Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Williams–Landel–Ferry (WLF) equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 332
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

12 pages, 1661 KiB  
Article
Creep Compliance of Carbon Black-Filled Rubber Converted from Storage Modulus by Use of Collocation Method: Numerical and Experimental Validation
by Bo Zhou, Bin Zhao, Wei Tang, Rongyong Wang and Boyuan Yin
Polymers 2025, 17(13), 1809; https://doi.org/10.3390/polym17131809 - 28 Jun 2025
Viewed by 360
Abstract
Carbon black (CB)-filled rubber has been widely used in engineering. However, its time-dependent behavior, such as creep, is undesirable during the service process. In addition, the long-term creep test is time- and cost-consuming. To this end, the objective of this paper aims to [...] Read more.
Carbon black (CB)-filled rubber has been widely used in engineering. However, its time-dependent behavior, such as creep, is undesirable during the service process. In addition, the long-term creep test is time- and cost-consuming. To this end, the objective of this paper aims to predict the creep behavior from the short-term storage modulus by use of the collocation method. First, the master curve of storage modulus was constructed based on the time–temperature superposition principle (TTSP), and the validation of shift factors was verified by use of the Williams–Landel–Ferry (WLF) equation. Second, the generalized Kelvin model was used to describe the master curve of storage modulus by use of the collocation method, and the corresponding parameters were obtained. Compared with the existing works, the collocation method had the advantages of avoiding the occurrence of waviness of the fitting curve. Lastly, the creep compliance of CB-filled rubber was calculated by substituting the fitting parameters into the creep compliance expression. In order to verify the reliability of the calculation result, the creep tests were carried out. It was obvious that the calculation result is in good agreement with the experimental one with a RMSE value of 0.0055, which means that the calculation result is reliable. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 9315 KiB  
Article
Experimental and Theoretical Analysis of Frequency- and Temperature-Dependent Characteristics in Viscoelastic Materials Using Prony Series
by Gökhan Aslan and Nizami Aktürk
Appl. Mech. 2024, 5(4), 786-803; https://doi.org/10.3390/applmech5040044 - 4 Nov 2024
Cited by 1 | Viewed by 2009
Abstract
This study comprehensively investigates the frequency- and temperature-dependent viscoelastic properties of two elastomer materials, focusing on the comparison between experimental results and theoretical models derived from Prony series coefficients. Dynamic Mechanical Analysis (DMA) was performed across a broad temperature range of 0–100 °C [...] Read more.
This study comprehensively investigates the frequency- and temperature-dependent viscoelastic properties of two elastomer materials, focusing on the comparison between experimental results and theoretical models derived from Prony series coefficients. Dynamic Mechanical Analysis (DMA) was performed across a broad temperature range of 0–100 °C and frequency range of 0.1–100 Hz to generate storage modulus and relaxation modulus data for both materials. Relaxation tests were conducted at 25 °C to further characterize the time-dependent behavior. Time–Temperature Superposition (TTS) was applied to the resultant shift factors used to fit both Williams–Landel–Ferry (WLF) and Arrhenius equations. Additionally, sinusoidal sweep tests were carried out at 0 °C, 25 °C, 50 °C, and 80 °C, with frequencies ranging from 1 Hz to 1000 Hz, to experimentally determine the natural frequencies of the elastomers. The findings demonstrate that Prony series coefficients derived from storage modulus data offer a more accurate prediction of the viscoelastic response and natural frequencies compared to those derived from relaxation modulus data. The storage modulus data closely match the experimentally observed natural frequencies, while the relaxation modulus data exhibit larger deviations, particularly at higher temperatures. The study also reveals temperature-dependent behavior, where increasing temperature reduces the stiffness of the materials, leading to lower natural frequencies. This comprehensive analysis highlights the importance of selecting appropriate modeling techniques and data sources, particularly when predicting dynamic responses under varying temperature and frequency conditions. Full article
Show Figures

