Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = Y2O3 modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5271 KB  
Article
Enhancement of Photocatalytic and Anticancer Properties in Y2O3 Nanocomposites Embedded in Reduced Graphene Oxide and Carbon Nanotubes
by ZabnAllah M. Alaizeri, Syed Mansoor Ali and Hisham A. Alhadlaq
Catalysts 2025, 15(10), 960; https://doi.org/10.3390/catal15100960 - 6 Oct 2025
Viewed by 546
Abstract
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) [...] Read more.
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) nanoparticles (NPs) into reduced graphene oxide (RGO) and carbon nanotubes (CNTs) to enhance their photocatalytic and anticancer properties. Pure Y2O3NPs, Y2O3/RGO NCs, and Y2O3/CNTs NCs were characterized using different analytical techniques, such as XRD, SEM, EDX with Elemental Mapping, FTIR, UV-Vis, PL, and DLS to investigate their improved structural, surface morphological, chemical bonding, optical, and surface charge properties. XRD data confirmed the successful integration of Y2O3into RGO and CNTs, with minor changes in crystallite sizes. SEM images with EDX analysis revealed that Y2O3NPs were uniformly distributed on RGO and CNTs, reducing aggregation. Chemical bonding and interactions between Y2O3and carbon materials were investigated using Fourier Transform Infrared (FTIR) analysis. UV and PL results suggest that the optical studies showed a shift in absorption peaks upon integration with RGO and CNTs. This indicates enhanced light absorption and modifications to the band gap between (3.79–4.40 eV) for the obtained samples. In the photocatalytic experiment, the degradation efficiency of bromophenol blue (BPB) dye for Y2O3RGO NCs was up to 87.3%, outperforming pure Y2O3NPs (45.83%) and Y2O3/CNTs NCs (66.78%) after 120 min of UV irradiation. Additionally, the MTT assay demonstrated that Y2O3/RGO NCs exhibited the highest anticancer activity against MG-63 bone cancer cells with an IC50 value of 45.7 µg/mL compared to Y2O3CNTs NCs and pure Y2O3NPs. This work highlights that Y2O3/RGO NCs could be used in significant applications, including environmental remediation and in vivo cancer therapy studies. Full article
Show Figures

Figure 1

13 pages, 773 KB  
Article
Antioxidant System Response of Yarrowia lipolytica Cells Under Oxidative Stress
by Gerardo Ismael Arredondo-Mendoza, Maripaz Castillo-Roque, Hipólito Otoniel Miranda-Roblero, María Fernanda Desentis-Desentis, Sandra Lucía Teniente, Zacarías Jiménez-Salas and Eduardo Campos-Góngora
Int. J. Mol. Sci. 2025, 26(19), 9629; https://doi.org/10.3390/ijms26199629 - 2 Oct 2025
Viewed by 386
Abstract
Eukaryotic cells respond to oxidative stress (OS), a physiological condition characterized by the accumulation of reactive oxygen species (ROS), through various protective mechanisms. The antioxidant defense system (ADS) is activated either by post-translational modifications of pre-existing proteins or through the induction of gene [...] Read more.
Eukaryotic cells respond to oxidative stress (OS), a physiological condition characterized by the accumulation of reactive oxygen species (ROS), through various protective mechanisms. The antioxidant defense system (ADS) is activated either by post-translational modifications of pre-existing proteins or through the induction of gene expression. These mechanisms protect cellular biomolecules against ROS damage. Although extensive research has been conducted in different species, there is limited information regarding the specific response of Yarrowia lipolytica to OS. This study aims to elucidate the molecular mechanisms by which Y. lipolytica responds to OS by analyzing the expression of genes encoding enzymes involved in antioxidant response, such as superoxide dismutase (Sod), catalase (Cat), and glutathione peroxidase (Gpx). The Y. lipolytica genome contains three CAT genes, one SOD gene, one copper chaperone for Sod (CCS) gene, and one GPX gene. The expression profiles of these genes were assessed in Y. lipolytica cells exposed to H2O2 [5 mM] over time. All genes reached their maximal expression within the first 15 min of exposure. Comparative analysis between young and aged Y. lipolytica cells subjected to OS revealed that young cells exhibited higher expression levels for all genes, with CAT3 and SOD showing the highest expression values. These findings suggest that the enzymes encoded by these genes play a crucial role in the antioxidant response of this species. To our knowledge, this is the first study demonstrating that the ADS in Y. lipolytica is regulated at the transcriptional level. Full article
(This article belongs to the Special Issue Stress Response Research: Yeast as Models: 2nd Edition)
Show Figures

