Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Wnt/PKC pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3241 KiB  
Article
Wnt/PKC Signaling Inhibits Sensory Hair Cell Formation in the Developing Mammalian Cochlea
by Joanna F. Mulvaney, Erynn M. Layman, Farhana Feroze-Merzoug, Julia M. Abitbol, Jennifer M. Jones, Dara O’Connor, Florence Naillat, Seppo Vainio, Jeffrey S. Rubin, Matthew W. Kelley and Alain Dabdoub
Cells 2025, 14(12), 888; https://doi.org/10.3390/cells14120888 - 12 Jun 2025
Viewed by 688
Abstract
The establishment of cell fate and boundaries between cell types is an essential step in development and organogenesis. In the mammalian cochlea, a distinct boundary exists between a medial region of non-sensory cells and a lateral region of sensory cells. We report that [...] Read more.
The establishment of cell fate and boundaries between cell types is an essential step in development and organogenesis. In the mammalian cochlea, a distinct boundary exists between a medial region of non-sensory cells and a lateral region of sensory cells. We report that Wnt4 and sFRP2 act in combination to modulate the sensory cell differentiation of the organ of Corti. The hair cell inhibitory effects of Wnt4 in the inner ear are mediated through the activation of the non-canonical Wnt/Calcium/PKC pathway. We show that Wnt4 stimulates the activation of PKC in the cochlea, and that the inhibition of PKC rescues the ectopic Wnt4 activity phenotype. Finally, we demonstrate that modification at a PKC target site on Atoh1 diminishes its ability to induce hair cell formation. Ultimately, we identify a new Wnt/Calcium/PKC non-canonical signaling pathway that is involved in proper hair cell and organ of Corti formation in the developing mammalian cochlea. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Graphical abstract

34 pages, 2583 KiB  
Review
Galectin-3 Release in the Bone Marrow Microenvironment Promotes Drug Resistance and Relapse in Acute Myeloid Leukemia
by Cansu Yıldırım
Life 2025, 15(6), 937; https://doi.org/10.3390/life15060937 - 10 Jun 2025
Viewed by 747
Abstract
Reciprocal signaling between acute myeloid leukemia (AML) cells and the surrounding bone-marrow microenvironment (BMME) promotes AML progression through several mechanisms. One of the most important mechanisms is the induction of Galectin-3 (Gal-3) expression by AML cells and bone marrow mesenchymal stromal cells (BM-MSCs). [...] Read more.
Reciprocal signaling between acute myeloid leukemia (AML) cells and the surrounding bone-marrow microenvironment (BMME) promotes AML progression through several mechanisms. One of the most important mechanisms is the induction of Galectin-3 (Gal-3) expression by AML cells and bone marrow mesenchymal stromal cells (BM-MSCs). Emerging evidence indicates that Gal-3 upregulation in the BMME promotes AML cell adhesion and survival, leading to the development of chemotherapy resistance, relapse, and poor prognosis. Identifying the biological function and critical signaling pathways of Gal-3 may contribute to overcoming acquired drug resistance and preventing post-treatment relapse. Gal-3 is involved in several molecular signaling pathways, including PI3K/AKT/mTOR, Ras/Raf/MEK/ERK, JAK/STAT, JNK, Wnt/β-catenin, PLC/PKC and NF-κB, which are interconnected to promote AML cell survival and resistance to chemotherapy. This review focuses on the biological effects, molecular mechanisms of action and regulation of Gal-3 in the pathogenesis and progression of AML. The therapeutic potential of potent synthetic small-molecule Gal-3 inhibitors in high-risk patients with AML is also discussed based on preclinical and clinical evidence from several human diseases. Currently, the effect of these Gal-3 inhibitors in AML has not been investigated either in vitro or in vivo. The findings provide a rationale for targeting Gal-3 that may be a very promising therapeutic approach, especially for patients with relapsed/refractory AML, and may enhance the efficacy of conventional chemotherapeutic drugs and/or immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue Bone Cancer: From Molecular Mechanism to Treatment)
Show Figures

Figure 1

15 pages, 1782 KiB  
Article
HSP110 Regulates the Assembly of the SWI/SNF Complex
by Océane Pointeau, Manon Paccagnini, Natalia Borges-Bonan, Léo Biziorek, Sébastien Causse, Carmen Garrido and Laurence Dubrez
Cells 2025, 14(11), 849; https://doi.org/10.3390/cells14110849 - 5 Jun 2025
Viewed by 621
Abstract
HSP110 is a ubiquitous chaperone contributing to proteostasis. It has a disaggregation activity and can refold denatured proteins. It can regulate fundamental signaling pathways involved in oncogenesis, such as Wnt/β-catenin, NF-κB and STAT3 signaling pathways. In gastric and colorectal cancer, HSP110 has been [...] Read more.
HSP110 is a ubiquitous chaperone contributing to proteostasis. It has a disaggregation activity and can refold denatured proteins. It can regulate fundamental signaling pathways involved in oncogenesis, such as Wnt/β-catenin, NF-κB and STAT3 signaling pathways. In gastric and colorectal cancer, HSP110 has been detected in the nucleus, and nuclear expression has been associated with the resistance of cells to 5-FU chemotherapy. Nuclear translocation of HSP110 is promoted by the exposure of cells to DNA-damaging agents. In a previous work, we demonstrated that nuclear HSP110 participates in the NHEJ DNA repair pathway by facilitating the recruitment of DNA-PKcs to Ku70/80 heterodimers at the site of DNA double-strand breaks. In the present work, analysis of HSP110s’ nuclear interactome revealed an enrichment of components from SWI/SNF chromatin remodeling complexes. We demonstrate that HSP110 is strongly associated with chromatin in temozolomide- and oxaliplatin-treated cells and directly interacts with the core subunit SMARCC2, thereby facilitating the assembly of SWI/SNF complexes. This work expands upon the role of HSP110, which regulates not only proteostasis but also the assembly of critical nuclear macromolecular complexes involved in the adaptive stress response. Full article
(This article belongs to the Special Issue Heat Shock Proteins and Human Cancers)
Show Figures

Figure 1

22 pages, 2168 KiB  
Review
The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells
by Oliver Pieles and Christian Morsczeck
Biomedicines 2024, 12(12), 2735; https://doi.org/10.3390/biomedicines12122735 - 29 Nov 2024
Cited by 1 | Viewed by 1924
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of [...] Read more.
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

12 pages, 4483 KiB  
Article
Transcriptional Regulation Analysis Provides Insight into the Function of GSK3β Gene in Diannan Small-Ear Pig Spermatogenesis
by Xia Zhang, Guiying Zhao, Fuhua Yang, Changyao Li, Wan Lin, Hongmei Dai, Lan Zhai, Xuemin Xi, Qingting Yuan and Jinlong Huo
Genes 2024, 15(6), 655; https://doi.org/10.3390/genes15060655 - 22 May 2024
Viewed by 1831
Abstract
Glycogen synthase kinase-3β (GSK3β) not only plays a crucial role in regulating sperm maturation but also is pivotal in orchestrating the acrosome reaction. Here, we integrated single-molecule long-read and short-read sequencing to comprehensively examine GSK3β expression patterns in adult Diannan small-ear pig (DSE) [...] Read more.
Glycogen synthase kinase-3β (GSK3β) not only plays a crucial role in regulating sperm maturation but also is pivotal in orchestrating the acrosome reaction. Here, we integrated single-molecule long-read and short-read sequencing to comprehensively examine GSK3β expression patterns in adult Diannan small-ear pig (DSE) testes. We identified the most important transcript ENSSSCT00000039364 of GSK3β, obtaining its full-length coding sequence (CDS) spanning 1263 bp. Gene structure analysis located GSK3β on pig chromosome 13 with 12 exons. Protein structure analysis reflected that GSK3β consisted of 420 amino acids containing PKc-like conserved domains. Phylogenetic analysis underscored the evolutionary conservation and homology of GSK3β across different mammalian species. The evaluation of the protein interaction network, KEGG, and GO pathways implied that GSK3β interacted with 50 proteins, predominantly involved in the Wnt signaling pathway, papillomavirus infection, hippo signaling pathway, hepatocellular carcinoma, gastric cancer, colorectal cancer, breast cancer, endometrial cancer, basal cell carcinoma, and Alzheimer’s disease. Functional annotation identified that GSK3β was involved in thirteen GOs, including six molecular functions and seven biological processes. ceRNA network analysis suggested that DSE GSK3β was regulated by 11 miRNA targets. Furthermore, qPCR expression analysis across 15 tissues highlighted that GSK3β was highly expressed in the testis. Subcellular localization analysis indicated that the majority of the GSK3β protein was located in the cytoplasm of ST (swine testis) cells, with a small amount detected in the nucleus. Overall, our findings shed new light on GSK3β’s role in DSE reproduction, providing a foundation for further functional studies of GSK3β function. Full article
Show Figures

Graphical abstract

19 pages, 1257 KiB  
Review
Glycogen Synthase Kinase-3 Beta (GSK3β) as a Potential Drug Target in Regulating Osteoclastogenesis: An Updated Review on Current Evidence
by Sok Kuan Wong
Biomolecules 2024, 14(4), 502; https://doi.org/10.3390/biom14040502 - 21 Apr 2024
Cited by 3 | Viewed by 2693
Abstract
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition [...] Read more.
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3β enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3β is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (β)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3β has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3β may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3β inhibitors as bone-protecting agents. Some studies demonstrated that GSK3β inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3β silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3β on osteoclastogenesis and bone resorption. Full article
Show Figures

Figure 1

19 pages, 1405 KiB  
Review
Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer
by Oladapo F. Fagbohun, Caroline R. Gillies, Kieran P. J. Murphy and H. P. Vasantha Rupasinghe
Int. J. Mol. Sci. 2023, 24(7), 6092; https://doi.org/10.3390/ijms24076092 - 23 Mar 2023
Cited by 20 | Viewed by 8045
Abstract
Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways [...] Read more.
Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of β-catenin (WNT/β-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches. Full article
Show Figures

Figure 1

14 pages, 2901 KiB  
Article
Manzamine-A Alters In Vitro Calvarial Osteoblast Function
by Samantha Hardy, Yeun-Mun Choo, Mark Hamann and James Cray
Mar. Drugs 2022, 20(10), 647; https://doi.org/10.3390/md20100647 - 19 Oct 2022
Cited by 3 | Viewed by 2973
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of [...] Read more.
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds on Osteoporosis and Related Bone Diseases)
Show Figures

Figure 1

18 pages, 1491 KiB  
Review
Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells
by Christian Morsczeck
Int. J. Mol. Sci. 2022, 23(11), 5945; https://doi.org/10.3390/ijms23115945 - 25 May 2022
Cited by 25 | Viewed by 6241
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells [...] Read more.
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area. Full article
(This article belongs to the Special Issue Bone Development and Regeneration 2.0)
Show Figures

Figure 1

13 pages, 3660 KiB  
Article
Epigallocatechin-3-Gallate Modulates Postoperative Pain by Regulating Biochemical and Molecular Pathways
by Rosalba Siracusa, Francesco Monaco, Ramona D’Amico, Tiziana Genovese, Marika Cordaro, Livia Interdonato, Enrico Gugliandolo, Alessio Filippo Peritore, Rosalia Crupi, Salvatore Cuzzocrea, Daniela Impellizzeri, Roberta Fusco and Rosanna Di Paola
Int. J. Mol. Sci. 2021, 22(13), 6879; https://doi.org/10.3390/ijms22136879 - 26 Jun 2021
Cited by 20 | Viewed by 3704
Abstract
Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new information on the PO pain mechanism would increase the therapeutic options available. In this paper, we evaluated the [...] Read more.
Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new information on the PO pain mechanism would increase the therapeutic options available. In this paper, we evaluated the role of a natural substance, epigallocatechin-3-gallate (EGCG), on pain and neuroinflammation induced by a surgical procedure in an animal model of PO pain. We performed an incision of the hind paw and EGCG was administered for five days. Mechanical allodynia, thermal hyperalgesia, and motor dysfunction were assessed 24 h, and three and five days after surgery. At the same time points, animals were sacrificed, and sera and lumbar spinal cord tissues were harvested for molecular analysis. EGCG administration significantly alleviated hyperalgesia and allodynia, and reduced motor disfunction. From the molecular point of view, EGCG reduced the activation of the WNT pathway, reducing WNT3a, cysteine-rich domain frizzled (FZ)1 and FZ8 expressions, and both cytosolic and nuclear β-catenin expression, and the noncanonical β-catenin–independent signaling pathways, reducing the activation of the NMDA receptor subtype NR2B (pNR2B), pPKC and cAMP response element-binding protein (pCREB) expressions at all time points. Additionally, EGCG reduced spinal astrocytes and microglia activation, cytokines overexpression and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway, downregulating inducible nitric oxide synthase (iNOS) activation, cyclooxygenase 2 (COX-2) expression, and prostaglandin E2 (PGE2) levels. Thus, EGCG administration managing the WNT/β-catenin signaling pathways modulates PO pain related neurochemical and inflammatory alterations. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