Figure 1

12 pages, 1828 KiB  
Article
The Activation Energy Temperature Dependence for Viscous Flow of Chalcogenides
by Alexey A. Mashanov, Michael I. Ojovan, Migmar V. Darmaev and Irina V. Razumovskaya
Appl. Sci. 2024, 14(10), 4319; https://doi.org/10.3390/app14104319 - 20 May 2024
Cited by 1 | Viewed by 1656
Abstract
For some chalcogenide glasses, the temperature dependence of the activation energy E(T) of viscous flow in the glass transition region was calculated using the Williams–Landel–Ferry (WLF) equation. A method for determining the activation energy of viscous flow as a function of temperature is [...] Read more.
For some chalcogenide glasses, the temperature dependence of the activation energy E(T) of viscous flow in the glass transition region was calculated using the Williams–Landel–Ferry (WLF) equation. A method for determining the activation energy of viscous flow as a function of temperature is proposed using the Taylor expansion of the function E(T) using the example of chalcogenide glasses As-Se, Ge-Se, Sb-Ge-Se, P-Se, and AsSe-TlSe. The calculation results showed that the temperature dependence of the activation energy for the Ge-Se, As-Se, P-Se, AsSe-TlSe, and AsSe systems is satisfactorily described by a polynomial of the second degree, and for Sb-Ge-Se glass by a polynomial of the third degree. The purpose of this work is to compare the values of the coefficients obtained from the Taylor series expansion of E(T) with the characteristics of the E(T) versus (TTg) curves obtained directly from the experimental temperature dependence of viscosity. The nature of the dependence E(T) is briefly discussed. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 1080 KiB  
Article
The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances
by Migmar V. Darmaev, Michael I. Ojovan, Alexey A. Mashanov and Timur A. Chimytov
Appl. Sci. 2023, 13(4), 2742; https://doi.org/10.3390/app13042742 - 20 Feb 2023
Cited by 4 | Viewed by 2579
Abstract
We present calculation results of the temperature interval δTg characterizing the liquid–glass transition in amorphous materials obtained on the basis of available data of the empirical parameters C1 and C2 in the Williams–Landel–Ferry (WLF) viscosity equation. We consider the unambiguous [...] Read more.
We present calculation results of the temperature interval δTg characterizing the liquid–glass transition in amorphous materials obtained on the basis of available data of the empirical parameters C1 and C2 in the Williams–Landel–Ferry (WLF) viscosity equation. We consider the unambiguous dependence of the relative transition temperature interval δTg/Tg on the fraction of the fluctuation volume fg frozen at the glass transition temperature Tg utilizing Sanditov’s model of delocalized atoms. The parameter f = ΔVe/V, which determines the molecular mobility characteristic of delocalized atoms in the liquid–glass transition region, is weakly dependent on the nature of most vitreous substances and can be found as fg = 1/C1. We show that the temperature interval δTg is less than 1% of the Tg for most amorphous substances. This result conforms with Simon’s classical idea of a small temperature range in which the structure freezes. The structural relaxation time τg at Tg of polymers and chalcogenide glasses is also calculated. Full article
Show Figures

Figure 1

13 pages, 2224 KiB  
Article
Anomalous Water-Sorption Kinetics in ASDs
by Dominik Borrmann, Andreas Danzer and Gabriele Sadowski
Pharmaceutics 2022, 14(9), 1897; https://doi.org/10.3390/pharmaceutics14091897 - 7 Sep 2022
Cited by 2 | Viewed by 1623
Abstract
Anomalous water-sorption kinetics in amorphous solid dispersions (ASDs) are caused by the slow swelling of the polymer. In this work, we used a diffusion–relaxation model with the Williams–Landel–Ferry (WLF) equation and the Arrhenius equation to predict the anomalous water-sorption kinetics in ASDs of [...] Read more.
Anomalous water-sorption kinetics in amorphous solid dispersions (ASDs) are caused by the slow swelling of the polymer. In this work, we used a diffusion–relaxation model with the Williams–Landel–Ferry (WLF) equation and the Arrhenius equation to predict the anomalous water-sorption kinetics in ASDs of poly(vinyl-pyrrolidone)-co-vinyl-acetate (PVPVA) and indomethacin (IND) at 25 °C. These predictions were based on the viscosities of pure PVPVA and pure IND, as well as on the water-sorption kinetics in pure PVPVA. The diffusion–relaxation model was able to predict the different types of anomalous behavior leading to a qualitative and quantitative agreement with the experimental data. Predictions and experiments indicated more pronounced anomalous two-stage water-sorption behavior in the ASDs than in pure PVPVA. This was caused by a higher viscosity of glassy ASD–water mixtures compared to glassy PVPVA–water mixtures at the same distance from their glass transition temperature. These results suggest that this ASD swells more slowly than the polymer it is composed of. The modeling approach applied in this work can be used in the future for predicting diffusion-controlled release behavior or swelling-controlled release behavior of ASDs. Full article
Show Figures