Figure 1

27 pages, 1365 KB  
Systematic Review
Enhancing Osseointegration of Zirconia Implants Using Calcium Phosphate Coatings: A Systematic Review
by Jacek Matys, Ryszard Rygus, Julia Kensy, Krystyna Okoniewska, Wojciech Zakrzewski, Agnieszka Kotela, Natalia Struzik, Hanna Gerber, Magdalena Fast and Maciej Dobrzyński
Materials 2025, 18(19), 4501; https://doi.org/10.3390/ma18194501 - 27 Sep 2025
Viewed by 531
Abstract
Objective: Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a variant of zirconia (ZrO2), has attracted interest as a substitute for titanium in dental and orthopedic implants, valued for its biocompatibility and aesthetics that resemble natural teeth. However, its bioinert surface limits osseointegration, making [...] Read more.
Objective: Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a variant of zirconia (ZrO2), has attracted interest as a substitute for titanium in dental and orthopedic implants, valued for its biocompatibility and aesthetics that resemble natural teeth. However, its bioinert surface limits osseointegration, making surface modifications such as calcium phosphate (CaP) coatings highly relevant. Materials and methods: The review process adhered to the PRISMA guidelines. Electronic searches of PubMed, Scopus, Web of Science, Embase, and Cochrane Library (July 2025) identified studies evaluating CaP-coated zirconia implants. Eligible studies included in vitro, in vivo, and preclinical investigations with a control group. Data on coating type, deposition method, and biological outcomes were extracted and analyzed. Results: A total of 27 studies were analyzed, featuring different calcium phosphate (CaP) coatings including β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), octacalcium phosphate (OCP), and various composites. These coatings were applied using diverse techniques such as RF magnetron sputtering, sol–gel processing, biomimetic methods, and laser-based approaches. In multiple investigations, calcium phosphate coatings enhanced osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression, and bone-to-implant contact (BIC) relative to unmodified zirconia surfaces. Multifunctional coatings incorporating growth factors, antibiotics, or nanoparticles showed additional benefits. Conclusion: CaP coatings enhance the bioactivity of zirconia implants and represent a promising strategy to overcome their inertness. Further standardized approaches and long-term studies are essential to verify their translational relevance. Full article
(This article belongs to the Special Issue Calcium Phosphate Biomaterials with Medical Applications)
Show Figures

Graphical abstract

10 pages, 2634 KB  
Case Report
Challenging the Dogma: Reversal of End-Stage Liver Fibrosis with Tirzepatide in MASH Cirrhosis
by Thuy-Duyen Nguyen, Dora Lam-Himlin, Blanca Lizaola-Mayo and David Chascsa
Transplantology 2025, 6(3), 25; https://doi.org/10.3390/transplantology6030025 - 20 Aug 2025
Viewed by 2361
Abstract
Background/Objectives: The growing prevalence of metabolic-associated steatotic liver disease (MASLD)/metabolic-associated steatohepatitis (MASH) is forecasted to be over 55% by 2040, representing a significant driver of cirrhosis and highlighting demand for effective therapeutic interventions. The therapeutic landscape is evolving with agents, like glucagon-like [...] Read more.
Background/Objectives: The growing prevalence of metabolic-associated steatotic liver disease (MASLD)/metabolic-associated steatohepatitis (MASH) is forecasted to be over 55% by 2040, representing a significant driver of cirrhosis and highlighting demand for effective therapeutic interventions. The therapeutic landscape is evolving with agents, like glucagon-like peptide-1 receptor agonists (GLP-1 RAs), under active investigation. A common concern across emerging therapies is potentially precipitating decompensation in patients with existing cirrhosis, necessitating careful consideration in this population. Case Presentation: A 46 y.o. female with obesity and cirrhosis from MASH and alcohol who underwent a deceased-donor liver transplant developed steatohepatitis within a year post-transplant after gaining 36 kg. Transient elastography revealed controlled attenuation parameter (CAP) 400 dB/m (S3 steatosis) and liver stiffness measurement (LSM) 61.2 kPa (advanced fibrosis). Follow-up biopsy confirmed severe steatohepatitis (NAS 7/8) and advanced fibrosis (F3), attributed to metabolic dysfunction without evidence of alcohol recurrence. She decompensated with ascites and varices, leading to transplant re-enlistment at MELD-Na 29. Despite two years of intensive lifestyle modification, losing 17 kg, and recompensation, her follow-up elastography showed persistent steatosis (S3) and advanced fibrosis (F4). Subsequent allograft biopsy revealed progression to cirrhosis (F4) with ongoing steatohepatitis (NAS 3/8). Tirzepatide was initiated for the development of type 2 diabetes, attributed to steroids used for immunosuppression. After 2 years on tirzepatide, she lost 43.1 kg. Shockingly, her follow-up elastography demonstrated fibrosis regression with LSM 5.5 kPa (F1) and steatohepatitis resolution with CAP 204 dB/m (S0). Follow-up liver biopsy confirmed fibrosis regression to F2-F3 and steatohepatitis resolution (NAS 1/8). Conclusions: This case challenges the widely accepted dogma that liver MASH cirrhosis is irreversible. Using multiple liver fibrosis monitoring modalities, cirrhosis reversal was demonstrated and attributed to mechanisms of GLP-1/GIP RA therapy. This study suggests that GLP-1/GIP RA may be safe in cirrhosis and may result in fibrosis regression. Full article
Show Figures

