Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,802)

Search Parameters:
Keywords = YOLOv8 network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 24448 KB  
Article
YOLO-SCA: A Lightweight Potato Bud Eye Detection Method Based on the Improved YOLOv5s Algorithm
by Qing Zhao, Ping Zhao, Xiaojian Wang, Qingbing Xu, Siyao Liu and Tianqi Ma
Agriculture 2025, 15(19), 2066; https://doi.org/10.3390/agriculture15192066 - 1 Oct 2025
Abstract
Bud eye identification is a critical step in the intelligent seed cutting process for potatoes. This study focuses on the challenges of low testing accuracy and excessive weighted memory in testing models for potato bud eye detection. It proposes an improved potato bud [...] Read more.
Bud eye identification is a critical step in the intelligent seed cutting process for potatoes. This study focuses on the challenges of low testing accuracy and excessive weighted memory in testing models for potato bud eye detection. It proposes an improved potato bud eye detection method based on YOLOv5s, referred to as the YOLO-SCA model, which synergistically optimizing three main modules. The improved model introduces the ShuffleNetV2 module to reconstruct the backbone network. The channel shuffling mechanism reduces the model’s weighted memory and computational load, while enhancing bud eye features. Additionally, the CBAM attention mechanism is embedded at specific layers, using dual-path feature weighting (channel and spatial) to enhance sensitivity to key bud eye features in complex contexts. Then, the Alpha-IoU function is used to replace the CloU function as the bounding box regression loss function. Its single-parameter control mechanism and adaptive gradient amplification characteristics significantly improve the accuracy of bud eye positioning and strengthen the model’s anti-interference ability. Finally, we conduct pruning based on the channel evaluation after sparse training, accurately removing redundant channels, significantly reducing the amount of computation and weighted memory, and achieving real-time performance of the model. This study aims to address how potato bud eye detection models can achieve high-precision real-time detection under the conditions of limited computational resources and storage space. The improved YOLO-SCA model has a size of 3.6 MB, which is 35.3% of the original model; the number of parameters is 1.7 M, which is 25% of the original model; and the average accuracy rate is 95.3%, which is a 12.5% improvement over the original model. This study provides theoretical support for the development of potato bud eye recognition technology and intelligent cutting equipment. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

32 pages, 8741 KB  
Article
Fusion of Electrical and Optical Methods in the Detection of Partial Discharges in Dielectric Oils Using YOLOv8
by José Miguel Monzón-Verona, Santiago García-Alonso and Francisco Jorge Santana-Martín
Electronics 2025, 14(19), 3916; https://doi.org/10.3390/electronics14193916 - 1 Oct 2025
Abstract
This study presents an innovative bimodal approach for laboratory partial discharge (PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main contribution consists, first, in the transformation of a conventional DDX-type electrical detector into a smart and autonomous data source. By training [...] Read more.
This study presents an innovative bimodal approach for laboratory partial discharge (PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main contribution consists, first, in the transformation of a conventional DDX-type electrical detector into a smart and autonomous data source. By training the CNN, a system capable of automatically reading and interpreting the data from the detector display—discharge magnitude and applied voltage—is developed, achieving an average training accuracy of 0.91 and converting a passive instrument into a digitalized and structured data source. Second, and simultaneously, an optical visualization system captures direct images of the PDs with a high-resolution camera, allowing for their morphological characterization and spatial distribution. For electrical voltages of 10, 13, and 16 kV, PDs were detected with a confidence level of up to 0.92. The fusion of quantitative information intelligently extracted from the electrical detector with qualitative characterization from optical analysis offers a more complete and robust automated diagnosis of the origin and severity of PDs. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

