Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,652)

Search Parameters:
Keywords = Zinc Oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2238 KB  
Article
Preparation of an ABS-ZnO Composite for 3D Printing and the Influence of Printing Process on Printing Quality
by Chao Du, Yali Zhao and Yong Li
Fibers 2026, 14(2), 19; https://doi.org/10.3390/fib14020019 - 2 Feb 2026
Abstract
In this study, the process of preparing ABS-ZnO (Acrylonitrile Butadiene Styrene-Zinc Oxide) composite materials as FDM printing materials was elaborated, and the influence of printing process parameters on the tensile properties and surface roughness of the materials was analyzed. It was concluded through [...] Read more.
In this study, the process of preparing ABS-ZnO (Acrylonitrile Butadiene Styrene-Zinc Oxide) composite materials as FDM printing materials was elaborated, and the influence of printing process parameters on the tensile properties and surface roughness of the materials was analyzed. It was concluded through orthogonal experiments that among all the parameters studied, the infill rate had the most significant effect on the tensile strength, followed by layer thickness and layer width, while the printing speed had the least effect. When the printing parameters were set as follows: infill rate (90%), layer thickness (0.2 mm), layer width (0.4 mm), and printing speed (200 mm/s), the tensile strength of the sample reached the maximum value of 48.37 MPa. Scanning electron microscopy (SEM) analysis revealed that a high infill rate could make the internal structure of the material denser and the bonding between fibers more sufficient. In contrast, with the increase in layer thickness and layer width, the internal structure of the material exhibited a porous morphology, which led to a decrease in tensile properties. By investigating the effects of printing temperature and layer thickness on the surface roughness of the samples, the optimal surface roughness was achieved when the printing temperature was set at 230 °C, and the layer thickness was 0.3 mm. Full article
Show Figures

Figure 1

17 pages, 2423 KB  
Article
Assessing the Potential of Heterotrophic Bioleaching to Extract Metals from Mafic Tailings
by Kamalpreet Kaur Brar, Avi Du Preez and Nancy N. Perreault
Metals 2026, 16(2), 178; https://doi.org/10.3390/met16020178 - 2 Feb 2026
Abstract
Mafic mine tailings are highly resistant to bioleaching due to their silicate-rich composition, low sulfide content, and strong buffering capacity. This study aimed to assess the potential use of heterotrophic bioleaching to promote the release of metals from mafic tailings by evaluating the [...] Read more.
Mafic mine tailings are highly resistant to bioleaching due to their silicate-rich composition, low sulfide content, and strong buffering capacity. This study aimed to assess the potential use of heterotrophic bioleaching to promote the release of metals from mafic tailings by evaluating the organic acid production and leaching capabilities of indigenous bacterial isolates and a known lactic acid producer, Lactiplantibacillus plantarum ATCC 8014. Indigenous acid-producing heterotrophic bacteria were isolated from a vanadium-titanium-bearing magnetite tailings in Québec, Canada, and screened for organic acid production in various culture media. The most active bacteria were L. plantarum and two isolates identified by their 16S rRNA gene as Enterococcus (CBGM-1C) and Acetobacter (BL-F) sp. They produced significant quantities of lactic acids, followed by acetic, citric, and gluconic acids during glucose metabolism, through fermentative or oxidative pathways. A two-step bioleaching process was implemented, consisting of an initial organic acid production phase followed by tailings leaching at 5% pulp density over 10 days at 30 °C. Metal solubilization and mineralogical analyses demonstrated strain-dependent and metal-specific mobilization, with zinc being the only element efficiently leached (up to ~74% recovery by L. plantarum). XRD analyses confirmed partial dissolution and reduced crystallinity of key silicate phases without secondary mineral formation. These findings indicate that heterotrophic leaching can selectively mobilize more labile metals such as Zn from alkaline, silicate-rich tailings, although its overall efficiency for refractory elements remains limited under the tested conditions. Full article
Show Figures

