Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight
Abstract
1. Introduction
2. Experimental Section
2.1. Preparation of GZCN Material
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hakki, H.K.; Sillanpää, M. Comprehensive analysis of photocatalytic and photoreactor challenges in photocatalytic wastewater treatment: A case study with ZnO photocatalyst. Mater. Sci. Semicond. Process. 2024, 181, 108592. [Google Scholar] [CrossRef]
- Bhapkar, A.R.; Bhame, S. A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. J. Environ. Chem. Eng. 2024, 12, 112553. [Google Scholar] [CrossRef]
- Deng, X.; Chen, C.; Huang, Y.; Zeng, B. Au nanoparticles modified three-dimensional ZnO sheet@ZnO nanorod hybrids for enhancing the photocatalytic H2 evolution ability. Vacuum 2025, 238, 114247. [Google Scholar] [CrossRef]
- Zeng, B.; Ning, X.; Li, L. Fabrication and photocatalytic performance of highly active exposed facets ZnO hexagonal cap/Ti3C2 MXene composites. J. Alloys Compd. 2023, 963, 171309. [Google Scholar] [CrossRef]
- Mora, J.R.; Flores-Carrasco, G.; Juárez, H.; Pacio, M.; Olvera, M.d.l.L.; Rabanal, M.E. Ce-doped ZnO nanonails synthesized by a simple thermal evaporation method for photocatalytic degradation. Opt. Mater. 2024, 157, 116156. [Google Scholar] [CrossRef]
- Chen, C.S.; Huang, Y. Preparation and photocatalytic H2 Production property of a novel three-dimensional ZnO/ZnS nanosheet@ZnO/ZnS nanotube hybrid with multiple interfaces heterostructure. Surf. Interfaces 2025, 65, 106264. [Google Scholar] [CrossRef]
- Ali, S.A.; Majumdar, S.; Chowdhury, P.K.; Alhokbany, N.; Ahmad, T. Photoinduced hole trapping in MoSe2–MoS2 nanoflowers/ZnO nanosheets S-Scheme conduit for ultrafast charge transfer during hydrogen evolution. ACS Appl. Energy Mater. 2024, 7, 2881–2895. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, H.; Gao, N.; Fang, Y.; Xie, X.; Fang, Y.; Chen, G. Novel N-ZnO/p-BN adsorption-photocatalytic composites with interfacial bonding for efficient synergistic degradation of pollutants in water. Appl. Surf. Sci. 2024, 677, 161060. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, C.S. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater. Lett. 2020, 261, 127127. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, L.; Zhong, J. Sm-doped ZnO with enhanced photocatalytic performance toward destruction of RhB. Chem. Phys. Lett. 2024, 844, 141299. [Google Scholar] [CrossRef]
- Fareed, I.; Farooq, M.H.; Khan, M.D.; Yunas, M.F.; Sandali, Y.; Ali, Z.; Tanveer, M.; Butt, F.K. Comprehensive investigations into the synergy of S-scheme heterojunction between nitrogen-doped ZnO nano-rods and g-C3N4 nanosheets for improved photocatalytic degradation. Mater. Chem. Phys. 2024, 316, 129062. [Google Scholar] [CrossRef]
- Bi, J.; Zhu, Z.; Li, T.; Lv, Z. Research progress on g-C3N4-based materials for efficient tetracyclines photodegradation in wastewater: A review. J. Water Process Eng. 2024, 66, 105941. [Google Scholar] [CrossRef]
- Shi, X.; Fujitsuka, M.; Lou, Z.; Zhang, P.; Majima, T. In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light. J. Mater. Chem. A. 2017, 5, 9671–9681. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Lian, J.; Zhu, X.; Yan, P.; Lei, Y.; Yuan, S.; et al. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl. Catal. B Environ. 2019, 241, 452–460. [Google Scholar] [CrossRef]
- Xu, Y.; He, X.; Zhong, H.; Singh, D.J.; Zhang, L.; Wang, R. Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 246, 349–355. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Q.; Bai, X.; Ge, Z.; Yang, Q.; Yin, C.; Kang, S.; Dong, M.; Li, X. Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Appl. Catal. B Environ. 2018, 239, 196–203. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, W.; Liu, Z.; Dong, H.; Yan, Y.; Huo, P. Construction of an attapulgite intercalated mesoporous g-C3N4 with enhanced photocatalytic activity for antibiotic degradation. J. Photoch. Photobio. A. 2018, 359, 102–110. [Google Scholar] [CrossRef]