19 pages, 7270 KB  
Article
A Fast Rotation Detection Network with Parallel Interleaved Convolutional Kernels
by Leilei Deng, Lifeng Sun and Hua Li
Symmetry 2025, 17(10), 1621; https://doi.org/10.3390/sym17101621 - 1 Oct 2025
Abstract
In recent years, convolutional neural network-based object detectors have achieved extensive applications in remote sensing (RS) image interpretation. While multi-scale feature modeling optimization remains a persistent research focus, existing methods frequently overlook the symmetrical balance between feature granularity and morphological diversity, particularly when [...] Read more.
In recent years, convolutional neural network-based object detectors have achieved extensive applications in remote sensing (RS) image interpretation. While multi-scale feature modeling optimization remains a persistent research focus, existing methods frequently overlook the symmetrical balance between feature granularity and morphological diversity, particularly when handling high-aspect-ratio RS targets with anisotropic geometries. This oversight leads to suboptimal feature representations characterized by spatial sparsity and directional bias. To address this challenge, we propose the Parallel Interleaved Convolutional Kernel Network (PICK-Net), a rotation-aware detection framework that embodies symmetry principles through dual-path feature modulation and geometrically balanced operator design. The core innovation lies in the synergistic integration of cascaded dynamic sparse sampling and symmetrically decoupled feature modulation, enabling adaptive morphological modeling of RS targets. Specifically, the Parallel Interleaved Convolution (PIC) module establishes symmetric computation patterns through mirrored kernel arrangements, effectively reducing computational redundancy while preserving directional completeness through rotational symmetry-enhanced receptive field optimization. Complementing this, the Global Complementary Attention Mechanism (GCAM) introduces bidirectional symmetry in feature recalibration, decoupling channel-wise and spatial-wise adaptations through orthogonal attention pathways that maintain equilibrium in gradient propagation. Extensive experiments on RSOD and NWPU-VHR-10 datasets demonstrate our superior performance, achieving 92.2% and 84.90% mAP, respectively, outperforming state-of-the-art methods including EfficientNet and YOLOv8. With only 12.5 M parameters, the framework achieves symmetrical optimization of accuracy-efficiency trade-offs. Ablation studies confirm that the symmetric interaction between PIC and GCAM enhances detection performance by 2.75%, particularly excelling in scenarios requiring geometric symmetry preservation, such as dense target clusters and extreme scale variations. Cross-domain validation on agricultural pest datasets further verifies its rotational symmetry generalization capability, demonstrating 84.90% accuracy in fine-grained orientation-sensitive detection tasks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

26 pages, 7857 KB  
Article
YSAG-VINS—A Robust Visual-Inertial Navigation System with Adaptive Geometric Constraints and Semantic Information Based on YOLOv8n-ODUIB in Dynamic Environments
by Kunlin Wang, Dashuai Chai, Xiqi Wang, Ruijie Yan, Yipeng Ning, Wengang Sang and Shengli Wang
Appl. Sci. 2025, 15(19), 10595; https://doi.org/10.3390/app151910595 - 30 Sep 2025
Abstract
Dynamic environments pose significant challenges for Visual Simultaneous Localization and Mapping (VSLAM), as moving objects can introduce outlier observations that severely degrade localization and mapping performance. To address this problem, we propose YSAG-VINS, a VSLAM algorithm specifically designed for dynamic scenes. The system [...] Read more.
Dynamic environments pose significant challenges for Visual Simultaneous Localization and Mapping (VSLAM), as moving objects can introduce outlier observations that severely degrade localization and mapping performance. To address this problem, we propose YSAG-VINS, a VSLAM algorithm specifically designed for dynamic scenes. The system integrates an enhanced YOLOv8 object detection network with an adaptive epipolar constraint strategy to effectively identify and suppress the impact of dynamic features. In particular, a lightweight YOLOv8n model augmented with ODConv and UIB modules is employed to balance detection accuracy with real-time efficiency. Based on semantic detection results, images are divided into static background and potentially dynamic regions, and the motion state of these regions is further verified using geometric constraints. Features belonging to truly dynamic objects are then removed to enhance robustness. Comprehensive experiments on multiple public datasets demonstrate that YSAG-VINS achieves superior pose estimation accuracy compared with VINS-Fusion, VDO-SLAM, and Dynamic-VINS. On three dynamic sequences of the KITTI dataset, the proposed method achieves average RMSE improvement rates of 48.62%, 12.18%, and 13.50%, respectively. These results confirm that YSAG-VINS provides robust and high-accuracy localization performance in dynamic environments, making it a promising solution for real-world applications such as autonomous driving, service robotics, and augmented reality. Full article
18 pages, 3033 KB  
Article
Design and Research of an Intelligent Detection Method for Coal Mine Fire Edges
by Yingbing Yang, Duan Zhao, Yicheng Ge and Tao Li
Appl. Sci. 2025, 15(19), 10589; https://doi.org/10.3390/app151910589 - 30 Sep 2025
Abstract
Mine fire is caused by external heat source or coal seam spontaneous combustion, and there are serious hidden dangers in mining operation. The existing detection methods have high cost, limited coverage and delayed response. An edge intelligent fire detection system based on multi-source [...] Read more.
Mine fire is caused by external heat source or coal seam spontaneous combustion, and there are serious hidden dangers in mining operation. The existing detection methods have high cost, limited coverage and delayed response. An edge intelligent fire detection system based on multi-source information fusion is proposed. We enhance the YOLOv5s backbone network by (1) optimized small-target detection and (2) adaptive attention mechanism to improve recognition accuracy. In order to overcome the limitation of video only, a dynamic weighting algorithm combining video and multi-sensor data is proposed, which adjusts the strategy according to the real-time fire risk index. Deploying quantitative models on edge devices can improve underground intelligence and response speed. The experimental results show that the improved YOLOv5s is 7.2% higher than the baseline, the detection accuracy of the edge system in the simulated environment is 8.28% higher, and the detection speed is 26% higher than that of cloud computing. Full article
Show Figures

