Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = X-ray absorption fine structure spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4034 KB  
Article
Attachment of L. ferrooxidans to Pyrite Mineral Surfaces
by Sian M. La Vars, Benjamin Watts, Jamie S. Quinton and Sarah L. Harmer
Microorganisms 2026, 14(1), 40; https://doi.org/10.3390/microorganisms14010040 - 23 Dec 2025
Viewed by 353
Abstract
L. ferrooxidans and their metabolic products have been explored as viable flotation reagents of pyrite and chalcopyrite for froth flotation. Scanning electron microscopy (SEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle [...] Read more.
L. ferrooxidans and their metabolic products have been explored as viable flotation reagents of pyrite and chalcopyrite for froth flotation. Scanning electron microscopy (SEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to L. ferrooxidans grown in HH medium at pH 1.8. C K-edge NEXAFS spectra, collected using scanning transmission X-ray microscopy (STXM), indicate hydrophilic lipids, fatty acids, and biopolymers are formed at the mineral–bacterium interface within hours of exposure. The Fe L-edge NEXAFS show oxidation of the mineral surface from Fe (II) sulfide to Fe (III) oxyhydroxides. The leaching of the iron species at the pyrite surface is accelerated in the presence of L. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls, as shown by ToF-SIMS. The surface chemical changes induced by the interaction with L. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS, produced during early attachment of L. ferrooxidans, as a depressant for bioflotation or to enhance bioleaching. Full article
Show Figures

Figure 1

15 pages, 3287 KB  
Article
Preparation and Characterization of Polyethylene-Based Composites with Iron-Manganese “Core-Shell” Nanoparticles
by Gleb Yu. Yurkov, Alexander V. Kozinkin, Anna V. Maksimova, Valeriy G. Vlasenko, Stanislav P. Kubrin, Vladislav E. Kirillov and Vitaliy I. Solodilov
J. Compos. Sci. 2025, 9(12), 666; https://doi.org/10.3390/jcs9120666 - 3 Dec 2025
Viewed by 742
Abstract
Composite materials based on low-density polyethylene (LDPE) embedded with iron-manganese nanoparticles with compositions Fe0.9Mn0.1 and Fe0.8Mn0.2 were prepared and investigated. The newly created composites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray absorption near-edge [...] Read more.
Composite materials based on low-density polyethylene (LDPE) embedded with iron-manganese nanoparticles with compositions Fe0.9Mn0.1 and Fe0.8Mn0.2 were prepared and investigated. The newly created composites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and Mössbauer spectroscopy. The composition, electronic, and atomic structure of the nanoparticles were established. The study confirms that the nanoparticles possess a ‘core-shell’ structure, the nature of which depends on the manganese content. The nanoparticles of Fe0.8Mn0.2 in LDPE exhibit a three-layered structure: a metallic α-Fe core is coated with an intermediate oxidized layer structurally close to Fe2O3, while the outermost shell consists of manganese oxide (Mn2O3). In contrast, nanoparticles with lower Mn content Fe0.9Mn0.1 show a predominantly fully oxidized structure. This structural evolution is consistent with thermodynamic principles, where manganese, having a higher oxide formation enthalpy, migrates to the surface. The core–shell architecture is promising for applications requiring stable magnetic components or tailored catalytic interfaces within a polymer matrix. Full article
Show Figures

