Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Williams 82

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2688 KiB  
Article
GmLac55 Enhanced Soybean Resistance Against Soybean Cyst Nematodes Through Lignin Biosynthesis
by Hui Wang, Shumei Liu, Han Wang, Dige Luo, Chuanwen Yang, Songjie Qi, Min Wang, Yubo Jia, Yuxi Duan, Chen Liu and Qiumin Chen
Int. J. Mol. Sci. 2025, 26(13), 6304; https://doi.org/10.3390/ijms26136304 - 30 Jun 2025
Viewed by 250
Abstract
Soybean cyst nematodes (SCNs) are a significant disease that causes yield loss and reducing seed quality in soybeans (Glycine max). Developing SCN-resistant soybean varieties can minimize the need for insecticide use and reduce yield loss. Cinnamate-4-hydroxylase (C4H) and laccase (Lac) are [...] Read more.
Soybean cyst nematodes (SCNs) are a significant disease that causes yield loss and reducing seed quality in soybeans (Glycine max). Developing SCN-resistant soybean varieties can minimize the need for insecticide use and reduce yield loss. Cinnamate-4-hydroxylase (C4H) and laccase (Lac) are key enzymes in the lignin synthesis pathway. In this study, SCN stress significantly promoted lignin accumulation in soybean roots and upregulated the expression of lignin signaling pathway genes GmC4H (Glyma.02G236500), GmLac55 (Glyma.13G076900), and GmLac85 (Glyma.20G051900). Using Agrobacterium rhizogenes-mediated transformation, the pNI900 expression vector was introduced into the soybean cultivar Williams 82 to generate GmLac55-overexpressing plants. The overexpression of GmLac55 enhanced soybean roots resistance to SCN and inhibited the further development of J2 larvae. Our study presents a strategy for increasing SCN resistance in soybean through Agrobacterium-mediated targeted mutagenesis of the GmLac55 gene. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2997 KiB  
Article
GmARF15 Enhances the Resistance of Soybean to Phytophthora sojae by Promoting GmPT10d Expression in Response to Salicylic Acid Signalling
by Yuhan Huo, Haiyuan Chen, Zhuo Zhang, Yang Song, Siyan Liu, Piwu Wang and Sujie Fan
Int. J. Mol. Sci. 2025, 26(1), 191; https://doi.org/10.3390/ijms26010191 - 29 Dec 2024
Viewed by 855
Abstract
Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms [...] Read more.
Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of Glycine max (soybean) to P. sojae infection. In this study, we demonstrated that an isoflavonoid-specific prenyltransferase gene (GmPT10d, Glyma.10G070300) was significantly upregulated in the soybean cultivar Williams 82 with high resistance to P. sojae infection. Transgenic soybean seedlings overexpressing GmPT10d exhibited enhanced resistance to P. sojae, and those subjected to RNA interference showed increased susceptibility to the pathogen. Yeast-one-hybrid and electrophoretic mobility shift assays revealed that GmARF15 could directly bind to the promoter of GmPT10d. Further analysis of the GmARF15 function showed that transgenic soybean seedlings overexpressing GmARF15 also exhibited enhanced resistance to P. sojae. Transactivation assay, luciferase assay, and qPCR analysis showed that GmARF15 could promote the expression of GmPT10d. Further analysis indicated that elevated salicylic acid levels were associated with increased expression of GmARF15 and GmPT10d. Taken together, these findings reveal a regulatory mechanism by which GmARF15 enhances soybean resistance to P. sojae, potentially by promoting the expression of GmPT10d through the salicylic acid signaling pathway. Full article
(This article belongs to the Special Issue Environmental Stress and Metabolic Responses in Plants)
Show Figures