Graphical abstract

41 pages, 6605 KB  
Review
The Relationship Between Trace Elements and Depression
by Yuanjian Zhong, Yuxiang Nie, Yuanhui Mao, Yinting Liu, Tong Zou, Xiayun Liao and Lichun Zhao
Nutrients 2026, 18(3), 484; https://doi.org/10.3390/nu18030484 - 1 Feb 2026
Abstract
Trace elements are widely involved in fundamental physiological processes, including enzymatic reactions, neurotransmitter metabolism, and redox homeostasis, and their balanced regulation plays an important role in maintaining normal brain development and neurological function. Depression is a complex psychiatric disorder characterized primarily by mood [...] Read more.
Trace elements are widely involved in fundamental physiological processes, including enzymatic reactions, neurotransmitter metabolism, and redox homeostasis, and their balanced regulation plays an important role in maintaining normal brain development and neurological function. Depression is a complex psychiatric disorder characterized primarily by mood disturbances, with its onset and progression arising from long-term interactions among genetic susceptibility, neurobiological alterations, and environmental factors. A substantial body of epidemiological and clinical evidence indicates that dysregulation of trace elements—such as zinc, selenium, iron, and magnesium—is closely associated with the risk of depression and the severity of depressive symptoms. Mechanistic studies further demonstrate that trace elements influence depression-related pathophysiology through multi-target and multi-pathway mechanisms, including modulation of monoaminergic neurotransmission, neuroinflammation, oxidative stress, mitochondrial energy metabolism, and hypothalamic–pituitary–adrenal axis function. Network pharmacology analyses have additionally identified systemic hub targets, such as albumin (ALB), insulin (INS), and TP53, as well as key pathways including calcium signaling, neuroactive ligand–receptor interactions, and the HIF-1 signaling pathway. These findings suggest that trace elements may regulate depression-related pathological processes through coordinated network-level effects. Collectively, these integrative insights provide a theoretical basis for the application of trace elements in depression risk assessment, the development of precision intervention strategies, and future mechanistic investigations. Full article
Show Figures

Figure 1

18 pages, 930 KB  
Article
The Combined Use of Hydroxymethylbutyrate and Branched-Chain Amino Acids to Counteract Uremic Sarcopenia
by Giulia Marrone, Manuela Di Lauro, Kevin Cornali, Sabri Shamsan Hassan, Gabriele D’Urso, Luca Di Marco, Sara Dominijanni, Roberto Palumbo, Anna Paola Mitterhofer and Annalisa Noce
Nutrients 2026, 18(3), 483; https://doi.org/10.3390/nu18030483 - 1 Feb 2026
Abstract
Background: Hemodialysis (HD) patients frequently develop muscle wasting and chronic inflammation, conditions associated with functional decline and reduced quality of life (QoL). Nutritional strategies that provide targeted anabolic support without increasing nitrogen load may offer clinical benefits. The aim of this study was [...] Read more.
Background: Hemodialysis (HD) patients frequently develop muscle wasting and chronic inflammation, conditions associated with functional decline and reduced quality of life (QoL). Nutritional strategies that provide targeted anabolic support without increasing nitrogen load may offer clinical benefits. The aim of this study was to evaluate the possible impact of a food for special medical purposes (FFSMP), composed of free-form branched-chain amino acids, β-hydroxy-β-methylbutyrate, and zinc, on muscle mass and strength, laboratory parameters, physical performance (PP), and QoL in HD patients. Methods: in this randomized double-blind crossover study, 24 adult HD patients received the FFSMP (10 g/day; two sachets) supplementation or placebo for 12 weeks, separated by an 8-week wash-out (protocol code RS 29.23). Measured outcomes included quadriceps rectus femoris thickness (QRFT) muscle, body composition analysis, inflammatory markers, oxidative stress indices, other routine biochemical parameters, PP, and QoL (SF-36 questionnaire). Results: FFSMP supplementation resulted in significant increases in QRFT and in fat-free mass percentage. Reductions in oxidative stress and inflammatory biomarkers were observed. Routine biochemical parameters remained stable, with the exception of a decrease in pre-dialysis urea. Functional performance measures did not differ between treatment periods. Improvements were noted in selected SF-36 domains, specifically energy/fatigue and general health. No major adverse events occurred during the study. Conclusions: In HD patients, this FFSMP produced favorable changes in markers of muscle mass and systemic inflammation without affecting short-term physical performance. These findings support the potential clinical utility of targeted amino acid supplementation in this patient population, highlighting the need for larger, longer-term trials. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