Figure 1

17 pages, 10562 KB  
Article
Mineralogical and Spectroscopic Investigation of Turquoise from Dunhuang, Gansu
by Duo Xu, Zhengyu Zhou, Qi Chen, Jiaqing Lin, Ming Yan and Yarong Sun
Minerals 2025, 15(11), 1199; https://doi.org/10.3390/min15111199 - 14 Nov 2025
Viewed by 650
Abstract
A recently discovered turquoise deposit in the Fangshankou area of Dunhuang, Gansu Province, has been relatively understudied compared to turquoise from other sources due to its short mining history. Currently, no relevant research literature on this deposit has been identified. Therefore, a systematic [...] Read more.
A recently discovered turquoise deposit in the Fangshankou area of Dunhuang, Gansu Province, has been relatively understudied compared to turquoise from other sources due to its short mining history. Currently, no relevant research literature on this deposit has been identified. Therefore, a systematic mineralogical and spectroscopic study of Dunhuang turquoise samples was conducted using conventional gemological testing methods, combined with techniques such as X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), and X-ray fluorescence (XRF) mapping. The test results indicate that the turquoise samples from this area have a density ranging from 2.40 to 2.77 g/cm3 and a refractive index between 1.59 and 1.65. The samples generally exhibit a cryptocrystalline structure, with some displaying spherulitic radial and radial fibrous structures. The texture is relatively dense and hard, with particle diameters less than 10 μm. Chemically, the turquoise samples from this region are characterized by high Fe and Si content and relatively low Cu content. Samples contain, in addition to the turquoise mineral, other minerals such as quartz, goethite and alunite, etc. The oxide content ranges are as follows: w(P2O5) between 23.83% and 33.66%, w(Al2O3) between 26.47% and 33.36%, w(CuO) between 5.26% and 7.91%, w(FeO) between 2.46% and 4.11%, and w(SiO2) between 0.97% and 10.75%. In the infrared absorption spectra of Dunhuang turquoise, the bands at 3510 cm−1 and 3464 cm−1 are attributed to ν(OH) stretching vibrations, while the bands near 3308 cm−1 and 3098 cm−1 are assigned to ν(M-H2O) stretching vibrations. The infrared absorption bands near 1110 cm−1 and 1058 cm−1 are due to v[PO4]3− stretching vibrations, and the bands near 651 cm−1, 575 cm−1, and 485 cm−1 are attributed to δ[PO4]3− bending vibrations. A clear correlation exists between the Raman spectral features and the infrared spectra of this turquoise. The hue and chroma of the turquoise from this area are primarily influenced by the mass fractions of Fe3+, Cu2+, and Fe2+, as well as their bonding modes with water molecules. The ultraviolet-visible spectra are attributed to O2−–Fe3+ charge transfer, the 6A14Eg + 4A1 transition of Fe3+ ions (D5 configuration) in hydrated iron ions [Fe(H2O)6]3+, and the spin-allowed 2Eg2T2g transition of Cu2+ ions in hydrated copper ions [Cu(H2O)4]2+. Associated minerals include goethite, alunite, jarosite, and quartz. Fine-grained quartz often exists as secondary micron-sized independent mineral phases, which have a certain impact on the quality of the turquoise. Full article
Show Figures

Figure 1

29 pages, 2287 KB  
Review
A Review of Synthesis, Characterization, Properties, and Applications of Double Perovskite Oxides
by Pablo V. Tuza and Mariana M. V. M. Souza
Inorganics 2025, 13(11), 372; https://doi.org/10.3390/inorganics13110372 - 7 Nov 2025
Cited by 1 | Viewed by 1704
Abstract
Double perovskites are represented by the formula A2BB’O6 and AA’BB’O6. These materials have been synthesized using the solid-state reaction, sol–gel, Pechini, and hydrothermal methods. X-ray fluorescence, X-ray diffraction, magnetic measurements, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction, [...] Read more.
Double perovskites are represented by the formula A2BB’O6 and AA’BB’O6. These materials have been synthesized using the solid-state reaction, sol–gel, Pechini, and hydrothermal methods. X-ray fluorescence, X-ray diffraction, magnetic measurements, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction, synchrotron X-ray diffraction, neutron powder diffraction, extended X-ray absorption fine structure, and Raman spectroscopy have been used for the characterization of double perovskites. X-ray diffraction, synchrotron X-ray diffraction, and neutron powder diffraction coupled with the Rietveld method determine the crystal structure of a sample. These materials present various properties and applications. The present review aims (i) to report a process to determine the symmetry, apparent size, and apparent strain using the Rietveld method; (ii) show how experimental characterization techniques complement each other in the investigation of double perovskites; (iii) describe how the synthesis method can help in the uncovering of double perovskites with improved properties; and (iv) exemplify some of the main applications of double perovskites. Full article
(This article belongs to the Special Issue Recent Progress in Perovskites)
Show Figures