Figure 1

11 pages, 1552 KiB  
Communication
Differences in Gene Expression in Germinated Soybean Seeds Among Four Cultivars, as Identified by Single Seed High-Throughput RNA Sequencing
by Kosuke Nakamura, Takahiro Gondo, Shinji Chiba, Satoshi Akimoto, Jumpei Narushima, Kazunari Kondo, Yohei Sugano, Hidenori Tanaka, Masatsugu Hashiguchi, Yuh Shiwa and Ryo Akashi
Agriculture 2024, 14(12), 2287; https://doi.org/10.3390/agriculture14122287 - 13 Dec 2024
Viewed by 881
Abstract
Gene expression in individual germinated seeds of four different soybean (Glycine max [L.] Merr.) cultivars, GL3494, OAC Kent, Williams 82, and Jackson, was examined using single seed high-throughput RNA sequencing (ssRNA-seq). The gene expression was similar between two individual seeds of the [...] Read more.
Gene expression in individual germinated seeds of four different soybean (Glycine max [L.] Merr.) cultivars, GL3494, OAC Kent, Williams 82, and Jackson, was examined using single seed high-throughput RNA sequencing (ssRNA-seq). The gene expression was similar between two individual seeds of the same cultivar, but different among individual seeds of the four cultivars. Notably, ssRNA-seq identified five genes that were not stably expressed in Williams 82, having either no detectable sequence reads or less than five sequence reads mapped to the exon regions of chromosomes in Williams 82. These findings were validated by reverse transcription polymerase chain reaction analysis. The study’s results demonstrate that gene expression in germinated seeds is unique to an individual seed from each soybean cultivar. This uniqueness may affect composition and content of nutrients in germinated soybeans used as food ingredients. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Graphical abstract

17 pages, 4991 KiB  
Article
GmbZIP4a/b Positively Regulate Nodule Number by Affecting Cytokinin Biosynthesis in Glycine max
by Yongjie Meng, Nan Wang, Xin Wang, Zhimin Qiu, Huaqin Kuang and Yuefeng Guan
Int. J. Mol. Sci. 2024, 25(24), 13311; https://doi.org/10.3390/ijms252413311 - 11 Dec 2024
Viewed by 1158
Abstract
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are [...] Read more.
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants. In this study, both β-glucuronidase staining and quantitative reverse transcription PCR (qRT-PCR) demonstrated that both GmbZIP4a and GmbZIP4b are inducible upon rhizobial inoculation. To investigate their roles further, we constructed gmbzip4a/b double mutants using CRISPR/Cas9 system. Nodulation assessments revealed that these double mutants displayed a reduction in the number of infection threads, which subsequently resulted in a decreased nodule number. However, the processes associated with nodule development including nodule fresh weight, structural characteristics, and nitrogenase activity, remained unaffected in the double mutants. Subsequent transcriptome analyses revealed that zeatin biosynthesis was downregulated in gmbzip4a/b mutants post rhizobial inoculation. Supporting these findings, genes associated with cytokinin (CTK) signaling pathway were upregulated in Williams 82 (Wm82), but this upregulation was not observed in the double mutants after rhizobial treatment. These results suggest that GmbZIP4a/b positively influences nodule formation by promoting the activation of the CTK signaling pathway during the early stages of nodule formation. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