Figure 1

14 pages, 3652 KB  
Article
Enhancing Mobility for the Blind: An AI-Powered Bus Route Recognition System
by Shehzaib Shafique, Gian Luca Bailo, Monica Gori, Giulio Sciortino and Alessio Del Bue
Algorithms 2025, 18(10), 616; https://doi.org/10.3390/a18100616 - 30 Sep 2025
Abstract
Vision is a critical component of daily life, and its loss significantly hinders an individual’s ability to navigate, particularly when using public transportation systems. To address this challenge, this paper introduces a novel approach for accurately identifying bus route numbers and destinations, designed [...] Read more.
Vision is a critical component of daily life, and its loss significantly hinders an individual’s ability to navigate, particularly when using public transportation systems. To address this challenge, this paper introduces a novel approach for accurately identifying bus route numbers and destinations, designed to assist visually impaired individuals in navigating urban transit networks. Our system integrates object detection, image enhancement, and Optical Character Recognition (OCR) technologies to achieve reliable and precise recognition of bus information. We employ a custom-trained You Only Look Once version 8 (YOLOv8) model to isolate the front portion of buses as the region of interest (ROI), effectively eliminating irrelevant text and advertisements that often lead to errors. To further enhance accuracy, we utilize the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) to improve image resolution, significantly boosting the confidence of the OCR process. Additionally, a post-processing step involving a pre-defined list of bus routes and the Levenshtein algorithm corrects potential errors in text recognition, ensuring reliable identification of bus numbers and destinations. Tested on a dataset of 120 images featuring diverse bus routes and challenging conditions such as poor lighting, reflections, and motion blur, our system achieved an accuracy rate of 95%. This performance surpasses existing methods and demonstrates the system’s potential for real-world application. By providing a robust and adaptable solution, our work aims to enhance public transit accessibility, empowering visually impaired individuals to navigate cities with greater independence and confidence. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