13 pages, 17182 KB  
Article
Fabrication Process and Light-Trapping Performance Study of Ultrathin Silicon-Based Solar Cells with Embedded ZnO/Au Heterojunction Nanostructures
by Le Cao, Jin Zhuo, Tangyou Sun, Pengyuan Wang and Qiaonian Xu
Nanomaterials 2026, 16(3), 192; https://doi.org/10.3390/nano16030192 - 30 Jan 2026
Viewed by 86
Abstract
Owing to the excellent performance of zinc oxide materials under ultraviolet light, this paper proposes a process for fabricating ZnO/Au heterojunction nanostructures on the surface of silicon-based solar cells using anodic aluminum oxide as the template, ultimately resulting in a novel silicon-based solar [...] Read more.
Owing to the excellent performance of zinc oxide materials under ultraviolet light, this paper proposes a process for fabricating ZnO/Au heterojunction nanostructures on the surface of silicon-based solar cells using anodic aluminum oxide as the template, ultimately resulting in a novel silicon-based solar cell with an embedded ZnO/Au nanostructure array. Through model optimization and analysis of the solar cells, it is found that compared with silicon-based solar cells with double grating nanostructures, silicon-based solar cells with surface silicon nanostructure arrays prepared by similar processes, and traditional planar silicon-based solar cells, the light absorption efficiency of the proposed solar cell structure is improved by 13.2%, 35.01%, and 63.78%, respectively; its short-circuit current density and power conversion efficiency reach 40 mA/cm2 and 20.17%, respectively. Meanwhile, this paper conducts an in-depth study on the performance enhancement mechanism, providing new insights for the fabrication of ZnO/Au heterojunction nanostructures and their applications in the field of solar cells. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
22 pages, 2931 KB  
Article
Zinc Nanoparticle Effects on the Green Leaf Volatiles and Phyllosphere Bacteriome in Capsicum annum Seedling
by Luis Alberto García-Casillas, Oscar Kevin Reyes-Maldonado, Rosa Sánchez-Fernández, Víctor Manuel Zúñiga-Mayo, Adalberto Zamudio-Ojeda, Diego Alberto Lomelí-Rosales, César Ricardo Cortez-Álvarez, Rebeca Escutia-Gutiérrez, Santiago José Guevara-Martínez and Gilberto Velázquez-Juárez
Agriculture 2026, 16(3), 345; https://doi.org/10.3390/agriculture16030345 - 30 Jan 2026
Viewed by 92
Abstract
The application of zinc oxide nanoparticles (ZnONPs) in agriculture is expanding due to their biostimulant potential; however, their influence on plant chemical communication and associated microbial communities remains not fully characterized. This study presents a multi-perspective analysis contrasting the effects of ZnONPs with [...] Read more.
The application of zinc oxide nanoparticles (ZnONPs) in agriculture is expanding due to their biostimulant potential; however, their influence on plant chemical communication and associated microbial communities remains not fully characterized. This study presents a multi-perspective analysis contrasting the effects of ZnONPs with those of conventional microparticulate ZnO (Bulk) on Capsicum annuum seedlings grown in substrate at 50 and 500 mg kg−1. Results indicate that, at high doses, the bulk material (B500) led to higher foliar zinc accumulation (128.7 mg kg−1) compared to ZnONPs (NP500, 119.7 mg kg−1), a difference potentially linked to nanoparticle aggregation in the soil matrix limiting root uptake. At the physiological level, a distinct response was observed: while Bulk ZnO stimulated superoxide dismutase (SOD) activity, ZnONPs resulted in a marked reduction (93%), suggesting a shift in the antioxidant strategy toward non-enzymatic mechanisms, such as increased total phenol content. Regarding the volatilomic profile, ZnONPs induced specific metabolic alterations in the green leaf volatile (GLV) pathway, characterized by hexanal accumulation and reduced levels of hexanol and hexyl acetate. Additionally, ZnONPs were associated with lower methyl salicylate (MeSA) emissions, whereas the Bulk treatment increased its relative abundance to 41.7%. Finally, metagenomic analysis revealed that zinc treatments modulated the phyllosphere microbiota, favoring the proliferation of Actinobacteria while decreasing the abundance of sensitive taxa, such as Spirochaetes. Taken together, these findings suggest that ZnONPs act as a distinct metabolic modulator, altering internal physiology and chemical signaling. Full article
15 pages, 2212 KB  
Article
Effect of Hydrothermal Reaction Time on the Morphological and Photocatalytic Properties of ZnO Nanostructures
by Essam M. Abdel-Fattah and Salman M. Alshehri
Appl. Sci. 2026, 16(3), 1408; https://doi.org/10.3390/app16031408 - 30 Jan 2026
Viewed by 68
Abstract
Zinc oxide (ZnO) nanostructures were synthesized via a hydrothermal method by systematically varying the reaction time (6–24 h) while maintaining all other parameters constant. The morphological evolution progressed from nanoparticles to nanoneedles, nanoflakes, and nanoplates with increasing reaction duration. X-ray diffraction and Raman [...] Read more.
Zinc oxide (ZnO) nanostructures were synthesized via a hydrothermal method by systematically varying the reaction time (6–24 h) while maintaining all other parameters constant. The morphological evolution progressed from nanoparticles to nanoneedles, nanoflakes, and nanoplates with increasing reaction duration. X-ray diffraction and Raman spectroscopy confirmed the formation of hexagonal wurtzite ZnO for all samples, accompanied by a gradual shift in the preferred growth orientation from the c-axis to the a-axis. The optical characterization revealed a pronounced dependence of the band gap and the defect density on the synthesis time, with the nanoflakes obtained at 12 h exhibiting a narrowed band gap of 2.9 eV and an enhanced visible light absorption. The photocatalytic degradation of methylene blue followed zero-order kinetics, where the ZnO nanoflakes achieved the highest rate constant (k0 = 0.01893 min−1). The enhanced activity is attributed to the combined effects of a reduced band gap, an increased surface area, the coexistence of ZnO/Zn(OH)2 phases, and a defect-assisted charge separation. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