24 pages, 2278 KiB  
Article
Genome-Wide Association Studies and QTL Mapping Reveal a New Locus Associated with Resistance to Bacterial Pustule Caused by Xanthomonas citri pv. glycines in Soybean
by Rafaella Cardoso-Sichieri, Liliane Santana Oliveira, Valéria Stefania Lopes-Caitar, Danielle Cristina Gregório da Silva, Ivani de O. N. Lopes, Marcelo Fernandes de Oliveira, Carlos Arrabal Arias, Ricardo Vilela Abdelnoor and Francismar Corrêa Marcelino-Guimarães
Plants 2024, 13(17), 2484; https://doi.org/10.3390/plants13172484 - 5 Sep 2024
Viewed by 1384
Abstract
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and [...] Read more.
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian X. citri isolates (IBS 333 and IBS 327). The panel was genotyped using a genotyping by sequencing (GBS) approach, and we identified two main new regions in soybeans associated with X. citri resistance on chromosomes 6 (IBS 333) and 18 (IBS 327), different from the traditional rxp gene located on chromosome 17. The region on chromosome 6 was also detected by QTL mapping using a biparental cross between Williams 82 (R) and PI 416937 (S), showing that Williams 82 has another recessive resistance gene besides rxp, which was also detected in nine BP-resistant ancestors of the Brazilian cultivars (including CNS, S-100), based on haplotype analysis. Furthermore, we identified additional SNPs in strong LD (0.8) with peak SNPs by exploring variation available in WGS (whole genome sequencing) data among 31 soybean accessions. In these regions in strong LD, two candidate resistance genes were identified (Glyma.06g311000 and Glyma.18g025100) for chromosomes 6 and 18, respectively. Therefore, our results allowed the identification of new chromosomal regions in soybeans associated with BP disease, which could be useful for marker-assisted selection and will enable a reduction in time and cost for the development of resistant cultivars. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 995 KiB  
Article
Genomic Regions and Candidate Genes for Seed Iron and Seed Zinc Accumulation Identified in the Soybean ‘Forrest’ by ‘Williams 82’ RIL Population
by Nacer Bellaloui, Dounya Knizia, Jiazheng Yuan, Qijian Song, Frances Betts, Teresa Register, Earl Williams, Naoufal Lakhssassi, Hamid Mazouz, Henry T. Nguyen, Khalid Meksem, Alemu Mengistu and My Abdelmajid Kassem
Int. J. Plant Biol. 2024, 15(2), 452-467; https://doi.org/10.3390/ijpb15020035 - 27 May 2024
Cited by 1 | Viewed by 1496
Abstract
Soybean is a major crop in the world and an essential source for minerals, including iron (Fe) and zin (Zn). Deficiency of Fe and Zn in soil and soybean plants result in yield loss and poor seed nutritional qualities. Information on genomic regions [...] Read more.
Soybean is a major crop in the world and an essential source for minerals, including iron (Fe) and zin (Zn). Deficiency of Fe and Zn in soil and soybean plants result in yield loss and poor seed nutritional qualities. Information on genomic regions and candidate genes controlling seed Fe and Zn accumulation in soybean seed is limited. Therefore, The objective of this research was to identify genetic regions, known as quantitative trait loci (QTL), and candidate genes that control the accumulation of Fe and Zn in soybean mature seeds. A ‘Forrest’ by ‘Williams 82’ (F × W82) recombinant inbred line (RIL) population (n = 306) was used and genotyped using a total of 5405 single nucleotides polymorphism (SNP) markers using Infinium SNP6K BeadChips. A two-year experiment was conducted across two environments: North Carolina in 2018 (NC) and Illinois in 2020 (IL). Only QTL with LOD scores ≥ 2.5, as identified by the composite interval mapping (CIM) method, are reported here. In total, 6 QTL were identified for seed Fe; specifically, 3 QTL (qFe-01-[NC-2018], qFe-02-[NC-2018], and qFe-03-[NC-2018]) were located on chromosomes 1, 2, and 6, respectively, in the NC environment, and 3 QTL (qFe-01-[IL-2020], qFe-02-[IL-2020], and qFe-03-[IL-2020]) were positioned on chromosomes 1, 2, and 12, respectively, in the IL environment. A total of 6 QTL associated with seed Zn were also identified; 4 QTL (qZn-01-[NC-2018]; qZn-02-[NC-2018]; qZn-03-[NC-2018]; and qZn-04-[NC-2018]), respectively on Chr 2, 3, 7, and 19 in NC; and 2 QTL (qZn-01-[IL-2020] and qZn-02-[IL-2020]), respectively, on Chr 5 and 8 in IL. Several functional genes encode Fe- and Zn-proteins, transcription factors, proteins-zinc finger motifs (involved in DNA binding and transcriptional regulation; crosstalk between the regulatory pathways of Zn and Fe transporters) were identified and located within the QTL interval. To our knowledge, and based on the literature available, the QTL identified here on Chr 2 and Chr 6 are novel and were not previously identified. This current research provides a new knowledge of the genetic basis of seed Fe and Zn and the markers associated with QTL. The QTL identified here will contribute to efficient marker assisted selection for higher Fe and Zn content in soybean seeds. The candidate genes and metal-responsive transcription factors may coordinate the expression of both Zn and Fe transporters in response to changes in metal availability, providing new knowledge on minerals uptake and transport mechanisms, allowing for possible genetic engineering application. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