Figure 1

15 pages, 5148 KB  
Article
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 - 31 Jul 2025
Viewed by 442
Abstract
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of [...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance. Full article
Show Figures

Figure 1

18 pages, 1047 KB  
Article
Protein Functional Effector (pfe) Noncoding RNAS Are Identical to Fragments from Various Noncoding RNAs
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2025, 26(14), 6870; https://doi.org/10.3390/ijms26146870 - 17 Jul 2025
Viewed by 726
Abstract
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, [...] Read more.
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, we document that human pfeRNAs match fragments of GenBank database-annotated human ncRNAs. PDLpfeRNAa matches the 3′-half fragment of a mitochondrial transfer (t)RNA, and PDLpfeRNAb matches a 28S ribosomal (r)RNA fragment. These PDLpfeRNAs are known to bind to tumor programmed death ligand (PD-L)1, enhancing or inhibiting its interaction with lymphocyte PD-1 and consequently tumor immune escape, respectively. In a validated 8-pfeRNA-set classifier for pulmonary nodule presence and benign vs. malignant nature, seven here match one or more of the following: transfer, micro, Y, PIWI, long (lnc)RNAs, and a PDLpfeRNAa fragment. The previously identified chromosomal locations of these pfeRNAs and their matches partially overlap. Another 2-pfeRNA set was previously determined to distinguish between controls, patients with pulmonary tuberculosis, and those with lung cancer. One pfeRNA, previously shown to bind p60-DMAD and affect apoptosis, complements small nucleolar RNA SNORD45C, matching smaller 18S rRNA and lncRNA segments. Thus, pfeRNAs appear to have a common origin with known multifunctional ncRNA fragments. Differential modification may contribute to the multifunctionality of ncRNAs. For instance, for tRNA fragments, stabilizing 3′-end 2′-O-methylation, 3′-aminoacylation, and glycosylation modifications may regulate protein function, translation, and extracellular effects, respectively. One ncRNA gene can encode multiple fragments, multiple genes can encode the same fragment, and differentially modified ncRNA fragments might synergize or antagonize each other. Full article
(This article belongs to the Special Issue Targeting RNA Molecules)
Show Figures

Graphical abstract

117 pages, 10736 KB  
Review
Design Principles and Engineering Strategies for Stabilizing Ni-Rich Layered Oxides in Lithium-Ion Batteries
by Alain Mauger and Christian M. Julien
Batteries 2025, 11(7), 254; https://doi.org/10.3390/batteries11070254 - 4 Jul 2025
Cited by 1 | Viewed by 4276
Abstract
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x [...] Read more.
Nickel-rich layered oxides such as LiNixMnyCozO2 (NMC), LiNixCoyAlzO2 (NCA), and LiNixMnyCozAl(1–xyz)O2 (NMCA), where x ≥ 0.6, have emerged as key cathode materials in lithium-ion batteries due to their high operating voltage and superior energy density. These materials, characterized by low cobalt content, offer a promising path toward sustainable and cost-effective energy storage solutions. However, their electrochemical performance remains below theoretical expectations, primarily due to challenges related to structural instability, limited thermal safety, and suboptimal cycle life. Intensive research efforts have been devoted to addressing these issues, resulting in substantial performance improvements and enabling the development of next-generation lithium-ion batteries with higher nickel content and reduced cobalt dependency. In this review, we present recent advances in material design and engineering strategies to overcome the problems limiting their electrochemical performance (cation mixing, phase stability, oxygen release, microcracks during cycling). These strategies include synthesis methods to optimize the morphology (size of the particles, core–shell and gradient structures), surface modifications of the Ni-rich particles, and doping. A detailed comparison between these strategies and the synergetic effects of their combination is presented. We also highlight the synergistic role of compatible lithium salts and electrolytes in achieving state-of-the-art nickel-rich lithium-ion batteries. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