Figure 1

15 pages, 2780 KB  
Article
Post-Synthesis Ion Beam Sputtering of Pt/CeO2–ZrO2 Catalysts: Correlating Surface Modifications with Light-Off Performance
by Ruairi O’Donnell, Marina Maddaloni, Salvatore Scaglione and Nancy Artioli
Catalysts 2025, 15(11), 1018; https://doi.org/10.3390/catal15111018 - 30 Oct 2025
Viewed by 551
Abstract
High-efficiency diesel and lean-burn engines produce lower exhaust temperatures, which can delay the activation of after-treatment catalysts such as Diesel Oxidation Catalysts (DOCs). This study explores ion beam sputtering as a post-synthesis strategy to enhance the low-temperature activity of commercial Pt/CeO2–ZrO [...] Read more.
High-efficiency diesel and lean-burn engines produce lower exhaust temperatures, which can delay the activation of after-treatment catalysts such as Diesel Oxidation Catalysts (DOCs). This study explores ion beam sputtering as a post-synthesis strategy to enhance the low-temperature activity of commercial Pt/CeO2–ZrO2 catalysts. Low-energy ions (0.5–1.5 keV) were applied with controlled variations in treatment number, beam current, and exposure time to selectively generate oxygen vacancies and improve Pt dispersion. Structural and chemical effects were characterized using X-ray diffraction (XRD), BET surface area measurements, X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). Catalytic performance was evaluated through CO and C3H6 oxidation under conditions mimicking lean-burn engine exhaust. Increasing the number of ion treatments progressively lowered light-off temperatures, correlating with enhanced Pt–Ce3+ interactions and improved surface reducibility. Variations in beam current and exposure time further modulated these surface effects, confirming the tunable nature of the approach. The results demonstrate that ion beam sputtering selectively modifies the catalyst surface without altering the bulk structure, directly linking atomic-scale modifications to improved low-temperature activity. This strategy offers a promising route to overcome delayed light-off issues in modern high-efficiency engines, providing a precise, controllable method to optimize emission control catalysts. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Graphical abstract

32 pages, 18102 KB  
Article
Sustainable Concrete Using Porcelain and Clay Brick Waste as Partial Sand Replacement: Evaluation of Mechanical and Durability Properties
by Mustafa Thaer Hasan, Alaa A. Abdul-Hamead and Farhad M. Othman
Constr. Mater. 2025, 5(4), 78; https://doi.org/10.3390/constrmater5040078 - 29 Oct 2025
Viewed by 727
Abstract
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving [...] Read more.
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving sustainability and preserving mechanical and durability characteristics. The experimental program was conducted in three consecutive phases. During the initial phase, natural sand was partially substituted with porcelain waste powder (PWP) and brick waste powder (BWP) in proportions of 25%, 50%, and 75% of the weight of the fine aggregate. During the second phase, polypropylene fibers were mixed at a dosage of 0.5% by volume fraction to enhance tensile and flexural properties. During the third phase, zinc oxide nanoparticles (ZnO-NPs) were utilized as a partial substitute for cement at concentrations of 0.5% and 1% to improve microstructure and strength progression. Concrete samples were tested at curing durations of 7, 28, and 91 days. The assessed qualities encompassed workability, density, water absorption, porosity, compressive strength, flexural strength, and splitting tensile strength. Microstructural characterization was conducted utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicated that porcelain waste powder markedly surpassed brick waste powder in all mechanical and durability-related characteristics, particularly at 25% and 50% sand replacement ratios. The integration of polypropylene fibers enhanced fracture resistance and ductility. Moreover, the incorporation of zinc oxide nanoparticles improved hydration, optimized the pore structure, and resulted in significant enhancements in compressive and tensile strength throughout prolonged curing durations. The best results were obtained with a mix of 50% porcelain sand aggregate, 1% zinc oxide nanoparticles as cement replacement, and 0.5% polypropylene fibers, for which the improvements in compressive strength, flexural strength, and splitting tensile strength were 39.5%, 46.2%, and 60%, respectively, at 28 days. The results confirm the feasibility of using porcelain and brick waste as sand replacements in concrete, as well as polypropylene fiber-reinforced concrete and polypropylene fiber-reinforced concrete mixed with zinc oxide nanoparticles as a sustainable option for construction purposes. Full article
Show Figures