18 pages, 5501 KiB  
Article
Identification of Quantitative Trait Loci Controlling Root Morphological Traits in an Interspecific Soybean Population Using 2D Imagery Data
by Mohammad Shafiqul Islam, Amit Ghimire, Liny Lay, Waleed Khan, Jeong-Dong Lee, Qijian Song, Hyun Jo and Yoonha Kim
Int. J. Mol. Sci. 2024, 25(9), 4687; https://doi.org/10.3390/ijms25094687 - 25 Apr 2024
Cited by 4 | Viewed by 1716
Abstract
Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait [...] Read more.
Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean ‘PI366121’ and cultivar ‘Williams 82’. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetic Regulation of Crops)
Show Figures

Figure 1

11 pages, 7084 KiB  
Brief Report
Comparative Evaluation of Transient Protein Expression Efficiency in Tissues across Soybean Varieties Using the Tsukuba System
by Martina Bianca Fuhrmann-Aoyagi, Saki Igarashi and Kenji Miura
Plants 2024, 13(6), 858; https://doi.org/10.3390/plants13060858 - 16 Mar 2024
Viewed by 2328
Abstract
Transient protein expression is a versatile tool with diverse applications and can be used in soybeans to study gene function, obtain mutants, and produce proteins for commercial use. However, soybeans are considered recalcitrant for agroinfiltration. Subsequent studies on soybeans have demonstrated a green [...] Read more.
Transient protein expression is a versatile tool with diverse applications and can be used in soybeans to study gene function, obtain mutants, and produce proteins for commercial use. However, soybeans are considered recalcitrant for agroinfiltration. Subsequent studies on soybeans have demonstrated a green fluorescent protein (GFP) expression in seedpods, but not in leaves, using syringe agroinfiltration. To evaluate agroinfiltration-based transient protein expression levels in plant cells, we used the transient expression vector pTKB3 harboring the GFP gene. Using Agrobacterium tumefaciens, vacuum agroinfiltration of the leaves and needle agroinfiltration of the seedlings of different soybean varieties were performed. GFP was transiently expressed in all of the samples. However, the Enrei and Williams 82 varieties presented better results than the other varieties in the leaf tissue, with results confirmed by immunoblot analysis, demonstrating that both varieties are good candidates for molecular biological studies. GFP expression in the seedlings was less extensive than that in the leaves, which may be due to the tissue characteristics, with Enrei showing the best results. Based on this observation, we conclude that the Tsukuba system is an effective tool that can be used for different tissues and soybean varieties. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 11406 KiB  
Article
Gene Mapping of a Yellow-to-Lethal Mutation Based on Bulked-Segregant Analysis-Seq in Soybean
by Yaqi Wang, Fangguo Chang, G M Al Amin, Shuguang Li, Mengmeng Fu, Xiwen Yu, Zhixin Zhao, Haifeng Xu and Tuanjie Zhao
Agronomy 2024, 14(1), 185; https://doi.org/10.3390/agronomy14010185 - 15 Jan 2024
Cited by 1 | Viewed by 2686
Abstract
Plant photosynthesis is mainly dependent on leaf color, and this has an impact on yield. Mutants lacking in chlorophyll have been analyzed to gain insight into the genetic processes involved in photosynthesis, chloroplast development, and chlorophyll metabolism. A yellow-to-lethal mutant, ytl, was [...] Read more.
Plant photosynthesis is mainly dependent on leaf color, and this has an impact on yield. Mutants lacking in chlorophyll have been analyzed to gain insight into the genetic processes involved in photosynthesis, chloroplast development, and chlorophyll metabolism. A yellow-to-lethal mutant, ytl, was selected from the M6 generation of the 60Coγ ray irradiation-treated soybean cultivar Nannong 1138-2. The mutant exhibited reduced chlorophyll content, with the thylakoid structure disrupted. Segregation of the cross between Williams 82 (W82) and ytl indicated that a recessive allele controlled yellow-to-lethal traits. The bulked-segregant analysis (BSA)-Seq method performed preliminary mapping, followed by simple sequence repeat (SSR) marker validation and further mapping. The candidate gene was mapped to a 418 Kb region containing 53 genes. High-throughput sequencing and first-generation sequencing results showed a two bp deletion in the second exon of Glyma.08g106500, leading to a frameshift mutation in ytl. As a promising candidate gene, Glyma.08g106500 encoded a chloroplast-localized pentatricopeptide repeat (PPR) domain-containing protein involved in the assembly of chloroplast proteins. These results will contribute to cloning the mutant ytl gene and provide insight into the regulatory processes controlling photosynthesis and chloroplast development and growth in soybean. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