40 pages, 2561 KB  
Review
LncRNAs at the Crossroads of Precision Nutrition and Cancer Chemoprevention
by Camelia Munteanu, Revathy Nadhan, Sabina Turti, Eftimia Prifti, Larisa Achim, Sneha Basu, Alessandra Ferraresi, Ji Hee Ha, Ciro Isidoro and Danny N. Dhanasekaran
Cancers 2026, 18(3), 430; https://doi.org/10.3390/cancers18030430 - 29 Jan 2026
Viewed by 284
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, and effective strategies for cancer prevention are urgently needed to complement therapeutic advances. While dietary factors are known to influence cancer risk, the molecular mechanisms that mediate inter-individual responses to nutritional exposures remain [...] Read more.
Cancer remains a leading cause of morbidity and mortality worldwide, and effective strategies for cancer prevention are urgently needed to complement therapeutic advances. While dietary factors are known to influence cancer risk, the molecular mechanisms that mediate inter-individual responses to nutritional exposures remain poorly defined. Emerging evidence identifies long non-coding RNAs (lncRNAs) as pivotal regulators of gene expression, chromatin organization, metabolic homeostasis, immune signaling, and cellular stress responses, the core processes that drive cancer initiation and progression and are highly sensitive to nutritional status. In parallel, advances in precision nutrition have highlighted how variability in genetics, metabolism, microbiome composition, and epigenetic landscapes shape dietary influences on cancer susceptibility. This review integrates these rapidly evolving fields by positioning lncRNAs as molecular conduits that translate dietary exposures into transcriptional and epigenetic programs governing cancer development, progression, and therapeutic vulnerability. We provide mechanistic evidence demonstrating how dietary bioactive compounds and micronutrients, including polyphenols [such as curcumin, resveratrol, epigallocatechin gallate (EGCG)], flavonoids, alkaloids such as berberine, omega-3 (ω-3) fatty acids, folate, vitamin D, probiotic metabolites (such as butyrate and propionate), and trace elements (such as selenium and zinc), modulate oncogenic and tumor-suppressive lncRNAs. These nutrient–lncRNA interactions influence cancer-relevant pathways controlling proliferation, epithelial–mesenchymal transition (EMT), inflammation, oxidative stress, and metabolic rewiring. We further discuss emerging lncRNA signatures that reflect nutritional and metabolic states, their potential utility as biomarkers for individualized dietary interventions, and their integration into liquid biopsy platforms. Leveraging multi-omics datasets and systems biology, we outline AI-driven frameworks to map nutrient–lncRNA regulatory networks and identify targetable nodes for cancer chemoprevention. Finally, we address translational challenges, including compound bioavailability, inter-individual variability, and limited clinical validation, and propose future directions for incorporating lncRNA profiling into precision nutrition-guided cancer prevention trials. Together, these insights position lncRNAs at the nexus of diet and cancer biology and establish a foundation for mechanistically informed precision nutrition strategies in cancer chemoprevention. Full article
(This article belongs to the Special Issue Cancer Causes and Control)
Show Figures