16 pages, 3499 KB  
Article
Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios
by Wen-Jie Chen, Yang-Chao Liu, Zhen-Yu Wang, Lin Gu, Yi Shen and Hong-Ping Ma
Nanomaterials 2025, 15(13), 958; https://doi.org/10.3390/nano15130958 - 20 Jun 2025
Viewed by 1862
Abstract
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned [...] Read more.
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned across a wide range from 1.45 to 2.3. However, the underlying mechanism governing the influence of elemental composition on film structural quality remains insufficiently understood. To address this knowledge gap, we systematically investigate the effects of key industrial plasma-enhanced chemical vapor deposition (PECVD) parameters—including precursor gas selection and flow rate ratios—on SiON film properties. Our experimental measurements reveal that stoichiometric SiOxNy (x = y) achieves a minimum surface roughness of 0.18 nm. As oxygen content decreases and nitrogen content increases, progressive replacement of Si-O bonds by Si-N bonds correlates with increased structural defect density within the film matrix. Capacitance–voltage (C-V) characterization demonstrates a corresponding enhancement in device capacitance following these compositional modifications. Recent studies confirm that controlled modulation of film stoichiometry enables precise tailoring of dielectric properties and capacitive behavior, as demonstrated in SiON-based power electronics, thereby advancing applications in related fields. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 2414 KB  
Article
Prolonged In Vivo Chemogenetic Generation of Hydrogen Peroxide by Endothelial Cells Induces Cardiac Remodelling and Vascular Dysfunction
by Melina Lopez, Niklas Herrle, Bardia Amirmiran, Pedro F. Malacarne, Julia Werkhäuser, Souradeep Chatterjee, Carine Kader, Victoria Jurisch, Xin Wen, Maedeh Gheisari, Katrin Schäfer, Christian Münch, Florian Leuschner, Ralf Gilsbach, Flávia Rezende and Ralf P. Brandes
Antioxidants 2025, 14(6), 705; https://doi.org/10.3390/antiox14060705 - 10 Jun 2025
Viewed by 982
Abstract
Increased levels of reactive oxygen species (ROS) are a hallmark of cardiovascular disease. ROS impact the function of proteins largely through thiol modification leading to redox signalling. Acute, targeted interference with local ROS levels has been difficult. Therefore, how dynamics in redox signalling [...] Read more.
Increased levels of reactive oxygen species (ROS) are a hallmark of cardiovascular disease. ROS impact the function of proteins largely through thiol modification leading to redox signalling. Acute, targeted interference with local ROS levels has been difficult. Therefore, how dynamics in redox signalling impact cardiovascular health is still a matter of current research. An inducible, endothelial cell-specific knock-in mouse model expressing a yeast D-amino acid oxidase enzyme was generated (Hipp11-Flox-Stop-Flox-yDAO-Cdh5-CreERT2+/0 referred to as ecDAO). DAO releases H2O2 as a by-product of the conversion of D-amino acids into imino acids. The D-amino acid treatment of DAO-expressing cells therefore increases their intracellular H2O2 production. The induction of yDAO in the ecDAO mice was performed with tamoxifen. Subsequently, the mice received D-Alanine (D-Ala, 0.5 M) through drinking water, and the effects on ROS production and vascular and cardiac function were determined. ecDAO induction increased endothelial ROS production as well as ROS production in the lung, which is rich in endothelial cells. The functional consequences of this were, however limited: After minimally invasive myocardial infarction, there was no difference in the outcome between the control (CTL) and ecDAO mice. With respect to vascular function, three days of D-Ala slightly improved vascular function as demonstrated by an increase in the diameter of the carotid artery in vivo and decreased vessel constriction to phenylephrine. Fifty-two days of D-Ala induced cardiac remodelling, increased peripheral resistance, and overoxidation of peroxiredoxins. In conclusion, acute stimulation of endothelial ROS improves cardiovascular function, whereas prolonged ROS exposure deteriorates it. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 3921 KB  
Article
High-Permittivity Silicone Composites with Different Polarization Titanates for Electric Field Modification
by Evgeniy Radzivilov, Ilya Zotov, Maria Vikulova, Alexey Tsyganov, Ivan Artyukhov, Denis Artyukhov, Alexander Gorokhovsky, Artem Yudin and Nikolay Gorshkov
Polymers 2025, 17(7), 986; https://doi.org/10.3390/polym17070986 - 4 Apr 2025
Cited by 1 | Viewed by 1252
Abstract
Polymer-matrix composites with ceramic fillers have various applications, one of which is the modification of the electric field. For this purpose, in this work, high-permittivity silicone composites with different polarization titanates were produced by mechanical mixing. The ceramic fillers chosen were CaCu3 [...] Read more.