13 pages, 1729 KiB  
Article
Development of a Gene-Based Soybean-Origin Discrimination Method Using Allele-Specific Polymerase Chain Reaction
by Kie-Chul Jung, Bo-Young Kim, Myoung-Jin Kim, Nam-Kuk Kim, Jihun Kang, Yul-Ho Kim, Hyang-Mi Park, Han-Sub Jang, Hee-Chang Shin and Tae-Jip Kim
Foods 2023, 12(24), 4497; https://doi.org/10.3390/foods12244497 - 16 Dec 2023
Cited by 3 | Viewed by 1886
Abstract
A low soybean self-sufficiency rate in South Korea has caused a high import dependence and considerable price variation between domestic and foreign soybeans, causing the false labeling of foreign soybeans as domestic. Conventional soybean origin discrimination methods prevent a single-grain analysis and rely [...] Read more.
A low soybean self-sufficiency rate in South Korea has caused a high import dependence and considerable price variation between domestic and foreign soybeans, causing the false labeling of foreign soybeans as domestic. Conventional soybean origin discrimination methods prevent a single-grain analysis and rely on the presence or absence of several compounds or concentration differences. This limits the origin discrimination of mixed samples, demonstrating the need for a method that analyzes individual grains. Therefore, we developed a method for origin discrimination using genetic analysis. The whole-genome sequencing data of the Williams 82 reference cultivar and 15 soybean varieties cultivated in South Korea were analyzed to identify the dense variation blocks (dVBs) with a high single-nucleotide polymorphism density. The PCR primers were prepared and validated for the insertion–deletion (InDel) sequences of the dVBs to discriminate each soybean variety. Our method effectively discriminated domestic and foreign soybean varieties, eliminating their false labeling. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

