the photocatalytic H2 evolution ability. Vacuum 2025, 238, 114247. [Google Scholar] [CrossRef]
- Zeng, B.; Ning, X.; Li, L. Fabrication and photocatalytic performance of highly active exposed facets ZnO hexagonal cap/Ti3C2 MXene composites. J. Alloys Compd. 2023, 963, 171309. [Google Scholar] [CrossRef]
- Mora, J.R.; Flores-Carrasco, G.; Juárez, H.; Pacio, M.; Olvera, M.d.l.L.; Rabanal, M.E. Ce-doped ZnO nanonails synthesized by a simple thermal evaporation method for photocatalytic degradation. Opt. Mater. 2024, 157, 116156. [Google Scholar] [CrossRef]
- Chen, C.S.; Huang, Y. Preparation and photocatalytic H2 Production property of a novel three-dimensional ZnO/ZnS nanosheet@ZnO/ZnS nanotube hybrid with multiple interfaces heterostructure. Surf. Interfaces 2025, 65, 106264. [Google Scholar] [CrossRef]
- Ali, S.A.; Majumdar, S.; Chowdhury, P.K.; Alhokbany, N.; Ahmad, T. Photoinduced hole trapping in MoSe2–MoS2 nanoflowers/ZnO nanosheets S-Scheme conduit for ultrafast charge transfer during hydrogen evolution. ACS Appl. Energy Mater. 2024, 7, 2881–2895. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, H.; Gao, N.; Fang, Y.; Xie, X.; Fang, Y.; Chen, G. Novel N-ZnO/p-BN adsorption-photocatalytic composites with interfacial bonding for efficient synergistic degradation of pollutants in water. Appl. Surf. Sci. 2024, 677, 161060. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, C.S. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater. Lett. 2020, 261, 127127. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, L.; Zhong, J. Sm-doped ZnO with enhanced photocatalytic performance toward destruction of RhB. Chem. Phys. Lett. 2024, 844, 141299. [Google Scholar] [CrossRef]
- Fareed, I.; Farooq, M.H.; Khan, M.D.; Yunas, M.F.; Sandali, Y.; Ali, Z.; Tanveer, M.; Butt, F.K. Comprehensive investigations into the synergy of S-scheme heterojunction between nitrogen-doped ZnO nano-rods and g-C3N4 nanosheets for improved photocatalytic degradation. Mater. Chem. Phys. 2024, 316, 129062. [Google Scholar] [CrossRef]
- Bi, J.; Zhu, Z.; Li, T.; Lv, Z. Research progress on g-C3N4-based materials for efficient tetracyclines photodegradation in wastewater: A review. J. Water Process Eng. 2024, 66, 105941. [Google Scholar] [CrossRef]
- Shi, X.; Fujitsuka, M.; Lou, Z.; Zhang, P.; Majima, T. In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light. J. Mater. Chem. A. 2017, 5, 9671–9681. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Lian, J.; Zhu, X.; Yan, P.; Lei, Y.; Yuan, S.; et al. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl. Catal. B Environ. 2019, 241, 452–460. [Google Scholar] [CrossRef]
- Xu, Y.; He, X.; Zhong, H.; Singh, D.J.; Zhang, L.; Wang, R. Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 246, 349–355. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Q.; Bai, X.; Ge, Z.; Yang, Q.; Yin, C.; Kang, S.; Dong, M.; Li, X. Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Appl. Catal. B Environ. 2018, 239, 196–203. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, W.; Liu, Z.; Dong, H.; Yan, Y.; Huo, P. Construction of an attapulgite intercalated mesoporous g-C3N4 with enhanced photocatalytic activity for antibiotic degradation. J. Photoch. Photobio. A. 2018, 359, 102–110. [Google Scholar] [CrossRef]
- Akhundi, A.; Habibi-Yangjeh, A. Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant. Appl. Surf. Sci. 2015, 358, 261–269. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Guan, W.; Huang, H.; Liu, Y. Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 2017, 173, 295–303. [Google Scholar] [CrossRef]
- Wang, M.; Liang, Q.; Han, J.; Tao, Y.; Liu, D.; Zhang, C.; Lv, W.; Yang, Q.H. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3480–3489. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B Environ. 2015, 168–169, 1–8. [Google Scholar] [CrossRef]