Polymer-matrix composites with ceramic fillers have various applications, one of which is the modification of the electric field. For this purpose, in this work, high-permittivity silicone composites with different polarization titanates were produced by mechanical mixing. The ceramic fillers chosen were CaCu3Ti4O12, KxFeyTi8−yO16, and BaTiO3 powders with high permittivity values and uniformly distributed in the polymer volume. Ceramic powders were studied by X-ray phase analysis and scanning electron microscopy methods. The proportion of ceramic powder was 25 wt.%. In parallel, composites were prepared with the addition of 25 wt.% glycerin. The functional properties of silicone composites were studied using the following parameters: the electrical strength and permittivity. The addition of all types of ceramic fillers, both together and without glycerin, led to a decrease in electrical strength (below 15 kV·mm−1); the exception is the sample with the CCTO without glycerin (about 28 kV·mm−1). The permittivity and the dielectric loss tangent of the composites increased as a result of the addition of fillers, especially noticeable in combination with glycerol in the low-frequency region. The obtained results are in good agreement with the literature data and can be used in the field of insulation in a high-permittivity layer to equalize equipotential fields. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 4861 KB  
Article
Improving the Catalytic Selectivity of Reverse Water–Gas Shift Reaction Catalyzed by Ru/CeO2 Through the Addition of Yttrium Oxide
by Alfredo Solís-García, Karina Portillo-Cortez, David Domínguez, Sergio Fuentes-Moyado, Jorge N. Díaz de León, Trino A. Zepeda and Uriel Caudillo-Flores
Catalysts 2025, 15(4), 301; https://doi.org/10.3390/catal15040301 - 23 Mar 2025
Cited by 1 | Viewed by 1623
Abstract
This study reports the synthesis, characterization, and catalytic performance of a series of catalysts of Ru supported on CeO2-Y2O3 composites (Ru/CeYX; X = 0, 33, 66, and 100 wt.% Y2O3) for CO2 hydrogenation. [...] Read more.
This study reports the synthesis, characterization, and catalytic performance of a series of catalysts of Ru supported on CeO2-Y2O3 composites (Ru/CeYX; X = 0, 33, 66, and 100 wt.% Y2O3) for CO2 hydrogenation. Supported material modification (Y2O3-CeO2), by the Y2O3 incorporation, allowed a change in selectivity from methane to RWGS of the CO2 hydrogenation reaction. This change in selectivity is correlated with the variation in the physicochemical properties caused by Y2O3 addition. X-ray diffraction (XRD) analysis confirmed the formation of crystalline fluorite-phase CeO2 and α-Y2O3. High-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDS) elemental mapping revealed the formation of a homogeneous CeO2-Y2O3 nanocomposite. As the Y2O3 content increased, the specific surface area, measured by BET, showed a decreasing trend from 106.3 to 51.7 m2 g−1. X-ray photoelectron spectroscopy (XPS) of Ce3d indicated a similar Ce3+/Ce4+ ratio across all CeO2-containing materials, while the O1s spectra showed a reduction in oxygen vacancies with increasing Y2O3 content, which is attributed to the decreased surface area upon composite formation. Catalytically, the addition of Y2O3 influenced both conversion and selectivity. CO2 conversion decreased with increasing Y2O3 content, with the lowest conversion observed for Ru/CeY100. Regarding selectivity, methane was the dominant product for Ru/CeY0 (pure CeO2), while CO was the main product for Ru/CeY33, Ru/CeY66, and Ru/CeY100, indicating a shift towards the reverse water–gas shift (RWGS) reaction. The highest RWGS reaction rate was observed with the Ru/CeY33 catalyst under all tested conditions. The observed differences in conversion and selectivity are attributed to a reduction in active sites due to the decrease in surface area and oxygen vacancies, both of which are important for CO2 adsorption. In order to verify the surface species catalytically active for RWGS, the samples were characterized by FTIR spectroscopy under reaction conditions. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 4826 KB  
Article
Microstructure and Antioxidative Performance of Y2O3-CeO2 Co-Modified Molybdenum Silicide Coatings
by Yong Zhang, Minglong Zhang, Gengfei Zhang, Qiaoyun Liu, Meilin Huang, Yongqiang Lan and Pengfa Feng
Coatings 2025, 15(3), 310; https://doi.org/10.3390/coatings15030310 - 7 Mar 2025
Viewed by 970
Abstract
To enhance the high-temperature oxidation resistance of molybdenum-based materials, Y2O3-CeO2 co-modified silicide coatings were produced on molybdenum substrates using two-step pack cementation. The microstructure and phase composition of Y2O3-CeO2 co-modified composite coatings were [...] Read more.
To enhance the high-temperature oxidation resistance of molybdenum-based materials, Y2O3-CeO2 co-modified silicide coatings were produced on molybdenum substrates using two-step pack cementation. The microstructure and phase composition of Y2O3-CeO2 co-modified composite coatings were examined both before and after oxidation. A detailed analysis of the antioxidant properties of the co-modified coatings and the mechanisms behind the modifications was also conducted. The incorporation of 1.0 wt.% CeO2 and 1.5 wt.% Y2O3 into the composite coatings resulted in a dense, non-porous, maximum-thickness microstructure. This microstructure is characterized by the uniform distribution of parallel MoSi2 and MoB layers on the substrate. In particular, the coating containing 1.5 wt.% Y2O3 exhibited superior oxidation resistance, with a weight gain of 0.29 mg/cm2 and an oxidation rate constant of 6.68 × 10−4 mg2/(cm4·h) after oxidation at 1150 °C for 255 h. During oxidation, a dense SiO2 oxide film is formed through the cooperation of Y2O3 and CeO2, inhibiting further Si diffusion into the substrate and reducing the formation of the Mo5Si3 layer. Full article
(This article belongs to the Special Issue Advances in Ceramic Materials and Coatings)
Show Figures

