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Abstract: The aim of this research is to determine the relaxation and creep modulus of 3D printed
materials, and the numerical research is based on the finite volume method. The basic material
for determining these characteristics is ABS (acrylonitrile butadiene styrene) plastic as one of the
most widely used polymeric materials in 3D printing. The experimental method for determining
the relaxation functions involved the use of a creep test, in which a constant increase of the stress
of the material was performed over time to a certain predetermined value. In addition to this test,
DMA (dynamic mechanical analysis) analysis was used. Determination of unknown parameters of
relaxation functions in analytical form was performed on the basis of the expression for the storage
modulus in the frequency domain. The influence of temperature on the values of the relaxation
modulus is considered through the determination of the shift factor. Shift factor is determined on
the basis of a series of tests of the relaxation function at different constant temperatures. The shift
factor is presented in the form of the WLF (Williams-Landel-Ferry) equation. After obtaining such
experimentally determined viscoelastic characteristics with analytical expressions for relaxation
modulus and shift factors, numerical analysis can be performed. For this numerical analysis, a
mathematical model with an incremental approach was used, as developed in earlier works although
with a certain modification. In the experimental analysis, the analytical expression for relaxation
modulus in the form of the Prony series is used, and since it is the sum of exponential functions,
this enables the derivation of a recursive algorithm for stress calculation. Numerical analysis was
performed on several test cases and the results were compared with the results of the experiment and
available analytical solutions. A good agreement was obtained between the results of the numerical
simulation and the results of the experiment and analytical solutions.

Keywords: relaxation modulus; creep modulus; viscoelasticity; numerical; experimental; Prony series

1. Introduction

Most polymeric materials are used today for their good mechanical properties in rela-
tion to manufacturing costs. For this reason, the mechanical properties of these materials
are of interest because of their wide application. It is important to know the dependence of
deformation and stress when analyzing the stability of elements or products exposed to a
load, and it is known that the characteristics of polymeric materials change over time. A
complete description of the mechanical properties of polymeric materials usually requires
knowledge of the behavior of the material over 10 to 20 years [1]. This means that in order
to determine the reliability and durability of a certain polymer structure, it is necessary to
know the mechanical characteristics during the entire time of use.

In the theory of linear viscoelasticity, such characteristics are most often the relaxation
modulus E(t) and the creep function J(t), which define the response of the material to the
applied load (i.e., the Heaviside function). Moreover, due to the short duration of the
experiment, it is often necessary to replace the step load function with other non-standard

Polymers 2021, 13, 3276. https://doi.org/10.3390/polym13193276 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-7017-2081
https://orcid.org/0000-0002-2570-2565
https://doi.org/10.3390/polym13193276
https://doi.org/10.3390/polym13193276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13193276
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13193276?type=check_update&version=1


Polymers 2021, 13, 3276 2 of 24

loads, such as a ramp function or a function that has a constant stress or strain ratio [2].
In practice, polymeric materials are often exposed to a load that has a constant stress
or strain ratio over time. Uniaxial tensile loading with a linear increase in deformation
over time is the most important type of load in polymer technology. It is widely used
in the production of fibers, films, and thin polymer plates, as well as in the combination
of these and other technological processes. However, these types of experiments are
not widely used due to the complicated preparation steps and the equipment needed
to provide the necessary control of the stress/strain ratio. Dynamic-mechanical analysis
(DMA-tests) can also be used to efficiently determine the characteristics of polymers. These
tests apply sinusoidal stress and measure the deformation of the material, allowing the
determination of the storage modulus as well as the loss modulus. The stress frequency
changes periodically, leading to variations in the complex modulus. If, in addition to the
stress, the temperature also changes during the test, then this approach can be used to
determine the glass transition temperature of the material, Tg.

Fused deposition modeling (FDM) technology is increasingly being applied, and as a
new technology requires specialized 3D printers that use thermoplastics (polymers) as a
raw material for the production of strong, durable, and dimensionally stable elements. An
additional advantage of FDM technology is that the parts can have a mesh filling, according
to the design requirements, which can produce very light parts that can better respond to the
function. This technology has the key advantages over all other 3D element manufacturing
technologies of precision and repeatability. Other advantages of this technology are its
convenience, cleanliness, and ease of use, and the fact that the polymers from which
the elements are made are mechanically and environmentally friendly, and therefore
enable working with complex geometries that are more difficult or impossible with other
technologies (e.g., casting).