- Tang, L.; Feng, C.; Deng, Y.; Zeng, G.; Wang, J.; Liu, Y.; Feng, H.; Wang, J. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism. Appl. Catal. B Environ. 2018, 230, 102–114. [Google Scholar] [CrossRef]
- Gao, M.; Chen, C.; Sun, S.; Shi, H.; Zhang, X.; Zhao, C.; Li, G.; Mu, J.; Sun, J. Photocatalytic removal of rhodamine B using a novel g–C3N4–organic solid waste biochar composite: Pathway, key factors, and mechanism. Opt. Mater. 2024, 156, 116001. [Google Scholar] [CrossRef]
- Bahiraei, H.; Azarakhsh, S.; Ghasemi, S. Ternary CoFe2O4/g-C3N4/ZnO heterostructure as an efficient and magnetically separable visible-light photocatalyst: Characterization, dye purification, and mechanism. Ceram. Int. 2023, 49, 21050–21059. [Google Scholar] [CrossRef]
- Škuta, R.; Kostura, B.; Ritz, M.; Foniok, K.; Pavlovský, J.; Matýsek, D. Comparing the photocatalytic performance of GO/ZnO and g-C3N4/ZnO composites prepared using metallurgical waste as a source of zinc. Inorg. Chem. Commun. 2023, 152, 110728. [Google Scholar] [CrossRef]
- Wang, P.; Song, B.; Zhao, G. Novel two-dimensional ZnO materials for enhanced photocatalytic hydrogen evolution performance. Appl. Surf. Sci. 2025, 697, 163068. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, H.; Zhou, Y. Photoelectron marginalization effect in ZnO/WO3/graphene-like composites: Study of alternating strong-low photocatalytic hydrogen production performance and mechanism. J. Alloys Compd. 2024, 1009, 176824. [Google Scholar]
- Xue, B.; Zou, Y. High photocatalytic activity of ZnO–graphene composite. J. Colloid Interf. Sci. 2018, 529, 306–313. [Google Scholar] [CrossRef]
- Khan, H. Graphene based semiconductor oxide photocatalysts for photocatalytic hydrogen (H2) production, a review. Int. J. Hydrogen Energy 2024, 84, 356–371. [Google Scholar] [CrossRef]
- Budiarso, I.J.; Dabur, V.A.; Rachmantyo, R.; Judawisastra, H.; Hu, C.; Wibowo, A. Carbon nitride- and graphene-based materials for the photocatalytic degradation of emerging water pollutants. Mater. Adv. 2024, 5, 2668–2688. [Google Scholar]
- Liu, J.; Xia, Q.; Chen, C. Graphene oxide enhanced the photocatalytic performance of one-dimensional porous carbon/ZnO hybrids. Vacuum 2024, 228, 113528. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Fang, Q.; Chen, X.; Liu, T.; Zhang, M. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum 2020, 174, 109198. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Cui, W.; Dong, F.; Zhang, Y. Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 230, 115–124. [Google Scholar] [CrossRef]
- Dong, H.; Guo, X.; Yang, C.; Ouyang, Z. Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin. Appl. Catal. B Environ. 2018, 230, 65–76. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Zhang, J.; Zhang, H.; Tian, W.; Li, X.; Tade, M.O.; Sun, H.; Wang, S. Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. Appl. Catal. B Environ. 2018, 239, 334–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, S.; Fang, Q.; Chen, C. Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight. C 2025, 11, 33. https://doi.org/10.3390/c11020033
Chen H, Chen S, Fang Q, Chen C. Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight. C. 2025; 11(2):33. https://doi.org/10.3390/c11020033
Chicago/Turabian StyleChen, Huan, Shengfeng Chen, Qun Fang, and Chuansheng Chen. 2025. "Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight" C 11, no. 2: 33. https://doi.org/10.3390/c11020033
APA StyleChen, H., Chen, S., Fang, Q., & Chen, C. (2025). Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight. C, 11(2), 33. https://doi.org/10.3390/c11020033