Graphical abstract

12 pages, 1499 KB  
Article
Effects of Additional Mesopores and the Surface Modification of the Y-Type Zeolite on the Alkane Oxidation Activity of Iron Complex-Encapsulated Catalysts
by Takamasa Takeda, Masaya Okamura, Syuhei Yamaguchi, Hidenori Yahiro and Shiro Hikichi
Molecules 2025, 30(4), 966; https://doi.org/10.3390/molecules30040966 - 19 Feb 2025
Viewed by 802
Abstract
Catalytic alkane hydroxylation activities of the iron complex encapsulated into the micropore of the Y-type zeolite and mesoporous zeolites, the latter of which were obtained by the partial removal of aluminum and alkaline treatment, have been explored by using H2O2 [...] Read more.
Catalytic alkane hydroxylation activities of the iron complex encapsulated into the micropore of the Y-type zeolite and mesoporous zeolites, the latter of which were obtained by the partial removal of aluminum and alkaline treatment, have been explored by using H2O2 as the oxidant. The iron complex with tris(pyridylmethyl)amine (=TPA) encapsulated into the micropore of the genuine Y-type zeolite was a more stable and effective cyclohexane hydroxylating heterogeneous catalyst compared to the corresponding copper analogue as well as the non-encapsulated homogeneous Fe-TPA complex. The chemical modification of the zeolite supports with the organic groups led to changing the catalytic activity depending on the size and the hydrophobic or hydrophilic nature of the added organic groups. When the content of water in the solvent was increased, the activity of the hydrophilic longer chain-modified catalyst was improved compared to that applied on the reaction with the non-aqueous solvent. The hydrophobic fluoroalkyl modifier located near the entrance of the micropore hindered the access of the substrate and aqueous H2O2 to the encapsulated iron complex site in the genuine Y-type zeolite. On the other hand, the hydrophobic modification effectively improved the activity of the catalyst with the zeolite support having higher amounts of mesopores. The synergistic effect of the wider bore diameters and the hydrophobic nature derived from the fluoroalkyl chains led to the concentration of the hydrocarbon substrate near the active iron complex. Full article
Show Figures