The application of constitutive equations for thermoviscoelastic polymers in the finite
element method has been investigated in recent years. Initially, researchers proposed a
finite element formulation for rubber under low oscillatory loads. They later investigated
the same material by developing a phenomenological viscoelastic constitutive model
with finite loading within irreversible thermodynamic processes with changing variables.
The proposed procedure is implemented in the user-defined subroutine UMAT in the
software used for nonlinear finite element analysis ABAQUS/Standard, and is applicable
to compressible polymers and elastomers [3,4].

The original 2D approach of Fryer [5,6] was subsequently extended to three dimen-
sions by Bailey and Cross [7,8]. In addition, the finite volume method has been applied to a
number of fluid-solid interaction problems, and includes the assumption of viscoelasticity
of one or more materials [9–18]. These approaches are implemented in licensed as well
as “open source” software (openFOAM) that allows discretization of time, space, and
equations based on the finite volume method. A group of authors [19–21] successfully
applied the finite volume method in the analysis of mechanical and rheological properties
of wood, where the influence of moisture as well as that of the gluing technology used with
the laminated wooden elements on the viscoelastic properties were analyzed. The same
authors also considered multiparameter models and their influence on the determination
of the viscoelastic properties of materials [21,22]. In the analysis of polymer 3D printed
objects, the creep phenomenon was considered, using a three-parameter model, while
the results obtained using the finite volume method were confirmed based on the results
obtained experimentally [23].

A general overview of time-dependent characteristics of polymeric materials was
given by Tschoegl [24]. Additionally, Zhao and Knaus [25] explained the physical response
of linearly viscoelastic materials in detail based on ramp tests. Moreover, several methods
have been proposed for the conversion of a relaxation module from a frequency to a time
domain. The Prony series is very popular for the representation of viscoelastic functions
because it can cover a wide time range as well as because of the computational efficiency
that results from its exponential base. The collocation method for converting relaxation
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modules from the frequency domain to time domain was proposed by Schapery [3], while
Emri and Tschoegl [24] developed a recursive algorithm that generates a line spectrum
from experimental data. They applied the window method to ensure positive values of all
elements in the Prony series. Ramkumar used the regularization method with quadratic
programming to minimize oscillations in the experimental data. Later, Schapery and
Park developed a new method of interconversion based on a numerical and approximate-
analytical approach. To solve the problem of determining the coefficients in the Prony series,
many tools are available in the literature, and some of these have already been implemented
in commercial software packages such as MATLAB, Mathcad, Maple, Origin, etc. [1–3].
In this paper, the MATLAB software package with built-in subroutines for optimization
was used.

One of the most important methods for determining the long-term behavior of poly-
mers is based on the principle of temperature-time superposition (TTSP), which uses
information from short-term tests at different temperatures. The method uses the similarity
of the variations of the relaxation/creep modulus over time at different temperatures.
This approach allows the creation of a master curve that moves based on the value of the
shift factor. Later, the experimental time frame was extended to successfully show the
relationship between time, creep/relaxation function values, and glass region temperature.
One-dimensional tensile experiments were performed using a Meissner-type rheometer
to measure ABS properties and a material model was proposed that takes into account
the effects of strain rate, solidification strain, and temperature sensitivity. An innovative
thermoforming process has recently been developed to form composite layers using pres-
sure while melting the polymer during the injection phase. This process is an integration
of thermoforming and injection processes, and can result in a significant reduction in the
tools, machines, and operating costs needed. A very significant study of the mechanical
properties of 3D printed polymeric materials was conducted by a group of researchers [25],
whose subject was initially wood as a natural polymer, to extend the research to other
synthetic materials (PLA, ABS, PE) [26–28] as well as their combinations.

Based on the results of previous research, it is possible to introduce an analytical
expression in the form of a Prony series to express the values of the relaxation function
during an arbitrary period of time. The unknown parameters in the Prony series can be
determined by regression analysis, and the influence of temperature can be represented
using the temperature-time principle of superposition. Analytical expressions derived in
this way can be used in numerical analysis, and the obtained results are confirmed on the
basis of conducted experiments or available analytical solution. The model developed by
Demirdzic, Dzaferovic and Ivankovic [13] for the analysis of thermoviscoelastic deforma-
tions in the finite volume method is the basis for calculations, while a recursive algorithm
obtained on the basis of using Prony’s series is an upgrade that enables more efficient and
faster calculation of parameters.

2. Materials and Methods
2.1. Experimental Analysis

This chapter describes the experimental analysis of viscoelastic materials obtained
by 3D printing. The material characteristics and basic tests for determining relaxation
functions are described, as well as the tests used in this paper.