Figure 1

29 pages, 2853 KB  
Review
X-Ray Absorption and Emission Spectroscopy in Pharmaceutical Applications: From Local Atomic Structure Elucidation to Protein-Metal Complex Analysis—A Review
by Klaudia Wojtaszek, Krzysztof Tyrała and Ewelina Błońska-Sikora
Appl. Sci. 2025, 15(19), 10784; https://doi.org/10.3390/app151910784 - 7 Oct 2025
Viewed by 2556
Abstract
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, [...] Read more.
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, redox processes, and metal speciation. A key advantage of both techniques is element selectivity, allowing the analysis of specific elements without matrix interference. Their high sensitivity to chemical state and coordination enables determination of oxidation states, electronic configuration, and local geometry. These methods are applicable to solids, liquids, and gases without special sample preparation. Modern XAS and XES studies are typically performed using synchrotron radiation, which provides an intense, monochromatic X-ray source and allows advanced in situ and operando experiments. Sub-techniques such as XANES (X-ray absorption near-edge structure), EXAFS (Extended X-ray Absorption Fine Structure), and RIXS (resonant inelastic X-ray scattering) offer enhanced insights into oxidation states, local structure, and electronic excitations. Despite their broad scientific use, applications in pharmaceutical research remain limited. Nevertheless, recent studies highlight their potential in analyzing crystalline active pharmaceutical ingredients (APIs), drug–biomolecule interactions, and differences in drug activity. This review introduces the fundamental aspects of XAS and XES, with an emphasis on practical considerations for pharmaceutical applications, including experimental design and basic spectral interpretation. Full article
(This article belongs to the Special Issue Contemporary Pharmacy: Advances and Challenges)
Show Figures

Figure 1

10 pages, 1620 KB  
Communication
Observation of Excitonic Doublet Structure, Biexcitons and Their Temperature Dependence in High-Quality β-InSe Single Crystals
by Tran Thi Thu Huong, Long V. Le, Nguyen Thu Loan, Man Hoai Nam, Tien-Thanh Nguyen, Thi Thuong Huyen Tran, Ung Thi Dieu Thuy, Thi Huong Nguyen and Tae Jung Kim
Materials 2025, 18(19), 4451; https://doi.org/10.3390/ma18194451 - 23 Sep 2025
Viewed by 781
Abstract
We present a systematic study of the fundamental optical properties of indium selenide (InSe) single crystals over a temperature range of 17 K to 300 K. The high structural quality of the β-polytype crystals was confirmed through X-ray diffraction, Raman spectroscopy, and high-resolution [...] Read more.
We present a systematic study of the fundamental optical properties of indium selenide (InSe) single crystals over a temperature range of 17 K to 300 K. The high structural quality of the β-polytype crystals was confirmed through X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy, demonstrating excellent crystallinity and a nearly stoichiometric In:Se ratio. The temperature-dependent absorption and photoluminescence (PL) spectra are characterized by a prominent free exciton (FX) resonance. At 17 K, the photoluminescence spectrum exhibits a distinct fine-structure splitting of the Wannier–Mott exciton, yielding a triplet state at 1.333 eV and a singlet state at 1.336 eV. Additionally, a biexciton (XX) is localized at an energy of 1.322 eV as confirmed by the nonlinear dependence of intensity on excitation power density. At low temperatures, the absorption spectrum exhibits the free exciton ground state (n = 1) at 1.338 eV together with the first excited state (n = 2) at 1.350 eV. We systematically tracked and analyzed the temperature evolution of these quasiparticle energies. These findings enhance our understanding of the intrinsic many-body interactions in high-quality InSe, providing essential parameters for advancing its applications in innovative optoelectronic and quantum light-emitting devices. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

20 pages, 1042 KB  
Review
Architecting Durability: Synergies in Assembly, Self-Repair, and Advanced Characterization of Carbon Nanotube Materials
by Monika R. Snowdon, Shasvat Rathod, Robert L. F. Liang and Marina Freire-Gormaly
Nanomaterials 2025, 15(17), 1352; https://doi.org/10.3390/nano15171352 - 2 Sep 2025
Cited by 2 | Viewed by 1215
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage [...] Read more.
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage mitigation strategies. This review presents a synergistic perspective on enhancing the durability of CNT-based systems by critically examining the interplay between molecular assembly, self-repair mechanisms, and the advanced characterization techniques required for their validation. We first establish how foundational architectural control—achieved through strategies like chemical functionalization, field-directed alignment, and dispersion—governs the ultimate performance of CNT materials. A significant focus is placed on advanced functionalization, such as fluorination, and its verification using high-powered spectroscopic tools, including X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Subsequently, this manuscript delves into the mechanisms of self-repair, systematically analyzing both the intrinsic capacity of the carbon lattice to heal atomic-level defects and the extrinsic strategies that incorporate engineered healing agents into composites. This discussion is uniquely supplemented by an exploration of the experimental techniques, such as electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES), that provide crucial evidence for irradiation-induced healing dynamics. Finally, we argue that a “characterization gap” has limited the field’s progress and highlight the critical role of techniques like in situ Raman spectroscopy for quantitatively monitoring healing efficiency at the molecular level. By identifying current challenges and future research frontiers, this review underscores that the creation of truly durable materials depends on an integrated understanding of how to build, repair, and precisely measure CNT-based systems. Full article
Show Figures

Graphical abstract

20 pages, 1106 KB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 902
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

12 pages, 1250 KB  
Article
Probing the Structural Order of Half-Heusler Phases in Sb-Doped (Ti,Zr,Hf)NiSn Thermoelectrics
by Fani Pinakidou, Andreas Delimitis and Maria Katsikini
Nanomaterials 2025, 15(13), 1037; https://doi.org/10.3390/nano15131037 - 3 Jul 2025
Cited by 1 | Viewed by 946
Abstract
The nanostructural features of a mechanically alloyed Sb-doped (Ti0.4Zr0.6)0.7Hf0.3NiSn thermoelectric (TE) Half-Heusler (HH) compound were addressed using Transmission Electron Microscopy (TEM) coupled with Energy Dispersive Spectroscopy measurements and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. [...] Read more.
The nanostructural features of a mechanically alloyed Sb-doped (Ti0.4Zr0.6)0.7Hf0.3NiSn thermoelectric (TE) Half-Heusler (HH) compound were addressed using Transmission Electron Microscopy (TEM) coupled with Energy Dispersive Spectroscopy measurements and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The EXAFS measurements at the Ni-K, Sn-K, Zr-K, and Hf-L3-edge were implemented in an effort to reveal the influence of Hf and Zr incorporation into the crystal with respect to their previously measured TE properties. The substitution of Ti by Hf and Zr is expected to yield local lattice distortions due to the different atomic sizes of the dopants or/and electronic charge redistribution amongst the cations. However, the material is characterised by a high degree of crystallinity in both the short and long-range order, on average, and the nominal stoichiometry is identified as (Zr0.42Hf0.30Ti0.28)NiSn0.98Sb0.02. The synergistic effect of minimization of extended structural defects or lattice distortions and considerable alloying-induced point defect population contributes to the improved TE properties and leads to the previously reported enhancement of the figure of merit of the mixed HHs. Full article
Show Figures