Figure 1

16 pages, 10606 KB  
Article
Rare Earth Element Adsorption from Water Using Alkali-Activated Waste Fly Ash
by Tijana Radojičić, Katarina Trivunac, Marija Vukčević, Marina Maletić, Nataša Palić, Ivona Janković-Častvan and Aleksandra Perić Grujić
Materials 2025, 18(3), 699; https://doi.org/10.3390/ma18030699 - 5 Feb 2025
Cited by 1 | Viewed by 1263
Abstract
As new technologies are developed, the demand for rare earth elements (REEs) has increased, despite limited awareness of their significant impact on people and the environment. In this study, waste fly ash was used as a precursor to synthesize inorganic aluminosilicate polymers by [...] Read more.
As new technologies are developed, the demand for rare earth elements (REEs) has increased, despite limited awareness of their significant impact on people and the environment. In this study, waste fly ash was used as a precursor to synthesize inorganic aluminosilicate polymers by adding an activator to the alumina and silica compounds of the ash. Due to their structure and adsorption potential, their application for the removal of selected REEs (Gd3+, Y3+, and Sc3+) from water has been investigated. A decrease in the intensity of the quartz peak at 2θ of 26.6° in the XRD spectrum and the disappearance of the albite and mullite peaks due to dissolution during alkaline activation in both modified samples were observed. The appearance of a peaks at 2θ of 29.3° and 39.3° corresponding to calcite in the modified sample indicates the presence of wood ash. A shifting of the band in the DRIFT spectrum to 1030 cm−1 on the spectra of modified samples corresponds to the vibrations of Al-O and Si-O bonds and the formation of a polymeric network structure (Si-O-Si or Si-O-Al). According to pHPZC values, thermodynamic and kinetic parameters, and chemical composition, the presumed mechanism of REE adsorption is chemisorption and ion exchange. The highest adsorption efficiencies (up to 95%) for all examined REEs in both single and mixed REE solutions were obtained from an alkali-activated mixture of fly ash and wood ash. The results of this research are significant for expanding knowledge about the removal of REEs from the environment, the reduction of waste ash by their modification, and their potential subsequent use in construction as additives. Full article
(This article belongs to the Special Issue Adsorbents and Their Applications (Second Volume))
Show Figures

Figure 1

15 pages, 4059 KB  
Article
Magnetically Diluted Dy3+ and Yb3+ Squarates Showing Relaxation Tuning and Matrix Dependence
by Rina Takano and Takayuki Ishida
Molecules 2025, 30(2), 356; https://doi.org/10.3390/molecules30020356 - 16 Jan 2025
Cited by 1 | Viewed by 966
Abstract
A new compound [Y2(sq)3(H2O)4] (Y-sq; sq = squarate (C4O42–)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of [...] Read more.
A new compound [Y2(sq)3(H2O)4] (Y-sq; sq = squarate (C4O42–)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (HDC), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions. The Orbach and Raman mechanisms are assumed in the Arrhenius plots, giving Ueff/kB = 139(5) and 135(8) K for Dy@Y-sq and Dy@Lu-sq, respectively, at HDC = 0 Oe. In contrast, Yb@Y-sq and Yb@Lu-sq behaved different; Yb@Y-sq can be regarded as a field-induced SIM because AC out-of-phase response was recorded only when HDC was present. On the other hand, Yb@Lu-sq showed a relaxation independent from temperature around 2 K at HDC = 0 Oe, possibly ascribed to a quantum-tunneling-magnetization mechanism. Applying HDC = 400 Oe afforded Ueff = 61.2(14) and 62.5(16) K for Yb@Y-sq and Yb@Lu-sq, respectively. The Y/Lu matrix dependence may be related to spin–phonon coupling. The dilution technique is a facile and versatile tool for modification of SIM characteristics. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

Back to TopTop