Graphical abstract

19 pages, 9467 KiB  
Article
Non-Isothermal Free-Surface Viscous Flow of Polymer Melts in Pipe Extrusion Using an Open-Source Interface Tracking Finite Volume Method
by Célio Fernandes, Ahmad Fakhari and Željko Tukovic
Polymers 2021, 13(24), 4454; https://doi.org/10.3390/polym13244454 - 19 Dec 2021
Cited by 9 | Viewed by 3300
Abstract
Polymer extrudate swelling is a rheological phenomenon that occurs after polymer melt flow emerges at the die exit of extrusion equipment due to molecular stress relaxations and flow redistributions. Specifically, with the growing demand for large scale and high productivity, polymer pipes have [...] Read more.
Polymer extrudate swelling is a rheological phenomenon that occurs after polymer melt flow emerges at the die exit of extrusion equipment due to molecular stress relaxations and flow redistributions. Specifically, with the growing demand for large scale and high productivity, polymer pipes have recently been produced by extrusion. This study reports the development of a new incompressible non-isothermal finite volume method, based on the Arbitrary Lagrangian–Eulerian (ALE) formulation, to compute the viscous flow of polymer melts obeying the Herschel–Bulkley constitutive equation. The Papanastasiou-regularized version of the constitutive equation is employed. The influence of the temperature on the rheological behavior of the material is controlled by the Williams–Landel–Ferry (WLF) function. The new method is validated by comparing the extrudate swell ratio obtained for Bingham and Herschel–Bulkley flows (shear-thinning and shear-thickening) with reference data found in the scientific literature. Additionally, the essential flow characteristics including yield-stress, inertia and non-isothermal effects were investigated. Full article
(This article belongs to the Special Issue Advanced Polymer Simulation and Processing)
Show Figures

Figure 1

24 pages, 4828 KiB  
Article
Numerical and Experimental Investigations of Polymer Viscoelastic Materials Obtained by 3D Printing
by Jusuf Ibrulj, Ejub Dzaferovic, Murco Obucina and Manja Kitek Kuzman
Polymers 2021, 13(19), 3276; https://doi.org/10.3390/polym13193276 - 25 Sep 2021
Cited by 9 | Viewed by 4065
Abstract
The aim of this research is to determine the relaxation and creep modulus of 3D printed materials, and the numerical research is based on the finite volume method. The basic material for determining these characteristics is ABS (acrylonitrile butadiene styrene) plastic as one [...] Read more.
The aim of this research is to determine the relaxation and creep modulus of 3D printed materials, and the numerical research is based on the finite volume method. The basic material for determining these characteristics is ABS (acrylonitrile butadiene styrene) plastic as one of the most widely used polymeric materials in 3D printing. The experimental method for determining the relaxation functions involved the use of a creep test, in which a constant increase of the stress of the material was performed over time to a certain predetermined value. In addition to this test, DMA (dynamic mechanical analysis) analysis was used. Determination of unknown parameters of relaxation functions in analytical form was performed on the basis of the expression for the storage modulus in the frequency domain. The influence of temperature on the values of the relaxation modulus is considered through the determination of the shift factor. Shift factor is determined on the basis of a series of tests of the relaxation function at different constant temperatures. The shift factor is presented in the form of the WLF (Williams-Landel-Ferry) equation. After obtaining such experimentally determined viscoelastic characteristics with analytical expressions for relaxation modulus and shift factors, numerical analysis can be performed. For this numerical analysis, a mathematical model with an incremental approach was used, as developed in earlier works although with a certain modification. In the experimental analysis, the analytical expression for relaxation modulus in the form of the Prony series is used, and since it is the sum of exponential functions, this enables the derivation of a recursive algorithm for stress calculation. Numerical analysis was performed on several test cases and the results were compared with the results of the experiment and available analytical solutions. A good agreement was obtained between the results of the numerical simulation and the results of the experiment and analytical solutions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 2773 KiB  
Article
Evaluation for Low Temperature Performance of SBS Modified Asphalt by Dynamic Shear Rheometer Method
by Tao Wang, Xuelei Wei, De Zhang, Hai Shi and Zhiqiang Cheng
Buildings 2021, 11(9), 408; https://doi.org/10.3390/buildings11090408 - 13 Sep 2021
Cited by 24 | Viewed by 3907
Abstract
Finding an alternative or supplementary test method to evaluating the low temperature performance of asphalt is an area of considerable interest. This paper tries to explore the possibility of using the dynamic shear rheometer (DSR) method for assessing the low temperature properties of [...] Read more.
Finding an alternative or supplementary test method to evaluating the low temperature performance of asphalt is an area of considerable interest. This paper tries to explore the possibility of using the dynamic shear rheometer (DSR) method for assessing the low temperature properties of styrenebutadienestyrene (SBS) modified asphalt. In the study, 60/80 and 80/100 pen grade asphalt binders, named binder A-70, binder B-70 and binder C-90, are used to produce the SBS modified asphalt samples. After that, the low temperature performance of the asphalt binders is characterized by using bending beam rheometer (BBR) test. The results indicate that the low temperature performance of the different binders is related to the source of the binder. The low temperature performance of asphalt could be improved with the addition of the SBS. The DSR test is used to develop the complex modulus master curves for binders. Based on the principle of time–temperature conversion, the glass transition temperature of asphalt is calculated by the Williams–Landel–Ferry (WLF) equation. The glass transition temperatures (Tg) of base asphalt and the SBS modified asphalt are determined by the viscoelastic parameters of the master curve and the WLF equation coefficients based on the time–temperature superposition principle. By establishing the relationship between the critical temperature and the Tg of the asphalt binder, the effectiveness of the method established in this paper is verified. The advantage of this method is the ability to use the DSR test for the rapid evaluation of the low temperature performance of asphalt, which is able to reduce testing materials and save testing time as well. The glass transition temperature of the SBS modified asphalt is closely associated with aging degree, asphalt source and the SBS content. Full article
Show Figures