- Akhundi, A.; Habibi-Yangjeh, A. Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant. Appl. Surf. Sci. 2015, 358, 261–269. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Guan, W.; Huang, H.; Liu, Y. Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 2017, 173, 295–303. [Google Scholar] [CrossRef]
- Wang, M.; Liang, Q.; Han, J.; Tao, Y.; Liu, D.; Zhang, C.; Lv, W.; Yang, Q.H. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3480–3489. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B Environ. 2015, 168–169, 1–8. [Google Scholar] [CrossRef]
- Tang, L.; Feng, C.; Deng, Y.; Zeng, G.; Wang, J.; Liu, Y.; Feng, H.; Wang, J. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism. Appl. Catal. B Environ. 2018, 230, 102–114. [Google Scholar] [CrossRef]
- Gao, M.; Chen, C.; Sun, S.; Shi, H.; Zhang, X.; Zhao, C.; Li, G.; Mu, J.; Sun, J. Photocatalytic removal of rhodamine B using a novel g–C3N4–organic solid waste biochar composite: Pathway, key factors, and mechanism. Opt. Mater. 2024, 156, 116001. [Google Scholar] [CrossRef]
- Bahiraei, H.; Azarakhsh, S.; Ghasemi, S. Ternary CoFe2O4/g-C3N4/ZnO heterostructure as an efficient and magnetically separable visible-light photocatalyst: Characterization, dye purification, and mechanism. Ceram. Int. 2023, 49, 21050–21059. [Google Scholar] [CrossRef]
- Škuta, R.; Kostura, B.; Ritz, M.; Foniok, K.; Pavlovský, J.; Matýsek, D. Comparing the photocatalytic performance of GO/ZnO and g-C3N4/ZnO composites prepared using metallurgical waste as a source of zinc. Inorg. Chem. Commun. 2023, 152, 110728. [Google Scholar] [CrossRef]
- Wang, P.; Song, B.; Zhao, G. Novel two-dimensional ZnO materials for enhanced photocatalytic hydrogen evolution performance. Appl. Surf. Sci. 2025, 697, 163068. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, H.; Zhou, Y. Photoelectron marginalization effect in ZnO/WO3/graphene-like composites: Study of alternating strong-low photocatalytic hydrogen production performance and mechanism. J. Alloys Compd. 2024, 1009, 176824. [Google Scholar]
- Xue, B.; Zou, Y. High photocatalytic activity of ZnO–graphene composite. J. Colloid Interf. Sci. 2018, 529, 306–313. [Google Scholar] [CrossRef]
- Khan, H. Graphene based semiconductor oxide photocatalysts for photocatalytic hydrogen (H2) production, a review. Int. J. Hydrogen Energy 2024, 84, 356–371. [Google Scholar] [CrossRef]
- Budiarso, I.J.; Dabur, V.A.; Rachmantyo, R.; Judawisastra, H.; Hu, C.; Wibowo, A. Carbon nitride- and graphene-based materials for the photocatalytic degradation of emerging water pollutants. Mater. Adv. 2024, 5, 2668–2688. [Google Scholar]
- Liu, J.; Xia, Q.; Chen, C. Graphene oxide enhanced the photocatalytic performance of one-dimensional porous carbon/ZnO hybrids. Vacuum 2024, 228, 113528. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Fang, Q.; Chen, X.; Liu, T.; Zhang, M. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum 2020, 174, 109198. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Cui, W.; Dong, F.; Zhang, Y. Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 230, 115–124. [Google Scholar] [CrossRef]
- Dong, H.; Guo, X.; Yang, C.; Ouyang, Z. Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin. Appl. Catal. B Environ. 2018, 230, 65–76. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Zhang, J.; Zhang, H.; Tian, W.; Li, X.; Tade, M.O.; Sun, H.; Wang, S. Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. Appl. Catal. B Environ. 2018, 239, 334–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, S.; Fang, Q.; Chen, C. Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight. C 2025, 11, 33. https://doi.org/10.3390/c11020033
Chen H, Chen S, Fang Q, Chen C. Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight. C. 2025; 11(2):33. https://doi.org/10.3390/c11020033
Chicago/Turabian StyleChen, Huan, Shengfeng Chen, Qun Fang, and Chuansheng Chen. 2025. "Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight" C 11, no. 2: 33. https://doi.org/10.3390/c11020033
APA StyleChen, H., Chen, S., Fang, Q., & Chen, C. (2025). Graphite-like C3N4 and Graphene Oxide Co-Enhanced the Photocatalytic Activity of ZnO Under Natural Sunlight. C, 11(2), 33. https://doi.org/10.3390/c11020033