Tests with a constant increase in load over time can be considered a limit case when
the time of the ramp function coincides with the total load time. Here, a constant rate of
change of load over time is used instead of a constant load. Tests with a constant increase in
load are typical for testing soft materials, such as gels or liquids. The most interesting and
practical uses are optimization methods where relaxation functions are obtained from the
process of approximating the stress or deformation of the material. Relaxation functions



Polymers 2021, 13, 3276 4 of 24

are represented as a sum of exponential functions, i.e., a Prony series [24]. The appropriate
mathematical expression for the Prony series is:

E(t) = E∞ + ∑K
k=1 Ek· exp

(
− t
τk

)
, (1)

where E∞, Ek, τk are the “rubbery” relaxation modulus, coefficients in the Prony series, and
relaxation times, respectively. While the appropriate formulation for the creep modulus is:

J(t) = Jo + ∑K
k=1 Jk[1− exp(−t/τk)] , (2)

where Jo, Jk, and τk are the coefficients in the Prony series and relaxation times in case of
creep. On the other hand, the constitutive relation for a linear viscoelastic material is given
in the following form:

σ(t) =
∫ t

0+
E(t− τ) ∂ε

∂τ
dτ . (3)

Based on Equation (1), the following expressions can be obtained for the relaxation modulus:

σ(t) = c·t + ∑K
k=1 dk·

[
1− exp

(
− t
τk

)]
, (4)

or the creep compliance

ε(t) = g·t + ∑K
k=1 hk·

[
1− exp

(
− t
τk

)]
. (5)

Unknown coefficients c = Eo·
.
εo, dk = Ek·

.
εo, g = Jo·

.
σo, hk = Jk·

.
σo are determined

from the approximation or nonlinear regression procedure described in the next section.
In cases when we have the experimentally determined value of the relaxation module

in tabular and/or graphical form, the task is to determine the analytical form of the
relaxation module Erel(t). The most efficient and common method for approximating
this type of result is the least squares method or its variation. This problem boils down
to determining the parameters Ek and τk in Equations (4) and (5). If the difference of
the squares between the measured values and the calculated values is expressed in the
following form:

F(Ek, τk) = ∑K
k=1 ∑L

l=1(E(tl)− Ek(t))
2 , (6)

where L is the number of measurements. Then, from the condition that the stated sum is
minimum, we have a system of nonlinear equations:

K

∑
k=1

∂F
∂Ek

= 0,
K

∑
k=1

∂F
∂τk

= 0. (7)

From the last expression (7) arises a system of nonlinear equations with as many
unknowns as we have parameters in the Prony series (Ek, i τk) whose solution gives an
analytical expression for the relaxation module that can be further used in numerical
calculations. Numerous nonlinear optimization routines are already available in the
MATLAB Optimization Toolbox. In this paper, the “lsqcurvefit” MATLAB functions
were used to solve the problem of nonlinear approximation (fitting), which in turn use
the least squares method or its variation with an interface designed specifically for data
approximation problems.

Relaxation and creep tests are suitable for the long-term study of material responses
(minutes or days), but less accurate in cases of shorter times (seconds or less). Dynamic
tests are used when the stress (or strain) resulting from sinusoidal stress is often good for
filling a “short” range of polymer reactions. When the viscoelastic material is subjected
to a sinusoidally variable stress, the response is also sinusoidal and has the same angular
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frequency, but is late in the phase with an angle δ. The deformation lags behind the stress
at the phase angle δ, and this also applies if the deformation is a controlled variable (input
load) instead of the stress. Using Fourier transforms, the real part of the relaxation module
can be expressed as follows [1,2]:

E′(ω) = Eo + ∑K
k=1

ω2τ2
kEk

ω2τ2
k + 1

. (8)

Then, the imaginary part is:

E′′ (ω) = ∑K
k=1

ωτkEk

ω2τ2
k + 1

, (9)

where is k is the number of members in the Prony series.
The relaxation modulus of polymeric materials usually has three regions, which are

determined by time and temperature.
The first area is called glassy, where the properties are constant and the material is hard

and brittle. The test material then enters a transition area where the material properties
change drastically. By further increasing the temperature we reach the rubber region,
where the material behaves like rubber. The relaxation modulus curve usually extends
over several decades, which is physically impossible to measure. For this reason, data
from experiments are collected within a certain time interval, which is usually called an
experimental window (Figure 1).
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In this paper, a simple CFS methodology of displacement in closed form is used, which
completely eliminates the previously mentioned problems related to the displacement of
experimental data in the process of construction of the main curve at the selected reference
temperature [3]. Suppose that the experiments were performed at M different temperatures,
or {Tj; j = 1, 2, . . . , M}. Furthermore, let each of the M measured segments be given with Nj
discrete data, then it could be written in the following relation:

E
(
Tj, t

)
=
{

Ej,i = Ei
(
Tj
)
, ti, i = 1, 2, 3, . . . ., Nj

}
. (10)

Usually, the experimental data of the relaxation modulus and the creep function are
presented as discrete data pairs in a double logarithmic scale. Taking this into account,
then the whole range of experimental data can be expressed as:

E(T, t) =
{

log Ej,i = log Ei
(
Tj
)
, log tj,i = log ti

(
Tj
)
;

j = 1, 2 , 3, . . . , M; i = 1, 2, 3, . . . ., Nj

}
. (11)
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If we select the temperature Tκ as the reference temperature, then for the correspond-
ing data measured at this temperature as the reference segment of the main curve, the
following holds:

E(Tκ, t) = log Eκ,i, log tκ,i i = 1, 2, 3, . . . ., Nκ . (12)

To construct a master curve at the selected temperature Tκ, it is necessary to move
all segments measured at Tj > Tκ to the right, and the remaining segments, measured at
Tj < Tκ to the left along the logarithmic time axis, so as to obtain a “smooth” main curve,
as shown in the schematic in Figure 2. The individual horizontal displacements, log a
(Tj, j 6= κ) obtained in this process, represent a set of discrete values describing the so-called
time-temperature superposition, which is usually modeled with the WLF expression.

log aT =
−C1(Ti − To)

C2 + Ti − To
. (13)
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C1, C2–WLF constants and are determined experimentally, in which To is the reference
temperature for which the master curve is constructed, and Ti is the current temperature.

The research samples were printed from Z-ABS ABS filament (Zortrax, Poland) with
a Zortrax M200 3D printer. A 0.4 mm nozzle and a 1.75 mm diameter thread were used
to print 50 × 12 × 4 mm samples for rheometer tests and 80 × 10 × 4 mm for bending
tests. The print nozzle temperature was 275 ◦C and the printer bay temperature was 80 ◦C.
Samples with different layer thicknesses of 0.09 mm, 0.19 mm, and 0.39 mm were printed.
The samples had the same structure—the three outer layers were filled with material, and
the inner structure was a mesh structure with a square size of 1.25 mm and a line thickness
of 0.4 mm.

The rheometer (Figure 3) “ARES-G2 TA instruments” was used in the research for
dynamic mechanical analysis of samples. The specimens (Figure 4) were attached to the
torsional rectangular fixture and the torsional sinusoidal load. The test procedure was
controlled by computer Trios software. The amplitude test with oscillating amplitude was
performed at 1 Hz with a stress increase of 1.0 × 10−6 to the end of the linear viscoelastic
region of the material, which was determined by a sudden change (more than 5%) of the
storage modulus. The tests were performed at a constant temperature of 30 ◦C. The storage
modulus, loss modulus, and tan δ are calculated from the material response measurements.
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Oscillatory rheometry is one of the DMA-like techniques used to investigate the
mechanical properties of the materials. The material is oscillating, and the response is
measured by different methods. The response can be elastic (represented by elastic or
storage modulus (G rolled cous (represented by modulus of loss (G”). For real materials
the response is a combination of elastic and viscous response. The value tan (δ) is the ratio
between modulus of loss and storage module and is sometimes called the dumping factor.
Tensile tests of the samples were performed on a universal testing machine Zwick-Roell
Z005 with a constant load speed of 1 mm/min.

2.2. Numerical Method

This chapter presents a mathematical model to describe the deformations of a vis-
coelastic solid, including the equation of momentum, the equation of thermal energy,
the constitutive relations as well as the initial and boundary conditions for the solution
domain [13].
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2.2.1. Governing Equations

The law of conservation of momentum and the law of conservation of energy of a
viscoelastic solid, of volume V located inside a closed surface S, can be expressed mathe-
matically in the following form [13]:

∂

∂t

∫
V
ρ

(
∂u
∂t

)
dV =

∫
S
δσ·n·dS +

∫
V
ρ·δfb·dV , (14)

∂

∂t

∫
V
ρ·e·dV = −

∫
S

q·n·dS +
∫

V
ρ·se·dV , (15)

where t is the time, ρ is the density, u is the displacement, δσ is the stress increment, n is
the outer normal of surface S, δfb is the increment of force, e is the internal energy, q is the
heat flux, and se the source term.

2.2.2. Constitutive Relations

For an isotropic viscoelastic material, the stress history including thermal effects is
described by a hereditary integral [13]:

σ =
∫ t

0 2µ(t− τ)δε(τ)δτ dτ+

I
∫ t

0

[
λ(t− τ)trδε(τ)δτ − 3K(t− τ)α(T)δT(τ)

δτ

]
dτ

 , (16)

where µ(t − τ) i λ(t − τ) are the Lame relaxation functions, δε(t) is the strain tensor
increment, τ is the incremental time, K(t − τ) is the volume relaxation modulus, α(T) is
the thermal expansion, I is the unit tensor, and T is the body temperature. It is assumed
that the relations of the Lame relaxation functions and parameters for elastic materials also
apply to viscoelastic materials, and that they are defined as follows:

µ(t) = E(t)
2[1+υ(t)] ;

λ(t) = υ(t)E(t)
2[1+υ(t)][1−2υ(t)] ;

K(t) = E(t)
3[1−2υ(t)]

 , (17)

where E(t) is the Young’s relaxation modulus, and ν(t) is the Poisson number.
In the case of non-isothermal changes in the viscoelastic material, then times t and τ

are replaced by the reduced times using the following next equation:

t′ =
∫ t

0

dt
aT(T)

; . (18)

The time temperature shift factor aT(T) is the material characteristic that gives the
relationship between the properties of the material at temperature T and the reference
temperature T0. The relation between the heat flux and the temperature gradient is given
by Fourier’s law:

q = −k·gradT (19), (19)

where k is the thermal conductivity. The relationship between thermal energy and temper-
ature is given by the following expression:

e = c·T , (20)

where c is the specific heat.
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2.2.3. Initial and Boundary Conditions

The equation for a solid is of the hyperbolic type, and at time t = to the displacement
increment and the time gradient of the displacement increment at all points of the solution
domain are given as follows [13]:

du(r, to) = duo(r),
d(du(r, to))

dt
= d

.
uo

(r), (21)

The boundary conditions must be specified on all boundary areas of the resolution
domain. They can be of the Dirichlet and/or Von-Neumann type depending on whether
the dependent variables or gradient values of the dependent variables are given at the
domain boundary.

Dirichlet boundary conditions:

ϕ(r, to) = f1(t), (22)

where ϕ is T, du.
Neumann boundary conditions:

gradϕ(r, to) = f2(t). (23)

In many practical cases, the problem can be solved only in one part of the solution
domain, because there is a symmetry of the solution in the remaining area on the axis
of symmetry.

2.2.4. Correction of Boundary Conditions

For the case when the increment of force is given as a boundary condition at the
boundary of the solution domain, due to the relaxation of the total stress, which follows
from the form of the constitutive relation in which relaxation functions are used which are
monotonically decreasing, it is necessary to correct the boundary condition as follows [13]:

Figure 5 shows the stress relaxation in the case of uniaxial load, when a constant stress
σo is given at the limit. If f2(tm) is the total force at time tm, and df2(tm) is the increment of
the force in the m−th time and/or incremental step (Figure 5), then, using the expression
for total stress [15], it holds that:

df2(tm) = f2(tm)− f2(tm−1) + dfr(tm) , (24)

where:
dfr(tm) = f2(tm−1)− σ(tm−1)·sB , (25)

the residual increment of force, sB is the boundary surface vector at the domain boundary.
Stress σ(tm) is total stress at time tm−1 which is relaxed at time tm.
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2.2.5. Calculation of Total Stress

The values of stress tensor σ(tm) are determined in the centers of the control volumes
adjacent to the boundary surfaces of the solution domain. The calculation of the total stress
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can be done using the constitutive relation (16). By introducing the relaxation module from
expression (1) into the constitutive relation, we have the following equation:

σ(t) =
∫ t

0+
E∞

∂ε

∂τ
dτ+ ∑K

k=1

∫ t

0+
Ek· exp

(
− t− τ
τk

)
∂ε(τ)

∂τ
dτ . (26)

The first term on the right side of the equation can be considered elastic while the
second term is viscoelastic and can be further separated:

σ(t) = E∞ε(t) + ∑K
k=1

∫ tm
0+ Ek· exp

(
− tm−1+∆t−τ

τk

)
∂ε(τ)

∂τ dτ =

E∞ε(t) + ∑K
k=1 exp

(
− ∆t
τk

)
·
∫ tm−1

0+ Ek· exp
(
− tm−1−τ

τk

)
· ∂ε(τ)∂τ dτ+

∑K
k=1

∫ tm
tm−1

Ek· exp
(
− tm−τ

τk

)
∂ε(τ)

∂τ dτ

 (27)