24 pages, 2844 KiB  
Article
Genetic Mapping for QTL Associated with Seed Nickel and Molybdenum Accumulation in the Soybean ‘Forrest’ by ‘Williams 82’ RIL Population
by Nacer Bellaloui, Dounya Knizia, Jiazheng Yuan, Qijian Song, Frances Betts, Teresa Register, Earl Williams, Naoufal Lakhssassi, Hamid Mazouz, Henry T. Nguyen, Khalid Meksem, Alemu Mengistu and My Abdelmajid Kassem
Plants 2023, 12(21), 3709; https://doi.org/10.3390/plants12213709 - 28 Oct 2023
Cited by 2 | Viewed by 1524
Abstract
Understanding the genetic basis of seed Ni and Mo is essential. Since soybean is a major crop in the world and a major source for nutrients, including Ni and Mo, the objective of the current research was to map genetic regions (quantitative trait [...] Read more.
Understanding the genetic basis of seed Ni and Mo is essential. Since soybean is a major crop in the world and a major source for nutrients, including Ni and Mo, the objective of the current research was to map genetic regions (quantitative trait loci, QTL) linked to Ni and Mo concentrations in soybean seed. A recombinant inbred line (RIL) population was derived from a cross between ‘Forrest’ and ‘Williams 82’ (F × W82). A total of 306 lines was used for genotyping using 5405 single nucleotides polymorphism (SNP) markers using Infinium SNP6K BeadChips. A two-year experiment was conducted and included the parents and the RIL population. One experiment was conducted in 2018 in North Carolina (NC), and the second experiment was conducted in Illinois in 2020 (IL). Logarithm of the odds (LOD) of ≥2.5 was set as a threshold to report identified QTL using the composite interval mapping (CIM) method. A wide range of Ni and Mo concentrations among RILs was observed. A total of four QTL (qNi-01, qNi-02, and qNi-03 on Chr 2, 8, and 9, respectively, in 2018, and qNi-01 on Chr 20 in 2020) was identified for seed Ni. All these QTL were significantly (LOD threshold > 2.5) associated with seed Ni, with LOD scores ranging between 2.71–3.44, and with phenotypic variance ranging from 4.48–6.97%. A total of three QTL for Mo (qMo-01, qMo-02, and qMo-03 on Chr 1, 3, 17, respectively) was identified in 2018, and four QTL (qMo-01, qMo-02, qMo-03, and qMo-04, on Chr 5, 11, 14, and 16, respectively) were identified in 2020. Some of the current QTL had high LOD and significantly contributed to the phenotypic variance for the trait. For example, in 2018, Mo QTL qMo-01 on Chr 1 had LOD of 7.8, explaining a phenotypic variance of 41.17%, and qMo-03 on Chr 17 had LOD of 5.33, with phenotypic variance explained of 41.49%. In addition, one Mo QTL (qMo-03 on Chr 14) had LOD of 9.77, explaining 51.57% of phenotypic variance related to the trait, and another Mo QTL (qMo-04 on Chr 16) had LOD of 7.62 and explained 49.95% of phenotypic variance. None of the QTL identified here were identified twice across locations/years. Based on a search of the available literature and of SoyBase, the four QTL for Ni, identified on Chr 2, 8, 9, and 20, and the five QTL associated with Mo, identified on Chr 1, 17, 11, 14, and 16, are novel and not previously reported. This research contributes new insights into the genetic mapping of Ni and Mo, and provides valuable QTL and molecular markers that can potentially assist in selecting Ni and Mo levels in soybean seeds. Full article
Show Figures

Figure 1

20 pages, 1800 KiB  
Article
Quantitative Trait Loci and Candidate Genes That Control Seed Sugars Contents in the Soybean ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line Population
by Dounya Knizia, Nacer Bellaloui, Jiazheng Yuan, Naoufal Lakhssasi, Erdem Anil, Tri Vuong, Mohamed Embaby, Henry T. Nguyen, Alemu Mengistu, Khalid Meksem and My Abdelmajid Kassem
Plants 2023, 12(19), 3498; https://doi.org/10.3390/plants12193498 - 8 Oct 2023
Cited by 6 | Viewed by 1902
Abstract
Soybean seed sugars are among the most abundant beneficial compounds for human and animal consumption in soybean seeds. Higher seed sugars such as sucrose are desirable as they contribute to taste and flavor in soy-based food. Therefore, the objectives of this study were [...] Read more.
Soybean seed sugars are among the most abundant beneficial compounds for human and animal consumption in soybean seeds. Higher seed sugars such as sucrose are desirable as they contribute to taste and flavor in soy-based food. Therefore, the objectives of this study were to use the ‘Forrest’ by ‘Williams 82’ (F × W82) recombinant inbred line (RIL) soybean population (n = 309) to identify quantitative trait loci (QTLs) and candidate genes that control seed sugar (sucrose, stachyose, and raffinose) contents in two environments (North Carolina and Illinois) over two years (2018 and 2020). A total of 26 QTLs that control seed sugar contents were identified and mapped on 16 soybean chromosomes (chrs.). Interestingly, five QTL regions were identified in both locations, Illinois and North Carolina, in this study on chrs. 2, 5, 13, 17, and 20. Amongst 57 candidate genes identified in this study, 16 were located within 10 Megabase (MB) of the identified QTLs. Amongst them, a cluster of four genes involved in the sugars’ pathway was collocated within 6 MB of two QTLs that were detected in this study on chr. 17. Further functional validation of the identified genes could be beneficial in breeding programs to produce soybean lines with high beneficial sucrose and low raffinose family oligosaccharides. Full article
(This article belongs to the Special Issue QTL Mapping of Seed Quality Traits in Crops)
Show Figures