19 pages, 5891 KB  
Article
MS-YOLOv11: A Wavelet-Enhanced Multi-Scale Network for Small Object Detection in Remote Sensing Images
by Haitao Liu, Xiuqian Li, Lifen Wang, Yunxiang Zhang, Zitao Wang and Qiuyi Lu
Sensors 2025, 25(19), 6008; https://doi.org/10.3390/s25196008 - 29 Sep 2025
Abstract
In remote sensing imagery, objects smaller than 32×32 pixels suffer from three persistent challenges that existing detectors inadequately resolve: (1) their weak signal is easily submerged in background clutter, causing high miss rates; (2) the scarcity of valid pixels yields few [...] Read more.
In remote sensing imagery, objects smaller than 32×32 pixels suffer from three persistent challenges that existing detectors inadequately resolve: (1) their weak signal is easily submerged in background clutter, causing high miss rates; (2) the scarcity of valid pixels yields few geometric or textural cues, hindering discriminative feature extraction; and (3) successive down-sampling irreversibly discards high-frequency details, while multi-scale pyramids still fail to compensate. To counteract these issues, we propose MS-YOLOv11, an enhanced YOLOv11 variant that integrates “frequency-domain detail preservation, lightweight receptive-field expansion, and adaptive cross-scale fusion.” Specifically, a 2D Haar wavelet first decomposes the image into multiple frequency sub-bands to explicitly isolate and retain high-frequency edges and textures while suppressing noise. Each sub-band is then processed independently by small-kernel depthwise convolutions that enlarge the receptive field without over-smoothing. Finally, the Mix Structure Block (MSB) employs the MSPLCK module to perform densely sampled multi-scale atrous convolutions for rich context of diminutive objects, followed by the EPA module that adaptively fuses and re-weights features via residual connections to suppress background interference. Extensive experiments on DOTA and DIOR demonstrate that MS-YOLOv11 surpasses the baseline in mAP@50, mAP@95, parameter efficiency, and inference speed, validating its targeted efficacy for small-object detection. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 1797 KB  
Article
A Novel Hybrid Deep Learning–Probabilistic Framework for Real-Time Crash Detection from Monocular Traffic Video
by Reşat Buğra Erkartal and Atınç Yılmaz
Appl. Sci. 2025, 15(19), 10523; https://doi.org/10.3390/app151910523 - 29 Sep 2025
Abstract
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman [...] Read more.
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman filter (with total-variation prior), a Hidden Markov Model (HMM) for state stabilization, and a lightweight Artificial Neural Network (ANN) for learned temporal refinement, enabling real-time crash detection from monocular video. Evaluated on simulated traffic in CARLA and real-world driving in Istanbul, the full temporal stack achieves the best precision–recall balance, yielding 83.47% F1 offline and 82.57% in real time (corresponding to 94.5% and 91.2% detection accuracy, respectively). Ablations are consistent and interpretable: removing the HMM reduces F1 by 1.85–2.16 percentage points (pp), whereas removing the ANN has a larger impact of 2.94–4.58 pp, indicating that the ANN provides the largest marginal gains—especially under real-time constraints. The transition from offline to real time incurs a modest overall loss (−0.90 pp F1), driven more by recall than precision. Compared to strong single-frame baselines, YOLOv10 attains 82.16% F1 and a real-time Transformer detector reaches 82.41% F1, while our full temporal stack remains slightly ahead in real time and offers a more favorable precision–recall trade-off. Notably, integrating the ANN into the HMM-based pipeline improves accuracy by 2.2%, while the time-variant Kalman configuration reduces detection lag by approximately 0.5 s—an improvement that directly addresses the human reaction time gap. Under identical conditions, the best RCNN-based configuration yields AP@0.50 ≈ 0.79 with an end-to-end latency of 119 ± 21 ms per frame (~8–9 FPS). Overall, coupling deep learning with probabilistic reasoning yields additive temporal benefits and advances deployable, camera-only crash detection that is cost-efficient and scalable for intelligent transportation systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