Figure 1

14 pages, 3371 KB  
Article
Nitrogen-Defect-Driven PtCu Dual-Atom Catalyst for Photocatalytic CO2 Reduction
by Xin He, Ting Liu, Hao Wang and Yongming Luo
Catalysts 2025, 15(6), 558; https://doi.org/10.3390/catal15060558 - 4 Jun 2025
Viewed by 920
Abstract
Owing to global energy demands and climate change resulting from fossil fuel use, technologies capable of converting greenhouse gases into renewable energy resources are needed. One such technology is photocatalytic CO2 reduction, which utilises solar energy to transform CO2 into value-added [...] Read more.
Owing to global energy demands and climate change resulting from fossil fuel use, technologies capable of converting greenhouse gases into renewable energy resources are needed. One such technology is photocatalytic CO2 reduction, which utilises solar energy to transform CO2 into value-added hydrocarbons. However, the application of photocatalytic CO2 reduction is limited by the inefficiency of existing photocatalysts. In this study, we developed a nitrogen-deficient g-C3N4-confined PtCu dual-atom catalyst (PtCu/VN-C3N4) for photocatalytic CO2 reduction. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy confirmed the atomic-level anchoring of PtCu pairs onto the nitrogen-vacancy-rich g-C3N4 nanosheets. The optimised PtCu/VN-C3N4 exhibited superior photocatalytic performance, with CO and CH4 evolution rates of 13.3 µmol/g/h and 2.5 µmol/g/h, respectively, under visible-light irradiation. Mechanistic investigations revealed that CO2 molecules were preferentially adsorbed onto the PtCu dual sites, initiating a stepwise reduction pathway. In situ diffuse reflectance infrared Fourier-transform spectroscopy identified the formation of a key intermediate (HCOO*), whereas interfacial wettability studies demonstrated efficient H2O adsorption on PtCu sites, providing essential proton sources for CO2 protonation. Photoelectrochemical characterisation further confirmed the enhanced charge-transfer kinetics in PtCu/VN-C3N4, which were attributed to the synergistic interplay between the nitrogen vacancies and dual-atom sites. Notably, the dual-active-site architecture minimised the competitive adsorption between CO2 and H2O molecules, thereby optimising the surface reaction pathways. This study establishes a rational strategy for designing atomically precise dual-atom catalysts through defect engineering, achieving concurrent improvements in activity, selectivity, and charge carrier utilisation for solar-driven CO2 conversion. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

14 pages, 2819 KB  
Article
Multisite Fe3+ Luminescent Centers in the LiGaO2:Fe Nanocrystalline Phosphor
by Ajeesh Kumar Somakumar, Ivo Romet, Agnieszka Grabias, Marcin Kruk, Shusaku Hayama, Damian Wlodarczyk, Justyna Barzowska, Yadhu Krishnan Edathumkandy, Eduard Feldbach, Puxian Xiong, Yaroslav Zhydachevskyy, Monika Trzaskowska, Hanka Przybylinska and Andrzej Suchocki
Molecules 2025, 30(11), 2331; https://doi.org/10.3390/molecules30112331 - 27 May 2025
Cited by 2 | Viewed by 1261
Abstract
An extensive experimental study of trivalent iron (Fe3+) ions in orthorhombic lithium gallate nanocrystals was undertaken. Various spectroscopic methods, such as Raman spectroscopy, extended X-ray absorption fine structure, the Mössbauer effect, electron paramagnetic resonance, photoluminescence, thermoluminescence, and cathodoluminescence were used to [...] Read more.
An extensive experimental study of trivalent iron (Fe3+) ions in orthorhombic lithium gallate nanocrystals was undertaken. Various spectroscopic methods, such as Raman spectroscopy, extended X-ray absorption fine structure, the Mössbauer effect, electron paramagnetic resonance, photoluminescence, thermoluminescence, and cathodoluminescence were used to investigate the synthesized phosphor. This study revealed the existence of multiple Fe3+ sites, out of which the tetrahedral sites are preferentially occupied. Extensive optical studies showed that the Fe3+ doped lithium gallate phosphor is a promising candidate for various luminescence and thermoluminescence-related applications in the near-infrared regime. Full article
(This article belongs to the Special Issue Chemistry Innovatives in Perovskite Based Materials)
Show Figures