Figure 1

24 pages, 9530 KiB  
Article
Verification and Validation of openInjMoldSim, an Open-Source Solver to Model the Filling Stage of Thermoplastic Injection Molding
by João Pedro, Bruno Ramôa, João Miguel Nóbrega and Célio Fernandes
Fluids 2020, 5(2), 84; https://doi.org/10.3390/fluids5020084 - 29 May 2020
Cited by 15 | Viewed by 5248
Abstract
In the present study, the simulation of the three-dimensional (3D) non-isothermal, non-Newtonian fluid flow of polymer melts is investigated. In particular, the filling stage of thermoplastic injection molding is numerically studied with a solver implemented in the open-source computational library [...] Read more.
In the present study, the simulation of the three-dimensional (3D) non-isothermal, non-Newtonian fluid flow of polymer melts is investigated. In particular, the filling stage of thermoplastic injection molding is numerically studied with a solver implemented in the open-source computational library O p e n F O A M ® . The numerical method is based on a compressible two-phase flow model, developed following a cell-centered unstructured finite volume discretization scheme, combined with a volume-of-fluid (VOF) technique for the interface capturing. Additionally, the Cross-WLF (Williams–Landel–Ferry) model is used to characterize the rheological behavior of the polymer melts, and the modified Tait equation is used as the equation of state. To verify the numerical implementation, the code predictions are first compared with analytical solutions, for a Newtonian fluid flowing through a cylindrical channel. Subsequently, the melt filling process of a non-Newtonian fluid (Cross-WLF) in a rectangular cavity with a cylindrical insert and in a tensile test specimen are studied. The predicted melt flow front interface and fields (pressure, velocity, and temperature) contours are found to be in good agreement with the reference solutions, obtained with the proprietary software M o l d e x 3 D ® . Additionally, the computational effort, measured by the elapsed wall-time of the simulations, is analyzed for both the open-source and proprietary software, and both are found to be similar for the same level of accuracy, when the parallelization capabilities of O p e n F O A M ® are employed. Full article
(This article belongs to the Special Issue Advances in Experimental and Computational Rheology, Volume II)
Show Figures