25 pages, 6044 KB  
Article
Computer Vision-Based Multi-Feature Extraction and Regression for Precise Egg Weight Measurement in Laying Hen Farms
by Yunxiao Jiang, Elsayed M. Atwa, Pengguang He, Jinhui Zhang, Mengzui Di, Jinming Pan and Hongjian Lin
Agriculture 2025, 15(19), 2035; https://doi.org/10.3390/agriculture15192035 - 28 Sep 2025
Abstract
Egg weight monitoring provides critical data for calculating the feed-to-egg ratio, and improving poultry farming efficiency. Installing a computer vision monitoring system in egg collection systems enables efficient and low-cost automated egg weight measurement. However, its accuracy is compromised by egg clustering during [...] Read more.
Egg weight monitoring provides critical data for calculating the feed-to-egg ratio, and improving poultry farming efficiency. Installing a computer vision monitoring system in egg collection systems enables efficient and low-cost automated egg weight measurement. However, its accuracy is compromised by egg clustering during transportation and low-contrast edges, which limits the widespread adoption of such methods. To address this, we propose an egg measurement method based on a computer vision and multi-feature extraction and regression approach. The proposed pipeline integrates two artificial neural networks: Central differential-EfficientViT YOLO (CEV-YOLO) and Egg Weight Measurement Network (EWM-Net). CEV-YOLO is an enhanced version of YOLOv11, incorporating central differential convolution (CDC) and efficient Vision Transformer (EfficientViT), enabling accurate pixel-level egg segmentation in the presence of occlusions and low-contrast edges. EWM-Net is a custom-designed neural network that utilizes the segmented egg masks to perform advanced feature extraction and precise weight estimation. Experimental results show that CEV-YOLO outperforms other YOLO-based models in egg segmentation, with a precision of 98.9%, a recall of 97.5%, and an Average Precision (AP) at an Intersection over Union (IoU) threshold of 0.9 (AP90) of 89.8%. EWM-Net achieves a mean absolute error (MAE) of 0.88 g and an R2 of 0.926 in egg weight measurement, outperforming six mainstream regression models. This study provides a practical and automated solution for precise egg weight measurement in practical production scenarios, which is expected to improve the accuracy and efficiency of feed-to-egg ratio measurement in laying hen farms. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

19 pages, 15475 KB  
Article
Oriented Object Detection with RGB-D Data for Corn Pose Estimation
by Yuliang Gao, Haonan Tang, Yuting Wang, Tao Liu, Zhen Li, Bin Li and Lifeng Zhang
Appl. Sci. 2025, 15(19), 10496; https://doi.org/10.3390/app151910496 - 28 Sep 2025
Abstract
Precise oriented object detection of corn provides critical support for automated agricultural tasks such as harvesting, spraying, and precision management. In this work, we address this challenge by leveraging oriented object detection in combination with depth information to estimate corn poses. To enhance [...] Read more.
Precise oriented object detection of corn provides critical support for automated agricultural tasks such as harvesting, spraying, and precision management. In this work, we address this challenge by leveraging oriented object detection in combination with depth information to estimate corn poses. To enhance detection accuracy while maintaining computational efficiency, we construct a precise annotated oriented corn detection dataset and propose YOLOv11OC, an improved detector. YOLOv11OC integrates three key components: Angle-aware Attention Module for angle encoding and orientation perception, Cross-Layer Fusion Network for multi-scale feature fusion, and GSConv Inception Network for efficient multi-scale representation. Together, these modules enable accurate oriented detection while reducing model complexity. Experimental results show that YOLOv11OC achieves 97.6% mAP@0.75, exceeding YOLOv11 by 3.2%, and improves mAP50:95 by 5.0%. Furthermore, when combined with depth maps, the system achieves 92.5% pose estimation accuracy, demonstrating its potential to advance intelligent and automated cultivation and spraying. Full article
Show Figures

Figure 1

26 pages, 8105 KB  
Article
Visual-Based Dual Detection and Route Planning Method for UAV Autonomous Inspection
by Siwen Chen, Wei Wang, Mingpeng Yang and Jingtao Zhang
Drones 2025, 9(10), 676; https://doi.org/10.3390/drones9100676 - 27 Sep 2025
Abstract
The intelligent development of unmanned aerial vehicles (UAVs) will make power inspection work more convenient. However, challenges such as reliance on precise tower coordinates and the low accuracy in recognizing small targets limit its further development. In this regard, this study proposes an [...] Read more.
The intelligent development of unmanned aerial vehicles (UAVs) will make power inspection work more convenient. However, challenges such as reliance on precise tower coordinates and the low accuracy in recognizing small targets limit its further development. In this regard, this study proposes an autonomous inspection method based on target detection, encompassing both flight route planning and defect detection. For route planning, the YOLOv8 model is lightly modified by incorporating the VanillaBlock module, the GSConv module, and structured pruning techniques to enable real-time tower detection. Based on the detection results and UAV states, an adaptive route planning strategy is then developed, effectively mitigating the dependence on predefined tower coordinates. For defect detection, the YOLOv8 model is further enhanced by introducing the SPD-Conv module, the CBAM, and the BiFPN multi-scale feature fusion network to improve detection performance for small targets. Compared with multiple baseline models, the computational cost of the improved lightweight model is reduced by 23.5%, while the detection accuracy is increased by 4.5%. Flight experiments further validate the effectiveness of the proposed route planning approach. The proposed fully autonomous inspection method provides valuable insights into enhancing the autonomy and intelligence of UAV-based power inspection systems. Full article
Show Figures