Graphical abstract

18 pages, 9250 KB  
Article
Defect-Engineered Z-Scheme Heterojunction of Fe-MOFs/Bi2WO6 for Solar-Driven CO2 Conversion: Synergistic Surface Catalysis and Interfacial Charge Dynamics
by Ting Liu, Yun Wu, Hao Wang, Jichang Lu and Yongming Luo
Nanomaterials 2025, 15(8), 618; https://doi.org/10.3390/nano15080618 - 17 Apr 2025
Cited by 1 | Viewed by 1233
Abstract
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic [...] Read more.
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic CO2 reduction. Positron annihilation lifetime spectroscopy (PALS) was employed to confirm the existence of oxygen vacancies, while spherical aberration-corrected transmission electron microscope (STEM) characterization verified the successful construction of heterointerfaces. X-ray absorption fine structure (XAFS) spectra confirmed that the defect configuration and heterostructure changed the surface chemical valence state. The optimized 1.0FM/VO-BWO composite demonstrated exceptional photocatalytic performance, achieving CO and CH4 yields of 60.48 and 4.3 μmol/g, respectively, under visible-light 11.8- and 1.5-fold enhancements over pristine Bi2WO6. The enhanced performance is attributed to oxygen vacancy-induced active sites facilitating CO₂ adsorption/activation. In situ molecular spectroscopy confirmed the formation of critical CO2-derived intermediates (COOH* and CHO*) through surface interactions involving four-coordinated and two-coordinated hydrogen-bonded water molecules. Furthermore, the accelerated interfacial charge transfer efficiency mediated by the Z-scheme heterojunction has been conclusively demonstrated. This work establishes a paradigm for defect-mediated heterojunction design, offering a sustainable route for solar fuel production. Full article
Show Figures

Figure 1

13 pages, 3407 KB  
Article
Local Structure Analysis of Heavy Fermion Ce2Pt6Ga15 with a Honeycomb Structure Using Extended X-Ray Absorption Fine Structure
by Yuji Matsumoto, Yuki Watabe, Fabio Iesari, Masakatsu Osumi, Kyugo Ota, Yoshinori Haga, Keisuke Hatada and Toshihiro Okajima
Metals 2025, 15(4), 436; https://doi.org/10.3390/met15040436 - 13 Apr 2025
Viewed by 878
Abstract
Ce2Pt6Ga15 is a heavy fermion compound near the quantum critical point (QCP). Its crystal structure may exhibit magnetic frustration due to a honeycomb arrangement; however, stacking faults in the crystal hinder structural analysis. As a local structure probe, [...] Read more.
Ce2Pt6Ga15 is a heavy fermion compound near the quantum critical point (QCP). Its crystal structure may exhibit magnetic frustration due to a honeycomb arrangement; however, stacking faults in the crystal hinder structural analysis. As a local structure probe, extended X-ray absorption fine structure (EXAFS) is less sensitive to stacking faults and is a powerful tool for crystal structure determination. We synthesized single-crystal Ce2Pt6Ga15, performed single-crystal and powder X-ray diffraction experiments, and conducted X-ray absorption spectroscopy (XAS) measurements. The composition of Ce2Pt6Ga15 deviates from stoichiometry, suggesting Ce and Ga enrichment or Pt site deficiencies. A comparison of X-ray absorption near-edge structure (XANES) at the Ce L3-edge with reference materials suggests that Ce valence is likely trivalent. To determine the exact structure, we simultaneously analyzed EXAFS spectra at the Ce L3-, Pt L3-, and Ga K-edges. The EXAFS spectra of Ce2Pt6Ga15 are inconsistent with the hexagonal Sc0.6Fe2Si4.9-type structure but are better explained by an orthorhombic structure with a honeycomb arrangement. Full article
Show Figures

Figure 1

Back to TopTop