Figure 1

17 pages, 3504 KiB  
Article
The Effects of Asphalt Migration on the Dynamic Modulus of Asphalt Mixture
by Hui Wang, Shihao Zhan and Guojun Liu
Appl. Sci. 2019, 9(13), 2747; https://doi.org/10.3390/app9132747 - 7 Jul 2019
Cited by 26 | Viewed by 4155
Abstract
Asphalt migration is one of the significant detrimental effects on asphalt pavement performance. In order to simulate the state after the occurrence of asphalt migration amid asphalt pavement layers and further investigate the effects of asphalt migration on the dynamic modulus of asphalt [...] Read more.
Asphalt migration is one of the significant detrimental effects on asphalt pavement performance. In order to simulate the state after the occurrence of asphalt migration amid asphalt pavement layers and further investigate the effects of asphalt migration on the dynamic modulus of asphalt mixture, samples with different asphalt contents layers were firstly separated into the upper and lower half portions and then compacted together. By conducting the dynamic modulus test with the Superpave Simple Performance Tester (SPT), the variation laws of the dynamic modulus (|E*|) and the phase angle (δ) at different testing temperatures and loading frequencies were analyzed in this paper. Further, the dynamic modulus and the stiffness parameter (|E*|/sinδ) at the loading frequency of 10 Hz and testing temperature of 50 °C were illustrated. Simultaneously, the master curves of the dynamic modulus and phase angle of asphalt mixtures under different testing conditions were constructed to better investigate the effects of asphalt migration on the dynamic modulus by means of Williams–Landel–Ferry (WLF) equation and Sigmoidal function. Results show that, after the asphalt migration, the dynamic modulus of asphalt mixtures increase with the increasing loading frequency while they decrease with the increasing testing temperature; the dynamic modulus and the stiffness parameter are the highest when asphalt mixtures have the optimum asphalt content layers, and then decrease with the incremental difference of asphalt content in the upper and lower half portions. Besides this, different from the master curves of dynamic modulus, the master curves of phase angle firstly increase with the increase of loading frequency to the highest point and then decrease with the further increase of loading frequency and are not as smooth as that of dynamic modulus. It can be concluded that the asphalt migration has compromised the mixture’s mechanical structure, and the more asphalt migrates, the weaker the mechanical properties of asphalt mixture will be. Additionally, based on the shift factors and master curves in the time–temperature superposition principle (TTSP), the effects of asphalt migration on the dynamic modulus and the variation laws of the dynamic modulus of asphalt mixture after the occurrence of asphalt migration can be better construed at the quantitative level. Full article
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
by Yonggang Shangguan, Feng Chen, Erwen Jia, Yu Lin, Jun Hu and Qiang Zheng
Polymers 2017, 9(11), 567; https://doi.org/10.3390/polym9110567 - 2 Nov 2017
Cited by 42 | Viewed by 10112
Abstract
The three equations involved in the time-temperature superposition (TTS) of a polymer, i.e., Williams–Landel–Ferry (WLF), Vogel–Fulcher–Tammann–Hesse (VFTH) and the Arrhenius equation, were re-examined, and the mathematical equivalence of the WLF form to the Arrhenius form was revealed. As a result, a developed WLF [...] Read more.
The three equations involved in the time-temperature superposition (TTS) of a polymer, i.e., Williams–Landel–Ferry (WLF), Vogel–Fulcher–Tammann–Hesse (VFTH) and the Arrhenius equation, were re-examined, and the mathematical equivalence of the WLF form to the Arrhenius form was revealed. As a result, a developed WLF (DWLF) equation was established to describe the temperature dependence of relaxation property for the polymer ranging from secondary relaxation to terminal flow, and its necessary criteria for universal application were proposed. TTS results of viscoelastic behavior for different polymers including isotactic polypropylene (iPP), high density polyethylene (HDPE), low density polyethylene (LDPE) and ethylene-propylene rubber (EPR) were well achieved by the DWLF equation at high temperatures. Through investigating the phase-separation behavior of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) and iPP/EPR blends, it was found that the DWLF equation can describe the phase separation behavior of the amorphous/amorphous blend well, while the nucleation process leads to a smaller shift factor for the crystalline/amorphous blend in the melting temperature region. Either the TTS of polystyrene (PS) and PMMA or the secondary relaxations of PMMA and polyvinyl chloride (PVC) confirmed that the Arrhenius equation can be valid only in the high temperature region and invalid in the vicinity of glass transition due to the strong dependence of apparent activation energy on temperature; while the DWLF equation can be employed in the whole temperature region including secondary relaxation and from glass transition to terminal relaxation. The theoretical explanation for the universal application of the DWLF equation was also revealed through discussing the influences of free volume and chemical structure on the activation energy of polymer relaxations. Full article
Show Figures

Graphical abstract

Back to TopTop