Individual terms in Equation (27) can be written as: σelas = E∞[ε(tm)− ε(t0) ] is
the elastic part of the total stress. σm−1

visco = ∑K
k=1 exp

(
− ∆t
τk

) ∫ tm−1
0+ Ek· exp

(
− t−τ
τk

)
∂ε
∂τdτ is

the viscoelastic part of the total stress from the previous time step tm−1. The remaining
members are calculated according to the following relation:

σincr
visco = ∑K

k=1
∫ tm

tm−1
Ek· exp

(
− t−τ
τk

)
∂ε(τ)

∂τ dξ =

∑K
k=1

ε(tm)−ε(tm−1)
∆tm
τk

[
1− exp

(
− ∆t
τk

)]
 . (28)

The formula for calculating the total stress can be written as follows:

σ(t) = σelas + σ
m−1
visco + σ

incr
visco . (29)

It can be seen from relation (29) that to calculate the value of the total stress at
the current moment tm it is sufficient to know the values of the viscoelastic part of the
stress from the previous time step (σm−1

visco) as well as the deformation values from these
two time steps.

3. Results
3.1. Experimental Results

This chapter presents the results of processing experiments in which a number of
tests were applied, such as the test with constant increase in load (stress/strain), creep test,
dynamic frequency test, dynamic amplitude test, and test for determining the temperature
shift factor. All these tests were performed on the previously described experimental
line and devices that give sufficient reading accuracy for the results to be considered
reliable. Based on the performed experiments, the expressions for creep modulus, relaxation
modulus and temperature shift factor were determined. After such analytical expressions in
the mathematical form of the Prony series with knowledge of other physical characteristics
of the material, numerical simulations were performed.

3.1.1. Determination of Creep Modulus from Creep Test

The well-known Heaviside function shown in Figure 6a is used to determine the creep
modulus in this example. As a widely used function for a mechanical test, there are no
particular difficulties in controlling the input, in this case the stress (force) since it is a creep
test. The result is a deformation (creep function) during the test time ε(t) (Figure 6b).
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For these tests, we also chose stress values so that the total deformation does not
exceed 2% because a pronounced creep characteristic is expected in this area. In order
to demonstrate the usefulness and applicability of the proposed procedure to different
polymeric printed materials, we use real experimental data measured at constant load
(σo = const) for the creep test. To determine the relaxation function in this case, which
is the creep modulus, Equation (5) is used, i.e., the unknown coefficients Ji and τi are
determined. The nonlinear regression procedure is implemented in MATLAB software and
applied here.

Material samples were prepared on the described experimental line [23] or 3D printer
in a layer thickness of value d1 = 0.09 mm. The dimensions of the samples used in these test
cases are 50× 12× 4 mm. The results of testing and approximation are presented in Table 1,
while in Figure 7 a graphical presentation of the results of approximation and experimental
results is given. The number of exponential terms in the series was systematically increased
from n = 1 for the roughest approximation to n = 7 for the finest. From Table 1 it can be seen
that the optimization was performed when choosing the relaxation times, which means that
the relaxation times are assumed to be known in order to reduce the number of unknown
parameters and speed up the procedure for solving systems of nonlinear equations.

Table 1. Coefficients in creep modulus (PLA, d1 = 0.09 mm).

Number of Terms Number of Terms Number of Terms Number of Terms

1 3 5 7

i Ji τi Ji τi Ji τi Ji τi

0 3.3 × 10−9 3.2 × 10−9 3.1 × 10−9 2.9 × 10−9

1 6.7 × 10−10 1.0 × 103 1.6 × 10−10 1.0 × 101 2.3 × 10−11 1.0 × 10−1 3.8 × 10−11 1.0 × 10−3

2 1.3 × 10−12 1.0 × 102 3.3 × 10−14 1.0 × 10−0 3.0 × 10−10 1.0 × 10−2

3 6.5 × 10−10 1.0 × 103 1.5 × 10−10 1.0 × 101 5.0 × 10−11 1.0 × 10−1

4 8.7 × 10−12 1.0 × 102 4.0 × 10−11 1.0 × 10−0

5 6.4 × 10−10 1.0 × 103 1.3 × 10−11 1.0 × 101

6 3.2 × 10−11 1.0 × 102

7 9.2 × 10−10 1.0 × 103
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The coefficients in Table 1 were applied in the expression for the creep modulus and
compared with the experimentally determined values. Figure 7 for the PLA material and
layer thickness d = 0.09 mm shows different deviations of the fitted parameter values from
the experimental ones for different numbers of exponential members in the creep module.
In the initial phase of the test, a larger deviation of the fitted ones from the experimental
values was noticed for the number of members n = 1 and n = 2, while for n = 6 and n = 7
a larger deviation was noted at the end of the test. The best results are obtained for the
number of exponential terms n = 3 where the maximum deviation of experimental and
fitted results is up to 1.85%. The maximum deviation for n = 1 at the beginning of testing is
2.9% while for n = 7 it is 5.3%.