Figure 1

17 pages, 10953 KiB  
Article
Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana
by Lu Li, Zhen Zhu, Juan Liu, Yu Zhang, Yang Lu, Jinming Zhao, Han Xing and Na Guo
Plants 2023, 12(16), 3007; https://doi.org/10.3390/plants12163007 - 21 Aug 2023
Cited by 9 | Viewed by 2728
Abstract
The Ethylene Response Factor (ERF) transcription factors form a subfamily of the AP2/ERF family that is instrumental in mediating plant responses to diverse abiotic stressors. Herein, we present the isolation and characterization of the GmERF105 gene from Williams 82 (W82), which is rapidly [...] Read more.
The Ethylene Response Factor (ERF) transcription factors form a subfamily of the AP2/ERF family that is instrumental in mediating plant responses to diverse abiotic stressors. Herein, we present the isolation and characterization of the GmERF105 gene from Williams 82 (W82), which is rapidly induced by salt, drought, and abscisic acid (ABA) treatments in soybean. The GmERF105 protein contains an AP2 domain and localizes to the nucleus. GmERF105 was selectively bound to GCC-box by gel migration experiments. Under salt stress, overexpression of GmERF105 in Arabidopsis significantly reduced seed germination rate, fresh weight, and antioxidant enzyme activity; meanwhile, sodium ion content, malonic dialdehyde (MDA) content, and reactive oxygen species (ROS) levels were markedly elevated compared to the wild type. It was further found that the transcription levels of CSD1 and CDS2 of two SOD genes were reduced in OE lines. Furthermore, the GmERF105 transgenic plants displayed suppressed expression of stress response marker genes, including KIN1, LEA14, NCED3, RD29A, and COR15A/B, under salt treatment. Our findings suggest that GmERF105 can act as a negative regulator in plant salt tolerance pathways by affecting ROS scavenging systems and the transcription of stress response marker genes. Full article
(This article belongs to the Special Issue Adaptive Mechanisms of Plants to Biotic or Abiotic Stresses)
Show Figures

Figure 1

13 pages, 2677 KiB  
Article
A Paper-Based Biomimetic Sensing Device for the Discrimination of Original and Fraudulent Cigarette Brands Using Mixtures of MoS2 Quantum Dots and Organic Dyes
by Fereshte Mohamadi Gharaghani, Sara Mostafapour and Bahram Hemmateenejad
Biosensors 2023, 13(7), 705; https://doi.org/10.3390/bios13070705 - 4 Jul 2023
Cited by 7 | Viewed by 1956
Abstract
In this study, we investigated the combined effects of MoS2 QDs’ catalytic properties and the colorimetric responses of organic reagents to create a sniffing device based on the sensor array concept of the mammalian olfactory system. The aim was to differentiate the [...] Read more.
In this study, we investigated the combined effects of MoS2 QDs’ catalytic properties and the colorimetric responses of organic reagents to create a sniffing device based on the sensor array concept of the mammalian olfactory system. The aim was to differentiate the volatile organic compounds (VOCs) present in cigarette smoke. The designed optical nose device was utilized for the classification of various cigarette VOCs. Unsupervised Principal Component Analysis (PCA) and supervised Linear Discriminant Analysis (LDA) methods were employed for data analysis. The LDA analysis showed promising results, with 100% accuracy in both training and cross-validation. To validate the sensor’s performance, we assessed its ability to discriminate between five cigarette brands, achieving 100% accuracy in the training set and 82% in the cross-validation set. Additionally, we focused on studying four popular Iranian cigarette brands (Bahman Kootah, Omega, Montana Gold, and Williams), including fraudulent samples. Impressively, the developed sensor array achieved a perfect 100% accuracy in distinguishing these brands and detecting fraud. We further analyzed a total of 126 cigarette samples, including both original and fraudulent ones, using LDA with a matrix size of (126 × 27). The resulting LDA model demonstrated an accuracy of 98%. Our proposed analytical procedure is characterized by its efficiency, affordability, user-friendliness, and reliability. The selectivity exhibited by the developed sensor array positions it as a valuable tool for differentiating between original and counterfeit cigarettes, thus aiding in border control efforts worldwide. Full article
(This article belongs to the Special Issue Cellulose-Based Biosensing Platforms, Volume II)
Show Figures