Graphical abstract

23 pages, 2208 KB  
Article
Dye Photocatalytic Degradation and Water Treatment Using Biosynthetic ZnO Nanoparticles Produced Using Annatto Tree Leaf Extract
by Aparecido de J. Bernardo, Andrei N. G. Dabul, Moudo Thiam, Vanessa O. A. Pellegrini, Mariana A. Silva, Sreedevi Vallabhapurapu, Sachin Desarada, Vijaya Srinivasu Vallabhapurapu, Carla R. Fontana and Igor Polikarpov
Processes 2026, 14(3), 459; https://doi.org/10.3390/pr14030459 - 28 Jan 2026
Viewed by 145
Abstract
The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts offers several important advantages, including low residue generation, reduced costs, and potentially faster production as compared to traditional chemical methods. In this study, for the first time, ZnO NPs were biosynthesized using [...] Read more.
The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts offers several important advantages, including low residue generation, reduced costs, and potentially faster production as compared to traditional chemical methods. In this study, for the first time, ZnO NPs were biosynthesized using an annatto plant (Bixa orellana) leaf extract and characterized using a range of analytical techniques, including scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, ultraviolet–visible and Fourier transform infrared spectroscopies, thermogravimetric analysis, and point of zero charge measurements, thus ensuring a comprehensive elucidation of their physicochemical properties. Subsequently, photodegradation of methylene blue (MB) dye using the biosynthesized ZnO NPs was successfully demonstrated. The photodegradation studies showed that the ZnO NPs were capable of decomposing over 95% of MB after 110 min of UV irradiation. In addition, the potential application of ZnO NPs for water disinfection was evaluated by assessing their ability to eliminate microbial pathogens. Furthermore, cell-free singlet oxygen and intracellular ROS detection assays were performed to investigate the NP antibacterial molecular mechanisms. Overall, our results reveal that the ZnO NPs exhibit excellent potential for photodegradation applications and may contribute to the development of more effective and sustainable solutions for water treatment and quality control. Full article
Show Figures

Graphical abstract

15 pages, 3735 KB  
Article
Enhanced Current Saturation in IGZO Thin Film Transistors Using a Source-Connected Bottom Gate Structure
by Jae-Hong Jeon
Coatings 2026, 16(2), 161; https://doi.org/10.3390/coatings16020161 - 27 Jan 2026
Viewed by 137
Abstract
Channel length modulation (CLM) in indium gallium zinc oxide (IGZO) thin film transistors (TFTs) reduces the output resistance (ro) in the saturation regime. It also degrades current driving accuracy for active matrix organic light emitting diode (AMOLED) backplanes. For top [...] Read more.
Channel length modulation (CLM) in indium gallium zinc oxide (IGZO) thin film transistors (TFTs) reduces the output resistance (ro) in the saturation regime. It also degrades current driving accuracy for active matrix organic light emitting diode (AMOLED) backplanes. For top gate, self-aligned devices with nominal channel lengths of 5–15 μm, transmission line method (TLM) analysis yields an effective channel length reduction (ΔL) of about 1.8 μm. This result is consistent with lateral hydrogen redistribution from the self-aligned source/drain (S/D) process. At L = 5 μm, the conventional TFT exhibits ro = 13.5 ± 2.5 MΩ and an Early voltage (VA) = 56.1 ± 10.4 V (n = 5). We propose a source connected bottom gate (SCBG) structure that electrostatically stabilizes the pinch-off region and suppresses CLM. The SCBG TFT increases ro to 475 ± 52 MΩ and VA to 1159 ± 173 V at L = 5 μm (n = 5), while maintaining normal transfer characteristics. Two-dimensional device simulations reproduce the trend and show that the drain-bias-induced pinch-off shift is reduced, with dL)/dVDS decreasing from 0.027 to 0.012 μm/V (about 55%). These results indicate that the SCBG approach is effective for enhancing current saturation in short channel IGZO TFTs for high-resolution AMOLED applications. Full article
(This article belongs to the Special Issue Recent Advances in Thin-Film Transistors: From Design to Application)
Show Figures