Figure 1

18 pages, 11608 KB  
Article
YOLO-MSPM: A Precise and Lightweight Cotton Verticillium Wilt Detection Network
by Xinbo Zhao, Jianan Chi, Fei Wang, Xuan Li, Xingcan Yuwen, Tong Li, Yi Shi and Liujun Xiao
Agriculture 2025, 15(19), 2013; https://doi.org/10.3390/agriculture15192013 - 26 Sep 2025
Abstract
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to [...] Read more.
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to the typically small and densely distributed characteristics of this disease, its identification poses considerable challenges. In this study, we introduce YOLO-MSPM, a lightweight and accurate detection framework, designed on the YOLOv11 architecture to efficiently identify cotton Verticillium wilt. In order to achieve a lightweight model, MobileNetV4 is introduced into the backbone network. Moreover, a single-head self-attention (SHSA) mechanism is integrated into the C2PSA block, allowing the network to emphasize critical areas of the feature maps and thus enhance its ability to represent features effectively. Furthermore, the PC3k2 module combines pinwheel-shaped convolution (PConv) with C3k2, and the mobile inverted bottleneck convolution (MBConv) module is incorporated into the detection head of YOLOv11. Such adjustments improve multi-scale information integration, enhance small-target recognition, and effectively reduce computation costs. According to the evaluation, YOLO-MSPM achieves precision (0.933), recall (0.920), mAP50 (0.970), and mAP50-95 (0.797), each exceeding the corresponding performance of YOLOv11n. In terms of model lightweighting, the YOLO-MSPM model has 1.773 M parameters, which is a 31.332% reduction compared to YOLOv11n. Its GFLOPs and model size are 5.4 and 4.0 MB, respectively, representing reductions of 14.286% and 27.273%. The study delivers a lightweight yet accurate solution to support the identification and monitoring of cotton Verticillium wilt in environments with limited resources. Full article
Show Figures

Figure 1

37 pages, 8653 KB  
Article
AI-Driven Recognition and Sustainable Preservation of Ancient Murals: The DKR-YOLO Framework
by Zixuan Guo, Sameer Kumar, Houbin Wang and Jingyi Li
Heritage 2025, 8(10), 402; https://doi.org/10.3390/heritage8100402 - 25 Sep 2025
Abstract
This paper introduces DKR-YOLO, an advanced deep learning framework designed to empower the digital preservation and sustainable management of ancient mural heritage. Building upon YOLOv8, DKR-YOLO integrates innovative components—including the DySnake Conv layer for refined feature extraction and an Adaptive Convolutional Kernel Warehouse [...] Read more.
This paper introduces DKR-YOLO, an advanced deep learning framework designed to empower the digital preservation and sustainable management of ancient mural heritage. Building upon YOLOv8, DKR-YOLO integrates innovative components—including the DySnake Conv layer for refined feature extraction and an Adaptive Convolutional Kernel Warehouse to optimize representation—addressing challenges posed by intricate details, diverse artistic styles, and mural degradation. The network’s architecture further incorporates a Residual Feature Augmentation (RFA)-enhanced FPN (RE-FPN), prioritizing the most critical visual features and enhancing interpretability. Extensive experiments on mural datasets demonstrate that DKR-YOLO achieves a 43.6% reduction in FLOPs, a 3.7% increase in accuracy, and a 5.1% improvement in mAP compared to baseline models. This performance, combined with an emphasis on robustness and interpretability, supports more inclusive and accessible applications of AI for cultural institutions, thereby fostering broader participation and equity in digital heritage preservation. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