In Table 2 the values of the average deviation between the fitted and experimental
data for the whole test period are shown. The results show that the best solution is the
Prony series with n = 7 exponential terms.

Table 2. Average deviation between experimental and fitted data (PLA, d1 = 0.09 mm).

Number of Terms Number of Terms Number of Terms Number of Terms

1 3 5 7

Average error (%) 1.8 1.6 0.9 0.8

3.1.2. Determination of Creep Modulus from Constant Stress-Rate Test

Mechanical tests with a linear increase in load (stress/strain) over time are often used
to determine creep modulus (Figure 8). This is a very demanding test and is reflected
primarily in load control over time. However, this problem can be overcome quite well
with the advent of the newer generation of rheometers.

For this test, we selected the same 3D printed polymeric material (PLA) with samples
printed in three-layer thicknesses. The aim of this test is to determine the creep modulus
or more precisely to determine the coefficients in the Prony series for the creep modulus
during the test time. For this test, the number of exponential terms in the Prony series was
taken from n = 1, 2, 5, and 10 with the relaxation times based on previous experiments and
the linear distributions over several decades. The assumption of known relaxation times is
based on previous similar research, and the approach used in this study is more convenient
due to the reduction in the number of unknowns and equations in the system of nonlinear
equations, as a consequence of the application of nonlinear regression.
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Figure 8. (a) Constant stress-rate test; (b) experimental results for strain ε(t).

Figure 8 shows the method of loading 3D printed samples of polymeric material and
the linear stress ratio over time. The dimensions and geometry of the samples are identical
to those in Section 3.1.1. Figure 8b shows the experimental results for deformation over
time as a consequence of the applied load for one layer (d = 0.19 mm) of the 3D printed
samples. All results in the form of certain coefficients were obtained using the appropriate
Equation (5) in relation to the experimental results.

These coefficients are shown in Table 3. Figure 9 shows the good agreement of the
results layer with regard to the d = 0.19 mm layer of 3D printed ABS. It is also noticeable
that the results match throughout the test time, unlike the previous classic creep test with
a constant stress value. In these tests, the logarithmic distribution of relaxation times in
individual terms of the Prony series was used, which gave quite good fitting results even
for a small number of exponential terms. Unlike the previous test, a certain consistency is
shown here in terms of reducing the mean deviation of the fitted from the experimental
results with an increase in the number of exponential terms. All these deviations are less
than 2%, which can be assessed as quite acceptable.
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Table 3. Prony series for ABS material and layer printing d = 0.19 mm.

Number of Terms Number of Terms Number of Terms Number of Terms

1 2 5 10

τi (s) Ji τi (s) Ji τi (s) Ji τi (s) Ji

0 1.00 × 10+9 9.85 × 10+8 9.46 × 10+8 9.25× 10+8

1 10.95 2.25 × 10+8 4.93 3.98 × 10−1 2.22 7.82 × 10+7 1.55 1.28 × 10+7

2 24.33 1.94 × 10+8 4.93 2.53 × 10−1 2.39 1.21 × 10+7

3 10.95 4.92 × 10−1 3.69 1.89 × 10+7

4 24.33 1.96 × 10−1 5.70 2.57 × 10+7

5 54.03 1.89 × 10+8 8.81 2.92 × 10+4

6 13.62 4.90 × 10+6

7 21.04 1.20 × 10+7

8 32.52 2.00 × 10+6

9 50.25 1.44 × 10+6

10 77.65 1.82 × 10+8

3.1.3. Determination of Relaxation Modulus from the Constant Strain-Rate Test

For this test, we selected identical 3D printed polymeric material (ABS) from the
previous Section 3.1.2 with samples printed in layer thickness d = 0.19. The aim of this test
is to determine the relaxation modulus or more precisely to determine the coefficients in
the Prony series for the relaxation modulus (E(t)) during the test time.

As in the previous test, the number of exponential members in the Prony series was
taken from n = 1, 2, 5, and 10 (Table 4), but this time the relaxation times were taken from
previous research. Figure 10 shows the method of loading 3D printed samples of polymeric
material and shows the linear stress ratio over time. The dimensions and geometry of the
samples are identical to those in Section 3.1.1. and Section 3.1.2.