17 pages, 3442 KiB  
Article
WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
by Jingcai Wang, Min Gong, Shi Zuo, Jie Xu, Chris Paul, Hongxia Li, Min Liu, Yi-Gang Wang, Muhammad Ashraf and Meifeng Xu
Genes 2020, 11(11), 1277; https://doi.org/10.3390/genes11111277 - 29 Oct 2020
Cited by 15 | Viewed by 3602
Abstract
Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis. Methods and Results: [...] Read more.
Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis. Methods and Results: Conditioned medium was collected from MSCWnt11 (CdMWnt11) and their control cells (CdMGFP). CdMWnt11, especially obtained from MSCWnt11 exposed to hypoxia, significantly promoted human umbilical vein endothelial cells (HUVECs) migration and increased capillary-like tube (CLT) formation, which was blocked by Wnt11 neutralizing antibody. Wnt11 protein was significantly higher in CdMWnt11 compared to that in CdMGFP. Directly treating HUVECs with recombinant Wnt11 protein significantly increased CLT formation, which was abrogated by treating cells with the JNK inhibitor SP600125, as well as the PKC inhibitor Calphostin-C. Moreover, the transfection of Wnt11 to HUVECs (HWnt11) significantly increased CLT formation and HUVEC migration, as well as upregulated p-pan-PKC and p-JNK expression. Injection of CdMWnt11 into the peri-infarct region in a rat acute myocardial infarction (AMI) model significantly improved cardiac function, reduced infarct size, and increased myocardial blood flow and blood vessel density in the ischemic area. Conclusion: Wnt11 released from MSCWnt11 increased angiogenesis and improved cardiac function via non-canonical Wnt-PKC-JNK dependent pathways. Full article
(This article belongs to the Special Issue Selected Papers From the Advanced Genetics Conference 2019)
Show Figures

Figure 1

15 pages, 8209 KiB  
Article
CELSR1 Promotes Neuroprotection in Cerebral Ischemic Injury Mainly through the Wnt/PKC Signaling Pathway
by Li-Hong Wang, Geng-Lin Zhang, Xing-Yu Liu, Ai Peng, Hai-Yuan Ren, Shu-Hong Huang, Ting Liu and Xiao-Jing Wang
Int. J. Mol. Sci. 2020, 21(4), 1267; https://doi.org/10.3390/ijms21041267 - 13 Feb 2020
Cited by 17 | Viewed by 4213
Abstract
Cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptor 1 (CELSR1) is a member of a special subgroup of adhesion G protein-coupled receptors. Although Celsr1 has been reported to be a sensitive gene for stroke, the effect of CELSR1 in ischemic [...] Read more.
Cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptor 1 (CELSR1) is a member of a special subgroup of adhesion G protein-coupled receptors. Although Celsr1 has been reported to be a sensitive gene for stroke, the effect of CELSR1 in ischemic stroke is still not known. Here, we investigated the effect of CELSR1 on neuroprotection, neurogenesis and angiogenesis in middle cerebral artery occlusion (MCAO) rats. The mRNA expression of Celsr1 was upregulated in the subventricular zone (SVZ), hippocampus and ischemic penumbra after cerebral ischemic injury. Knocking down the expression of Celsr1 in the SVZ with a lentivirus significantly reduced the proliferation of neuroblasts, the number of CD31-positive cells, motor function and rat survival and increased cell apoptosis and the infarct volume in MCAO rats. In addition, the expression of p-PKC in the SVZ and peri-infarct tissue was downregulated after ischemia/ reperfusion. Meanwhile, in the dentate gyrus of the hippocampus, knocking down the expression of Celsr1 significantly reduced the proliferation of neuroblasts; however, it had no influence on motor function, cell apoptosis or angiogenesis. These data indicate that CELSR1 has a neuroprotective effect on cerebral ischemia injury by reducing cell apoptosis in the peri-infarct cerebral cortex and promoting neurogenesis and angiogenesis, mainly through the Wnt/PKC pathway. Full article
Show Figures

Figure 1

26 pages, 1322 KiB  
Review
Effects of Intestinal Microbial–Elaborated Butyrate on Oncogenic Signaling Pathways
by Jiezhong Chen, Kong-Nan Zhao and Luis Vitetta
Nutrients 2019, 11(5), 1026; https://doi.org/10.3390/nu11051026 - 7 May 2019
Cited by 138 | Viewed by 11679
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been [...] Read more.
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals. Full article
(This article belongs to the Special Issue Nutrition and Cancer: From Prevention to Survivorship)
Show Figures

Figure 1

Back to TopTop