25 pages, 24115 KB  
Article
SLW-YOLO: A Hybrid Soybean Parent Phenotypic Consistency Detection Model Based on Deep Learning
by Chuntao Yu, Jinyang Li, Wenqiang Shi, Liqiang Qi, Zheyun Guan, Wei Zhang and Chunbao Zhang
Agriculture 2025, 15(19), 2001; https://doi.org/10.3390/agriculture15192001 - 25 Sep 2025
Abstract
During hybrid soybean seed production, the parents’ phenotypic consistency is assessed by breeders to ensure the purity of soybean seeds. Detection traits encompass the hypocotyl, leaf, pubescence, and flower. To achieve the detection of hybrid soybean parents’ phenotypic consistency in the field, a [...] Read more.
During hybrid soybean seed production, the parents’ phenotypic consistency is assessed by breeders to ensure the purity of soybean seeds. Detection traits encompass the hypocotyl, leaf, pubescence, and flower. To achieve the detection of hybrid soybean parents’ phenotypic consistency in the field, a self-propelled image acquisition platform was used to obtain soybean plant image datasets. In this study, the Large Selective Kernel Network (LSKNet) attention mechanism module, the detection layer Small Network (SNet), dedicated to detecting small objects, and the Wise Intersection over Union v3 (WIoU v3) loss function were added into the YOLOv5s network to establish the hybrid soybean parent phenotypic consistency detection model SLW-YOLO. The SLW-YOLO achieved the following: F1 score: 92.3%; mAP: 94.8%; detection speed: 88.3 FPS; and model size: 45.1 MB. Compared to the YOLOv5s model, the SLW-YOLO model exhibited an improvement in F1 score by 6.1% and in mAP by 5.4%. There was a decrease in detection speed by 42.1 FPS, and an increase in model size by 31.4 MB. The parent phenotypic consistency detected by the SLW-YOLO model was 98.9%, consistent with manual evaluation. Therefore, this study demonstrates the potential of using deep learning technology to identify phenotypic consistency in the seed production of large-scale hybrid soybean varieties. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

31 pages, 15645 KB  
Article
RCF-YOLOv8: A Multi-Scale Attention and Adaptive Feature Fusion Method for Object Detection in Forward-Looking Sonar Images
by Xiaoxue Li, Yuhan Chen, Xueqin Liu, Zhiliang Qin, Jiaxin Wan and Qingyun Yan
Remote Sens. 2025, 17(19), 3288; https://doi.org/10.3390/rs17193288 - 25 Sep 2025
Abstract
Acoustic imaging systems are essential for underwater target recognition and localization, but forward-looking sonar (FLS) imagery faces challenges due to seabed variability, resulting in low resolution, blurred images, and sparse targets. To address these issues, we introduce RCF-YOLOv8, an enhanced detection framework based [...] Read more.
Acoustic imaging systems are essential for underwater target recognition and localization, but forward-looking sonar (FLS) imagery faces challenges due to seabed variability, resulting in low resolution, blurred images, and sparse targets. To address these issues, we introduce RCF-YOLOv8, an enhanced detection framework based on YOLOv8, designed to improve FLS image analysis. Key innovations include the use of CoordConv modules to better encode spatial information, improving feature extraction and reducing misdetection rates. Additionally, an efficient multi-scale attention (EMA) mechanism addresses sparse target distributions, optimizing feature fusion and improving the network’s ability to identify key areas. Lastly, the C2f module with high-quality feature fusion (C2f-Fusion) optimizes feature extraction from noisy backgrounds. RCF-YOLOv8 achieved a 98.8% mAP@50 and a 67.6% mAP@50-95 on the URPC2021 dataset, outperforming baseline models with a 2.4% increase in single-threshold accuracy and a 10.4% increase in multi-threshold precision, demonstrating its robustness for underwater detection. Full article
(This article belongs to the Special Issue Efficient Object Detection Based on Remote Sensing Images)
Show Figures

Figure 1

Back to TopTop