Figure 1

60 pages, 1134 KB  
Systematic Review
Cytotoxicity of Root Canal Sealers and Potential Clinical Implications: A Comprehensive Systematic Review of In Vitro Studies
by Mirko Piscopo, Angelo Aliberti, Roberta Gasparro, Gilberto Sammartino, Noemi Coppola and Pietro Ausiello
J. Clin. Med. 2026, 15(3), 973; https://doi.org/10.3390/jcm15030973 - 25 Jan 2026
Viewed by 170
Abstract
Background: Root canal sealers may come into direct contact with periapical tissues, particularly in cases of apical extrusion, potentially influencing periapical healing and treatment outcomes. Cytotoxicity assessment represents a clinically relevant parameter when selecting endodontic sealers. However, evidence derived from in vitro [...] Read more.
Background: Root canal sealers may come into direct contact with periapical tissues, particularly in cases of apical extrusion, potentially influencing periapical healing and treatment outcomes. Cytotoxicity assessment represents a clinically relevant parameter when selecting endodontic sealers. However, evidence derived from in vitro studies remains heterogeneous and challenging to interpret from a clinical perspective. Therefore, the aim of this systematic review was to critically evaluate the in vitro cytotoxicity of all root canal sealers that have been commercially marketed over the years, excluding experimental materials, and to contextualize the findings in relation to clinically relevant experimental conditions. Methods: This systematic review was conducted according to PRISMA guidelines and preregistered on the Open Science Framework. PubMed, Scopus, and the Cochrane Library were searched up to 30 November 2025. In vitro studies evaluating the cytotoxicity of commercially available root canal sealers using validated cell viability or proliferation assays were included. Data extraction focused on sealer composition, setting condition, extraction protocols, exposure parameters, and cytotoxic outcomes. Due to marked methodological heterogeneity, a qualitative synthesis was performed. Results: Ninety-eight in vitro studies were included. All categories of root canal sealers demonstrated some degree of cytotoxicity, particularly when tested in freshly mixed conditions, at higher extract concentrations, or after prolonged exposure. Bioactive and calcium silicate-based sealers generally showed a more favorable cytotoxicity profile compared with conventional materials, especially after complete setting and at diluted concentrations, although cytotoxic effects were reported under specific experimental conditions. Resin-based sealers, including AH Plus, exhibited condition-dependent cytotoxicity, while zinc oxide–eugenol and glass ionomer sealers tended to display higher cytotoxic potential. Conclusions: In vitro cytotoxicity of root canal sealers varies according to material composition and experimental conditions. Bioactive sealers generally exhibit a more favorable biological profile, which may be clinically relevant in situations involving sealer extrusion or prolonged tissue contact. Standardized testing protocols and further translational studies are required to support evidence-based clinical material selection. Full article
(This article belongs to the Special Issue Clinical Advances in Endodontic Dentistry)
Show Figures