Figure 1

22 pages, 4340 KiB  
Article
Comparison and Characterization of Phenotypic and Genomic Mutations Induced by a Carbon-Ion Beam and Gamma-ray Irradiation in Soybean (Glycine max (L.) Merr.)
by Zhuo Feng, Yan Du, Jingmin Chen, Xia Chen, Weibin Ren, Lulu Wang and Libin Zhou
Int. J. Mol. Sci. 2023, 24(10), 8825; https://doi.org/10.3390/ijms24108825 - 16 May 2023
Cited by 10 | Viewed by 2813
Abstract
Soybean (Glycine max (L.) Merr.) is a nutritious crop that can provide both oil and protein. A variety of mutagenesis methods have been proposed to obtain better soybean germplasm resources. Among the different types of physical mutagens, carbon-ion beams are considered to [...] Read more.
Soybean (Glycine max (L.) Merr.) is a nutritious crop that can provide both oil and protein. A variety of mutagenesis methods have been proposed to obtain better soybean germplasm resources. Among the different types of physical mutagens, carbon-ion beams are considered to be highly efficient with high linear energy transfer (LET), and gamma rays have also been widely used for mutation breeding. However, systematic knowledge of the mutagenic effects of these two mutagens during development and on phenotypic and genomic mutations has not yet been elucidated in soybean. To this end, dry seeds of Williams 82 soybean were irradiated with a carbon-ion beam and gamma rays. The biological effects of the M1 generation included changes in survival rate, yield and fertility. Compared with gamma rays, the relative biological effectiveness (RBE) of the carbon-ion beams was between 2.5 and 3.0. Furthermore, the optimal dose for soybean was determined to be 101 Gy to 115 Gy when using the carbon-ion beam, and it was 263 Gy to 343 Gy when using gamma rays. A total of 325 screened mutant families were detected from out of 2000 M2 families using the carbon-ion beam, and 336 screened mutant families were found using gamma rays. Regarding the screened phenotypic M2 mutations, the proportion of low-frequency phenotypic mutations was 23.4% when using a carbon ion beam, and the proportion was 9.8% when using gamma rays. Low-frequency phenotypic mutations were easily obtained with the carbon-ion beam. After screening the mutations from the M2 generation, their stability was verified, and the genome mutation spectrum of M3 was systemically profiled. A variety of mutations, including single-base substitutions (SBSs), insertion–deletion mutations (INDELs), multinucleotide variants (MNVs) and structural variants (SVs) were detected with both carbon-ion beam irradiation and gamma-ray irradiation. Overall, 1988 homozygous mutations and 9695 homozygous + heterozygous genotype mutations were detected when using the carbon-ion beam. Additionally, 5279 homozygous mutations and 14,243 homozygous + heterozygous genotype mutations were detected when using gamma rays. The carbon-ion beam, which resulted in low levels of background mutations, has the potential to alleviate the problems caused by linkage drag in soybean mutation breeding. Regarding the genomic mutations, when using the carbon-ion beam, the proportion of homozygous-genotype SVs was 0.45%, and that of homozygous + heterozygous-genotype SVs was 6.27%; meanwhile, the proportions were 0.04% and 4.04% when using gamma rays. A higher proportion of SVs were detected when using the carbon ion beam. The gene effects of missense mutations were greater under carbon-ion beam irradiation, and the gene effects of nonsense mutations were greater under gamma-ray irradiation, which meant that the changes in the amino acid sequences were different between the carbon-ion beam and gamma rays. Taken together, our results demonstrate that both carbon-ion beam and gamma rays are effective techniques for rapid mutation breeding in soybean. If one would like to obtain mutations with a low-frequency phenotype, low levels of background genomic mutations and mutations with a higher proportion of SVs, carbon-ion beams are the best choice. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop