Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = ZBP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7959 KiB  
Article
Biocontrol Potential of Microfighter: A Zeolite-Based Product Enriched with Pseudomonas synxantha DSL65
by Elena Cudazzo, Lucia Morrone, Giacomo Ferretti, Barbara Faccini, Daniele Mirandola, Luca Fagioli and Annalisa Rotondi
Agronomy 2025, 15(7), 1563; https://doi.org/10.3390/agronomy15071563 - 27 Jun 2025
Viewed by 412
Abstract
Particle film technology is an environmentally sustainable crop protection method, offering an alternative to chemical pesticides for disease control. Copper-based compounds have long been central to the management of bacterial and fungal diseases, particularly in organic agriculture. However, due to their environmental persistence, [...] Read more.
Particle film technology is an environmentally sustainable crop protection method, offering an alternative to chemical pesticides for disease control. Copper-based compounds have long been central to the management of bacterial and fungal diseases, particularly in organic agriculture. However, due to their environmental persistence, their use has been increasingly restricted by European regulations, making the management of widespread diseases such as Olive Knot (Pseudomonas savastanoi pv. savastanoi) and Downy Mildew (Plasmopara viticola) more difficult. The LIFE Microfighter project addresses this problem by testing a novel Zeo-Biopesticide (ZBp), in which natural zeolite serves as a carrier for the beneficial bacterium Pseudomonas synxantha DLS65. Field trials conducted in high-rainfall areas of Emilia-Romagna (Italy) evaluated the product’s distribution and persistence on olive and grape leaves through ESEM (Environmental Scanning Electron Microscopy) observations, its ability to retain the microorganism, and its effectiveness for disease control. Results showed that ZBp significantly reduced Olive Knot incidence compared to both the untreated control and Cu-based treatments (p < 0.05), supporting its potential as an alternative for bacterial disease management, while showing no statistically significant difference compared to the control in either the incidence or severity of Downy Mildew (p > 0.05). Its persistence and adherence to plant surfaces, which could influence its overall field performance, were affected by environmental conditions, particularly rainfall. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 6694 KiB  
Article
LL-37 Attenuates Sepsis-Induced Lung Injury by Alleviating Inflammatory Response and Epithelial Cell Oxidative Injury via ZBP1-Mediated Autophagy
by Hu Gao, Fajuan Tang, Bin Chen and Xihong Li
Toxins 2025, 17(6), 306; https://doi.org/10.3390/toxins17060306 - 17 Jun 2025
Viewed by 690
Abstract
Background: Sepsis-induced acute lung injury (ALI) is a serious disease constituting a heavy burden on society due to high mortality and morbidity. Inflammation and oxidative stress constitute key pathological mechanisms in ALI caused by sepsis. LL-37 can improve the survival of septic mice. [...] Read more.
Background: Sepsis-induced acute lung injury (ALI) is a serious disease constituting a heavy burden on society due to high mortality and morbidity. Inflammation and oxidative stress constitute key pathological mechanisms in ALI caused by sepsis. LL-37 can improve the survival of septic mice. Nevertheless, its function and underlying mechanism in sepsis-evoked ALI is elusive. Methods: The human A549 alveolar epithelial cell line was treated with LL-37 or ZBP1 recombinant vector under LPS exposure. Then, the effects on cell oxidative stress injury, inflammatory response, and autophagy were analyzed. RNA-seq analysis was performed to detect the differentially expressed genes (DEGs) between the LPS and LPS/LL-37 groups. Furthermore, the effects of LL-37 on cecal ligation and the puncture (CLP)-constructed ALI model were explored. Results: LL-37 attenuated LPS-evoked oxidative injury in human alveolar epithelial cells by increasing cell viability and suppressing ROS, malondialdehyde, and lactate dehydrogenase levels and apoptosis. Moreover, LPS-induced releases of pro-inflammatory IL-18, TNF-α, and IL-1β were suppressed by LL-37. Furthermore, LPS’s impairment of autophagy was reversed by LL-37. RNA-seq analysis substantiated 1350 differentially expressed genes between the LPS and LPS/LL-37 groups. Among them was ZBP1, a significantly down-regulated gene with the largest fold change. Moreover, LL-37 suppressed LPS-increased ZBP1 expression. Importantly, ZBP1 elevation restrained LL-37-induced autophagy in LPS-treated cells and abrogated LL-37-mediated protection against LPS-evoked oxidative injury and inflammation. LL-37 ameliorated abnormal histopathological changes, tissue edema, the lung injury score, oxygenation index (PaO2/FiO2), and glycemia contents in the CLP-constructed ALI model, which were offset through ZBP1 elevation via its activator CBL0137. Additionally, LL-37 suppressed inflammation and oxidative stress in lung tissues, concomitant with autophagy elevation and ZBP1 down-regulation. Conclusions: LL-37 may alleviate the progression of sepsis-evoked ALI by attenuating pulmonary epithelial cell oxidative injury and inflammatory response via ZBP1-mediated autophagy activation, indicating a promising approach for the therapy of ALI patients. Full article
Show Figures

Figure 1

25 pages, 1823 KiB  
Review
PANoptosis as a Two-Edged Sword in Colorectal Cancer: A Pathogenic Mechanism and Therapeutic Opportunity
by Györgyi Műzes and Ferenc Sipos
Cells 2025, 14(10), 730; https://doi.org/10.3390/cells14100730 - 16 May 2025
Viewed by 886
Abstract
The examination of PANoptosis in colorectal cancer is particularly important, as many tumor cells can evade apoptotic cell death while continuing to proliferate through inflammatory mediators and creating an immunosuppressive environment. The PANoptosome functions as a regulatory complex that unites proteins governing pyroptotic, [...] Read more.
The examination of PANoptosis in colorectal cancer is particularly important, as many tumor cells can evade apoptotic cell death while continuing to proliferate through inflammatory mediators and creating an immunosuppressive environment. The PANoptosome functions as a regulatory complex that unites proteins governing pyroptotic, apoptotic, and necroptotic pathways, rather than allowing distinct death pathways to compete. The expression and functional status of key molecules within the PANoptosome, such as ZBP1, RIPK1, RIPK3, CASP8, and ASC, may influence tumor viability and immune detection. The tumorigenic impact of PANoptosis is complex and predominantly manifests through chronic inflammation, immune response modulation, and changes in the tumor microenvironment. PANoptosis also aids in the defense against colon cancer by directly eradicating tumor cells and modifying the cellular environment. The expression profile of PANoptosis components may possess prognostic and predictive significance. The therapeutic ramifications of PANoptosis in colorectal cancer are now being investigated through many avenues. It provides an opportunity to develop targeted therapeutic techniques. In contrast, it may also be pertinent in conjunction with immunotherapy, as PANoptosis signifies an immunogenic type of cell death and may consequently enhance the anti-tumor immune response. A thorough comprehension of how these parameters influence PANoptosis is crucial for practical implementation. Full article
(This article belongs to the Collection Molecular and Cellular Mechanisms of Cancers: Colorectal Cancer)
Show Figures

Figure 1

23 pages, 4579 KiB  
Review
Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies
by Yuling Sun and Kaituo Liu
Vet. Sci. 2024, 11(11), 555; https://doi.org/10.3390/vetsci11110555 - 10 Nov 2024
Cited by 2 | Viewed by 3989
Abstract
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, [...] Read more.
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection. We highlight the roles of key regulatory proteins, such as ZBP1 (Z-DNA binding protein 1) and RIPK3 (receptor-interacting protein kinase 3), in orchestrating these responses, emphasizing the dual roles of cell death in both antiviral defense and tissue injury. Furthermore, we discuss emerging therapeutic strategies targeting these pathways, aiming to enhance antiviral efficacy while minimizing collateral tissue damage. Future research should focus on targeted approaches to modulate cell death mechanisms, aiming to reduce tissue damage and improve clinical outcomes for patients with severe influenza. Full article
(This article belongs to the Special Issue Advances in Veterinary Clinical Microbiology)
Show Figures

Figure 1

13 pages, 4467 KiB  
Article
ZNF281 Facilitates the Invasion of Cervical Cancer Cell Both In Vivo and In Vitro
by Ye Chong, Kun Zhang, Yuting Zeng, Qian Chen, Qian Feng, Nan Cui, Pengsheng Zheng, Litao Ruan and Wei Hua
Cancers 2024, 16(21), 3717; https://doi.org/10.3390/cancers16213717 - 4 Nov 2024
Cited by 1 | Viewed by 1364
Abstract
Background: Cervical cancer is the fourth most common cancer among women worldwide. The zinc finger transcription factor 281 (ZNF281)/ZBP-99 protein specifically binds to GC-rich DNA sequences and regulates gene expression, and it has been shown to promote tumor progression. In this study, [...] Read more.
Background: Cervical cancer is the fourth most common cancer among women worldwide. The zinc finger transcription factor 281 (ZNF281)/ZBP-99 protein specifically binds to GC-rich DNA sequences and regulates gene expression, and it has been shown to promote tumor progression. In this study, we aim to investigate the function and molecular mechanism of ZNF281 in uterine cervical carcinoma. Methods: We conducted immunohistochemistry and Western blot assays to determine the expression of ZNF281 in eight human cervical cancer tissues. And, xenograft experiments involving the injection of HeLa cells into nude mice was used to determine the function of ZNF281 on proliferation. Transwell assays were used to detect the migration and invasion of HeLa cells after indicated that ZNF281 overexpression. Results: Our results indicated that ZNF281 protein levels were higher in cervical cancer tissues compared to normal cervical tissues. Additionally, ZNF281 was expressed in human cervical carcinoma cell lines, including HeLa, SiHa, C-33 A, CaSki, and HT-3, and is localized in both the cell nucleus and cytoplasm. ZNF281 overexpression did not influence HeLa cell proliferation or tumor size in situ. Moreover, nude mice injected with ZNF281-overexpressing cell lines developed more tumor lesions in the lungs compared to those injected with control cell lines. Conclusions: These findings suggest that ZNF281 is associated with tumor metastasis without affecting cell proliferation, both in vivo and in vitro. Full article
Show Figures

Figure 1

16 pages, 7981 KiB  
Review
Induced Necroptosis and Its Role in Cancer Immunotherapy
by Ziyao Zhang, Fangming Zhang, Wenjing Xie, Yubo Niu, Haonan Wang, Guofeng Li, Lingyun Zhao, Xing Wang and Wensheng Xie
Int. J. Mol. Sci. 2024, 25(19), 10760; https://doi.org/10.3390/ijms251910760 - 6 Oct 2024
Cited by 8 | Viewed by 3141
Abstract
Necroptosis is a type of regulated cell death (RCD) that is triggered by changes in the extracellular or intracellular milieu that are picked up by certain death receptors. Thanks to its potent capacity to induce immunological responses and overcome apoptotic resistance, it has [...] Read more.
Necroptosis is a type of regulated cell death (RCD) that is triggered by changes in the extracellular or intracellular milieu that are picked up by certain death receptors. Thanks to its potent capacity to induce immunological responses and overcome apoptotic resistance, it has garnered significant attention as a potential cancer treatment. Basic information for the creation of nano-biomedical treatments is provided by studies on the mechanisms underlying tumor necroptosis. Receptor-interacting protein kinase 1 (RIPK1)–RIPK3-mediated necroptosis, Toll-like receptor domain-containing adapter-inducing interferon (IFN)-β (TRIF)–RIPK3-mediated necroptosis, Z-DNA-binding protein 1 (ZBP1)–RIPK3-mediated necroptosis, and IFNR-mediated necroptosis are the four signaling pathways that collectively account for triggered necroptosis in this review. Necroptosis has garnered significant interest as a possible cancer treatment strategy because, in contrast to apoptosis, it elicits immunological responses that are relevant to therapy. Thus, a thorough discussion is held on the connections between tumor cell necroptosis and the immune environment, cancer immunosurveillance, and cells such as dendritic cells (DCs), cytotoxic T cells, natural killer (NK) cells, natural killer T (NKT) cells, and their respective cytokines. Lastly, a summary of the most recent nanomedicines that cause necroptosis in order to cause immunogenic cell death is provided in order to emphasize their promise for cancer immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

31 pages, 4696 KiB  
Review
Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape
by Wenlong An, Simran Lakhina, Jessica Leong, Kartik Rawat and Matloob Husain
Pathogens 2024, 13(7), 561; https://doi.org/10.3390/pathogens13070561 - 3 Jul 2024
Cited by 11 | Viewed by 6657
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the “flu” in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) [...] Read more.
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the “flu” in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape. Full article
(This article belongs to the Special Issue Host Immune Responses to RNA Viruses, 2nd Edition)
Show Figures

Figure 1

25 pages, 18766 KiB  
Article
Comprehensive Analysis of PANoptosis-Related Gene Signature of Ulcerative Colitis
by Jun-Meng Wang, Jiao Yang, Wan-Yu Xia, Yue-Mei Wang, Yuan-Bing Zhu, Qin Huang, Tong Feng, Lu-Shuang Xie, Si-Hui Li, Shu-Qing Liu, Shu-Guang Yu and Qiao-Feng Wu
Int. J. Mol. Sci. 2024, 25(1), 348; https://doi.org/10.3390/ijms25010348 - 26 Dec 2023
Cited by 19 | Viewed by 4064
Abstract
Accumulating evidence shows that the abnormal increase in the mortality of intestinal epithelial cells (IECs) caused by apoptosis, pyroptosis, and necroptosis is closely related to the function of mucous membrane immunity and barrier function in patients with ulcerative colitis (UC). As a procedural [...] Read more.
Accumulating evidence shows that the abnormal increase in the mortality of intestinal epithelial cells (IECs) caused by apoptosis, pyroptosis, and necroptosis is closely related to the function of mucous membrane immunity and barrier function in patients with ulcerative colitis (UC). As a procedural death path that integrates the above-mentioned many deaths, the role of PANoptosis in UC has not been clarified. This study aims to explore the characterization of PANoptosis patterns and determine the potential biomarkers and therapeutic targets. We constructed a PANoptosis gene set and revealed significant activation of PANoptosis in UC patients based on multiple transcriptome profiles of intestinal mucosal biopsies from the GEO database. Comprehensive bioinformatics analysis revealed five key genes (ZBP1, AIM2, CASP1/8, IRF1) of PANoptosome with good diagnostic value and were highly correlated with an increase in pro-inflammatory immune cells and factors. In addition, we established a reliable ceRNA regulatory network of PANoptosis and predicted three potential small-molecule drugs sharing calcium channel blockers that were identified, among which flunarizine exhibited the highest correlation with a high binding affinity to the targets. Finally, we used the DSS-induced colitis model to validate our findings. This study identifies key genes of PANoptosis associated with UC development and hypothesizes that IRF1 as a TF promotes PANoptosome multicomponent expression, activates PANoptosis, and then induces IECs excessive death. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

23 pages, 11195 KiB  
Article
Predicting Prognosis and Immunotherapy Response in Multiple Cancers Based on the Association of PANoptosis-Related Genes with Tumor Heterogeneity
by Yunhan Wang, Boyu Zhang, Zongying Zhang, Jia Ge, Lin Xu, Jiawei Mao, Xiaorong Zhou, Liming Mao, Qiuyun Xu and Mengmeng Sang
Genes 2023, 14(11), 1994; https://doi.org/10.3390/genes14111994 - 25 Oct 2023
Cited by 5 | Viewed by 2781
Abstract
PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. [...] Read more.
PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. In this study, we comprehensively analyzed the expression of 14 PANoptosis-related genes (PANRGs) in 28 types of tumors. Most PANRGs are upregulated in tumors, including Z-DNA binding protein 1 (ZBP1), nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3), caspase (CASP) 1, CASP6, CASP8, PYCARD, FADD, MAP3K7, RNF31, and RBCK1. PANRGs are highly expressed in GBM, LGG, and PAAD, while their levels in ACC are much lower than those in normal tissues. We found that both the CNV and SNV gene sets in BLCA are closely related to survival performance. Subsequently, we conducted clustering and LASSO analysis on each tumor and found that the inhibitory and the stimulating immune checkpoints positively correlate with ZBP1, NLRP3, CASP1, CASP8, and TNFAIP3. The immune infiltration results indicated that KIRC is associated with most infiltrating immune cells. According to the six tumor dryness indicators, PANRGs in LGG show the strongest tumor dryness but have a negative correlation with RNAss. In KIRC, LIHC, and TGCT, most PANRGs play an important role in tumor heterogeneity. Additionally, we analyzed the linear relationship between PANRGs and miRNA and found that MAP3K7 correlates to many miRNAs in most cancers. Finally, we predicted the possible drugs for targeted therapy of the cancers. These data greatly enhance our understanding of the components of cancer and may lead to the discovery of new biomarkers for predicting immunotherapy response and improving the prognosis of cancer patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4752 KiB  
Article
ZBP1 Drives IAV-Induced NLRP3 Inflammasome Activation and Lytic Cell Death, PANoptosis, Independent of the Necroptosis Executioner MLKL
by R. K. Subbarao Malireddi, Bhesh Raj Sharma, Ratnakar R. Bynigeri, Yaqiu Wang, Jianlin Lu and Thirumala-Devi Kanneganti
Viruses 2023, 15(11), 2141; https://doi.org/10.3390/v15112141 - 24 Oct 2023
Cited by 26 | Viewed by 4343
Abstract
Influenza A virus (IAV) continues to pose a significant global health threat, causing severe respiratory infections that result in substantial annual morbidity and mortality. Recent research highlights the pivotal role of innate immunity, cell death, and inflammation in exacerbating the severity of respiratory [...] Read more.
Influenza A virus (IAV) continues to pose a significant global health threat, causing severe respiratory infections that result in substantial annual morbidity and mortality. Recent research highlights the pivotal role of innate immunity, cell death, and inflammation in exacerbating the severity of respiratory viral diseases. One key molecule in this process is ZBP1, a well-recognized innate immune sensor for IAV infection. Upon activation, ZBP1 triggers the formation of a PANoptosome complex containing ASC, caspase-8, and RIPK3, among other molecules, leading to inflammatory cell death, PANoptosis, and NLRP3 inflammasome activation for the maturation of IL-1β and IL-18. However, the role for other molecules in this process requires further evaluation. In this study, we investigated the role of MLKL in regulating IAV-induced cell death and NLRP3 inflammasome activation. Our data indicate IAV induced inflammatory cell death through the ZBP1-PANoptosome, where caspases and RIPKs serve as core components. However, IAV-induced lytic cell death was only partially dependent on RIPK3 at later timepoints and was fully independent of MLKL throughout all timepoints tested. Additionally, NLRP3 inflammasome activation was unaffected in MLKL-deficient cells, establishing that MLKL and MLKL-dependent necroptosis do not act upstream of NLRP3 inflammasome activation, IL-1β maturation, and lytic cell death during IAV infection. Full article
(This article belongs to the Special Issue The Inflammasomes - Key Players in Antiviral Response)
Show Figures

Figure 1

18 pages, 6029 KiB  
Article
In Silico Identification and Validation of Pyroptosis-Related Genes in Chlamydia Respiratory Infection
by Ruoyuan Sun, Wenjing Zheng, Shuaini Yang, Jiajia Zeng, Yuqing Tuo, Lu Tan, Hong Zhang and Hong Bai
Int. J. Mol. Sci. 2023, 24(17), 13570; https://doi.org/10.3390/ijms241713570 - 1 Sep 2023
Cited by 1 | Viewed by 1976
Abstract
The incidence of Chlamydia trachomatis respiratory infection is increasing, and its pathogenesis is still unclear. Pyroptosis, as a mode of inflammatory cell death, plays a vital role in the occurrence and development of Chlamydia trachomatis respiratory infection. In this study, the potential pyroptosis-related [...] Read more.
The incidence of Chlamydia trachomatis respiratory infection is increasing, and its pathogenesis is still unclear. Pyroptosis, as a mode of inflammatory cell death, plays a vital role in the occurrence and development of Chlamydia trachomatis respiratory infection. In this study, the potential pyroptosis-related genes involved in Chlamydia trachomatis respiratory infection were identified by constructing a mouse model of C. muridarum infection combined with bioinformatics analysis. Through in-depth analysis of the RNA sequencing data, 13 differentially expressed pyroptosis-related genes were screened, including 1 downregulated gene and 12 upregulated genes. Gene ontology (GO) analysis showed that these genes mainly regulate inflammatory responses and produce IL-1β. Protein–protein interaction network analysis identified eight hub genes of interest: Tnf, Tlr2, Il1b, Nlrp3, Tlr9, Mefv, Zbp1 and Tnfaip3. Through quantitative real-time PCR (qPCR) analysis, we found that the expression of these genes in the lungs of C. muridarum-infected mice was significantly reduced, consistent with the bioinformatics results. At the same time, we detected elevated levels of caspase-3, gasdermin D and gasdermin E proteins in the lungs of C. muridarum-infected mice, demonstrating that Chlamydia trachomatis infection does induce pyroptosis. We then predicted nine miRNAs targeting these hub genes and constructed a key competitive endogenous RNA (ceRNA) network. In summary, we identified six key pyroptosis-related genes involved in Chlamydia trachomatis respiratory infection and constructed a ceRNA network associated with these genes. These findings will improve understanding of the molecular mechanisms underlying pyroptosis in Chlamydia trachomatis respiratory infections. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Transcriptional Regulation in Bacteria)
Show Figures

Figure 1

22 pages, 5800 KiB  
Article
BHLHE40 Maintains the Stemness of PαS Cells In Vitro by Targeting Zbp1 through the Wnt/β-Catenin Signaling Pathway
by Menglong Hu, Yueming Tian, Xuenan Liu, Qian Guo, Dazhuang Lu, Xu Wang, Longwei Lv, Xiao Zhang, Yunsong Liu, Yongsheng Zhou and Ping Zhang
Biomedicines 2023, 11(8), 2190; https://doi.org/10.3390/biomedicines11082190 - 3 Aug 2023
Cited by 1 | Viewed by 2070
Abstract
Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+PDGFRα+CD45TER119) cells as representative of BMSCs and aimed to explore [...] Read more.
Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+PDGFRα+CD45TER119) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS). We investigated the differences in the stemness of PαS cells by proliferation, differentiation, and stemness markers in vitro and by ectopic osteogenesis and chondrogenesis ability in vivo, as well as the changes in the stemness of PαS cells during expansion in vitro. Gain- and loss-of-function experiments were applied to investigate the critical role and underlying mechanism of the basic helix–loop–helix family member E40 (BHLHE40) in maintaining the stemness of PαS cells. The stemness of fresh PαS cells representative in vivo was superior to that of passage 0 (P0) PαS cells in vitro. The stemness of PαS cells in vitro decreased gradually from P0 to passage 4 (P4). Moreover, BHLHE40 plays a critical role in regulating the stemness of PαS cells during in vitro expansion. Mechanically, BHLHE40 regulates the stemness of PαS cells by targeting Zbp1 through the Wnt/β-catenin signaling pathway. This work confirms that BHLHE40 is a critical factor for regulating the stemness of PαS cells during expansion in vitro and may provide significant indications in the exploration of premium culture conditions for PαS cells. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Gene and Cell Therapy)
Show Figures

Figure 1

27 pages, 8829 KiB  
Article
Extensive Bioinformatics Analyses Reveal a Phylogenetically Conserved Winged Helix (WH) Domain (Zτ) of Topoisomerase IIα, Elucidating Its Very High Affinity for Left-Handed Z-DNA and Suggesting Novel Putative Functions
by Martin Bartas, Kristyna Slychko, Jiří Červeň, Petr Pečinka, Donna J. Arndt-Jovin and Thomas M. Jovin
Int. J. Mol. Sci. 2023, 24(13), 10740; https://doi.org/10.3390/ijms241310740 - 27 Jun 2023
Cited by 3 | Viewed by 3893
Abstract
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, “bubbles”, R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is [...] Read more.
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, “bubbles”, R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the “B-Z-topoII hypothesis” and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments (“Z-flipons”) as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover “conformase” activity on given G(ate) B-DNA segments (“Z-flipins”), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural–functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents. Full article
Show Figures

Graphical abstract

20 pages, 2090 KiB  
Article
Molecular Signatures in Swine Innate and Adaptive Immune Responses to African Swine Fever Virus Antigens p30/p54/CD2v Expressed Using a Highly Efficient Semliki Forest Virus Replicon System
by Mei Huang, Hanghui Zheng, Weixiong Tan, Chengwei Xiang, Niran Fang, Wenting Xie, Lianghai Wen, Dingxiang Liu and Ruiai Chen
Int. J. Mol. Sci. 2023, 24(11), 9316; https://doi.org/10.3390/ijms24119316 - 26 May 2023
Cited by 2 | Viewed by 3454
Abstract
African swine fever virus (ASFV) causes a devastating viral hemorrhagic disease in domestic pigs and Eurasian wild boars, posing a foremost threat to the swine industry and pig farming. The development of an effective vaccine is urgently needed, but has been hampered by [...] Read more.
African swine fever virus (ASFV) causes a devastating viral hemorrhagic disease in domestic pigs and Eurasian wild boars, posing a foremost threat to the swine industry and pig farming. The development of an effective vaccine is urgently needed, but has been hampered by the lack of an in-depth, mechanistic understanding of the host immune response to ASFV infection and the induction of protective immunity. In this study, we report that immunization of pigs with Semliki Forest Virus (SFV) replicon-based vaccine candidates expressing ASFV p30, p54, and CD2v, as well as their ubiquitin-fused derivatives, elicits T cell differentiation and expansion, promoting specific T cell and humoral immunity. Due to significant variations in the individual non-inbred pigs in response to the vaccination, a personalized analysis was conducted. Using integrated analysis of differentially expressed genes (DEGs), Venn, KEGG and WGCNA, Toll-like receptor, C-type lectin receptor, IL17 receptor, NOD-like receptor and nucleic acid sensor-mediated signaling pathways were demonstrated to be positively correlated to the antigen-stimulated antibody production and inversely correlated to the IFN-γ secreting cell counts in peripheral blood mononuclear cells (PBMCs). An up-regulation of CIQA, CIQB, CIQC, C4BPA, SOSC3, S100A8 and S100A9, and down-regulation of CTLA4, CXCL2, CXCL8, FOS, RGS1, EGR1 and SNAI1 are general in the innate immune response post-the second boost. This study reveals that pattern recognition receptors TLR4, DHX58/DDX58 and ZBP1, and chemokines CXCL2, CXCL8 and CXCL10 may play important roles in regulating this vaccination-stimulated adaptive immune response. Full article
Show Figures

Figure 1

31 pages, 11986 KiB  
Article
Identification of Orbivirus Non-Structural Protein 5 (NS5), Its Role and Interaction with RNA/DNA in Infected Cells
by Fauziah Mohd Jaafar, Baptiste Monsion, Peter P. C. Mertens and Houssam Attoui
Int. J. Mol. Sci. 2023, 24(7), 6845; https://doi.org/10.3390/ijms24076845 - 6 Apr 2023
Cited by 10 | Viewed by 3482
Abstract
Bioinformatic analyses have predicted that orbiviruses encode an additional, small non-structural protein (NS5) from a secondary open reading frame on genome segment 10. However, this protein has not previously been detected in infected mammalian or insect cells. NS5-specific antibodies were generated in mice [...] Read more.
Bioinformatic analyses have predicted that orbiviruses encode an additional, small non-structural protein (NS5) from a secondary open reading frame on genome segment 10. However, this protein has not previously been detected in infected mammalian or insect cells. NS5-specific antibodies were generated in mice and were used to identify NS5 synthesised in orbivirus-infected BSR cells or cells transfected with NS5 expression plasmids. Confocal microscopy shows that although NS5 accumulates in the nucleus, particularly in the nucleolus, which becomes disrupted, it also appears in the cell cytoplasm, co-localising with mitochondria. NS5 helps to prevent the degradation of ribosomal RNAs during infection and reduces host-cell protein synthesis However, it helps to extend cell viability by supporting viral protein synthesis and virus replication. Pulldown studies showed that NS5 binds to ssRNAs and supercoiled DNAs and demonstrates interactions with ZBP1, suggesting that it modulates host-cell responses. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

Back to TopTop