Figure 1

30 pages, 4895 KB  
Article
Technological and Chemical Drivers of Zinc Coating Degradation in DX51d+Z140 Cold-Formed Steel Sections
by Volodymyr Kukhar, Andrii Kostryzhev, Oleksandr Dykha, Oleg Makovkin, Ihor Kuziev, Roman Vakulenko, Viktoriia Kulynych, Khrystyna Malii, Eleonora Butenko, Natalia Hrudkina, Oleksandr Shapoval, Sergiu Mazuru and Oleksandr Hrushko
Metals 2026, 16(2), 146; https://doi.org/10.3390/met16020146 - 25 Jan 2026
Viewed by 346
Abstract
This study investigates the technological and chemical causes of early zinc-coating degradation on cold-formed steel sections produced from DX51D+Z140 galvanized coils. Commercially manufactured products exhibiting early corrosion symptoms were used in this study. The entire processing route, which included strip preparation, cold rolling, [...] Read more.
This study investigates the technological and chemical causes of early zinc-coating degradation on cold-formed steel sections produced from DX51D+Z140 galvanized coils. Commercially manufactured products exhibiting early corrosion symptoms were used in this study. The entire processing route, which included strip preparation, cold rolling, hot-dip galvanizing, passivation, multi-roll forming, storage, and transportation to customers, was analyzed with respect to the residual surface chemistry and process-related deviations that affect the coating integrity. Thirty-three specimens were examined using electromagnetic measurements of coating thickness. Statistical analysis based on the Cochran’s and Fisher’s criteria confirmed that the increased variability in zinc coating thickness is associated with a higher susceptibility to localized corrosion. Surface and chemical analysis revealed chloride contamination on the outer surface, absence of detectable Cr(VI) residues indicative of insufficient passivation, iron oxide inclusions beneath the zinc coating originating from the strip preparation, traces of organic emulsion residues impairing wetting and adhesion, and micro-defects related to deformation during roll forming. Early zinc coating degradation was shown to result from the cumulative action of multiple technological (surface damage during rolling, variation in the coating thickness) and environmental (moisture during storage and transportation) parameters. On the basis of the obtained results, a methodology was proposed to prevent steel product corrosion in industrial conditions. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

15 pages, 5266 KB  
Article
Design and Evaluation of a Laboratory-Scale Thermal ALD System: Case Study of ZnO
by J. Navarro-Rodríguez, D. Mateos-Anzaldo, J. Martínez-Castelo, R. Ramos-Irigoyen, A. Pérez-Sánchez, O. Pérez-Landeros, M. Curiel-Álvarez, E. Martínez-Guerra, H. Tiznado-Vázquez and N. Nedev
Processes 2026, 14(3), 399; https://doi.org/10.3390/pr14030399 - 23 Jan 2026
Viewed by 291
Abstract
Atomic Layer Deposition (ALD) is a key thin-film fabrication technique that enables the growth of ultra-thin, conformal, and compositionally controlled layers for applications in nanoelectronics, optoelectronics, and energy devices. However, the high cost and operational complexity of commercial ALD systems limit their accessibility [...] Read more.
Atomic Layer Deposition (ALD) is a key thin-film fabrication technique that enables the growth of ultra-thin, conformal, and compositionally controlled layers for applications in nanoelectronics, optoelectronics, and energy devices. However, the high cost and operational complexity of commercial ALD systems limit their accessibility in academic and emerging research environments. In this work, a low-cost, automated thermal ALD system is designed, assembled, and experimentally validated for the deposition of zinc oxide (ZnO) thin films. The developed system enables precise control of precursor dosing, purge sequences, and substrate temperature via an integrated LabVIEW–Arduino control architecture, allowing reproducible and stable thin-film growth. The design allows the use of various precursors through high-precision three-way diaphragm valves. In addition, the system allows continuous purge gas flow in the reaction chamber, which enhances the drag velocity of the precursor gas, reducing dosage requirement, accelerating chamber saturation time and lowering the total consumption of precursors per deposition cycle. ZnO thin films were successfully grown on silicon and glass substrates at 200 °C using diethylzinc (DEZ) as the metal precursor and hydrogen peroxide (H2O2) as the oxidant. The process exhibited self-limiting growth characteristics typical of ALD, yielding a growth per cycle of approximately 0.8 Å. The deposited ZnO films exhibited optical transparency of 70–80% in the visible region, a refractive index of approximately 1.9, and an optical bandgap close to 3.4 eV, which are consistent with values reported for high-quality ZnO films grown in commercial ALD systems. These results demonstrate that the proposed low-cost platform is capable of producing functional ZnO thin films with properties comparable to those obtained with conventional commercial reactors. Overall, this work presents an accessible and scalable thermal ALD system that significantly reduces equipment costs while maintaining reliable process control and film quality, offering a practical framework for expanding thin-film research capabilities across microelectronics, optoelectronics, and nanotechnology laboratories. Full article
(This article belongs to the Special Issue Recent Progress in Thin Film Processes and Engineering)
Show Figures

Figure 1

12 pages, 3014 KB  
Article
The Application of High-Performance Silver Nanowire and Metal Oxide Composite Electrodes as Window Electrodes in Electroluminescent Devices
by Xingzhen Yan, Ziyao Niu, Mengying Lyu, Yanjie Wang, Fan Yang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2026, 17(1), 141; https://doi.org/10.3390/mi17010141 - 22 Jan 2026
Viewed by 111
Abstract
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local [...] Read more.
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local medium environment surrounding the AgNW meshes. The randomly distributed AgNW meshes fabricated via drop-coating were treated with plasma to remove surface organic residues and reduce the inter-nanowire contact resistance. Subsequently, a zinc oxide (ZnO) coating was applied to further decrease the sheet resistance (Rsheet) value. The pristine AgNW mesh exhibits an Rsheet of 17.4 ohm/sq and an optical transmittance of 93.06% at a wavelength of 550 nm. After treatment, the composite structure achieves a reduced Rsheet of 8.7 ohm/sq while maintaining a high optical transmittance of 92.20%. The use of AgNW meshes as window electrodes enhances electron injection efficiency and facilitates the coupling mechanism between localized surface plasmon resonances and excitons. Compared with conventional ITO transparent electrodes, the incorporation of the AgNW mesh leads to a 17-fold enhancement in ZnO emission intensity under identical injection current conditions. Moreover, the unique scattering characteristics of the AgNW and metal oxide composite structure effectively reduce photon reflection at the device interface, thereby broadening the angular distribution of emitted light in electroluminescent devices. Full article
Show Figures

Figure 1

12 pages, 859 KB  
Article
Erythema Protection Efficacy of Plant-Derivative Compounds in Mice Based on Narrow-Band Reflectance Spectroscopy Data
by Diego Armando Villamizar Mantilla, Luis Alberto Nuñez, Elena E. Stashenko, María Pilar Vinardell and Jorge Luis Fuentes
Life 2026, 16(1), 176; https://doi.org/10.3390/life16010176 - 21 Jan 2026
Viewed by 131
Abstract
Background: Plants represent an important source of photoprotective compounds that are capable of protecting human skin from solar-induced damage. In this study we investigated the suitability of a murine model for estimating the Erythema Protection Efficacy (EPE) of natural compound. Methods: [...] Read more.
Background: Plants represent an important source of photoprotective compounds that are capable of protecting human skin from solar-induced damage. In this study we investigated the suitability of a murine model for estimating the Erythema Protection Efficacy (EPE) of natural compound. Methods: UVB-induced skin erythema in albino BALB/c mice was quantified using a Mexameter MX18 MDD colorimeter. The ARRIVE principle was followed. The Minimum Erythema Dose (MED) was determined based on Log10 dose–erythema response curves. EPE values for UV filters (e.g., titanium dioxide or zinc oxide) and selected plant-derived compounds (apigenin, caffeic acid, epigallocatechin gallate, kaempferol, and pinocembrin) were calculated as the ratio between the MED of protected skin and that of unprotected skin. Results: The UVB-induced erythema in both female and male mouse skin followed a linear response. Erythema intensity varied by sex and by the dorsal skin area examined. MED values ranged from 39 to 57 mJ/cm2 in female mice and from 71 to 80 mJ/cm2 in male mice. In both sexes, MED increased linearly with the logarithm of the radiation dose. All tested compounds (apigenin, caffeic acid, epigallocatechin gallate, kaempferol, and pinocembrin) provided protection against UV-radiation-induced erythema in mouse skin. Among them, apigenin, caffeic acid, and kaempferol exhibited the highest EPE values, indicating strong potential for incorporation into sunscreen formulations. Conclusions: The murine EPE metric proved to be a useful tool for identifying plant-derived compounds with potential relevance for the photoprotection of human skin. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

Back to TopTop