Table 4. Prony series for ABS material and layer printing d = 0.19 mm.

Number of Terms Number of Terms Number of Terms Number of Terms

1 2 5 10

τi (s) Ei (Pa) τi (s) Ei (Pa) τi (s) Ei (Pa) τi (s) Ei (Pa)

0 1.00 × 10+9 9.85 × 10+8 9.46 × 10+8 9.25× 10+8

1 10.95 2.25 × 10+8 4.93 3.98 × 10−1 2.22 7.82 × 10+7 1.55 1.28 × 10+7

2 24.33 1.94 × 10+8 4.93 2.53 × 10−1 2.39 1.21 × 10+7

3 10.95 4.92 × 10−1 3.69 1.89 × 10+7

4 24.33 1.96 × 10−1 5.70 2.57 × 10+7

5 54.03 1.89 × 10+8 8.81 2.92 × 10+4

6 13.62 4.90 × 10+6

7 21.04 1.20 × 10+7

8 32.52 2.00 × 10+6

9 50.25 1.44 × 10+6

10 77.65 1.82 × 10+8
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Figure 10. (a) Constant strain-rate test; (b) Experimental results for stress σ(t).

Figure 11 shows the experimental results for stress over time as a consequence of the
applied load for layer thickness d = 0.19 mm of 3D printed samples. All results in the form
of certain coefficients were obtained using the appropriate expression (5) for stress (σ(t)) in
relation to the experimental results.

Similar to the test case of a constant increase in stress, the use of this test allowed a fairly
precise determination of the relaxation function even with a small number of members
in the Prony series. The previously adopted logarithmic distribution of relaxation times
and the use of the derived expression (5) gave deviation values of fitted and experimental
results that are less than 2%.

3.1.4. Determination of Relaxation Module from Dynamic Test “Frequency Sweep”

During this dynamic test, the frequency changes, while the amplitude of deformation
or the amplitude of the shear stress is kept constant. Data at low frequencies describe the
behavior of samples at slow load changes. Analogous to this, the fast load behavior is
expressed at high frequencies. For this example, ABS material was taken from which test
samples were made and tested on a rheometer. The relaxation module was presented in
the form of a Prony series where the number of members gradually varied towards higher
values. The results are presented in the following Figure 12 and Table 5.
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Table 5. Prony series for material ABS at temperature T = 20 ◦C.

Coefficients of Prony Series

1 Term 2 Terms 3 Terms

i Gi τi Gi τi Gi τi

0 5.6 × 10+8 5.6 × 10+8 5.7 × 10+8

1 1.5 × 10+7 1.0 × 10−1 1.1 × 10+7 3.3 × 10−1 1.5 × 10+9 2.4 × 10−5

2 1.0 × 10+7 3.1 × 10−2 1.5 × 10+7 6.4 × 10−2

3 5.7 × 10+5 3.2 × 10+2

To approximate the mentioned experimental data, expression (8) with the previously
mentioned nonlinear regression was used. From the presented Figure 12 we have a good
agreement of experimental and approximated results. The results can also be presented in
the following tabular form:

For this procedure, the maximum deviation of the measured and approximated value
of the shear stress storage module was calculated. Figure 12b shows the decrease in the
maximum deviation of the two compared sizes with the increase in the number of members
in the Prony series as expected. It can also be seen that in the first approximation with the
Prony series in which we have only one member that the deviation is less than 1%, which
is quite acceptable.

3.1.5. Determination of Time-Temperature Coefficient aT

To calculate the shift factor, a series of measurements of the relaxation module at differ-
ent temperatures starting from T1 = 30 ◦C to T4 = 60 ◦C with an increase of ∆T = 10 ◦C was
performed (Figure 13). The value of the so-called experimental window EW = 5.0 × 10+1 s.
The above expression (18) was used primarily to determine the shift factor for an individual
temperature difference (e.g., 30 ◦C and 40 ◦C).

To determine the value of the shift factor between the two isothermal values, a non-
linear regression implemented in MATLAB software was used again, which was run by
the “lsqfit” command. The procedure was further repeated for other values of the shift
factor between the values of the relaxation module for the reference temperature (in this
case Tref = 30 ◦C) and the values of the relaxation module for the experimental isothermal
conditions (T2 = 40 ◦C, T3 = 50 ◦C and T4 = 60 ◦C). After determining the individual values
of the shift factor for all temperature values in relation to the reference, expression (19) and
nonlinear regression were used to determine the unknown constants C1 and C2. Using the
mentioned methodology and experimental data, the values of WLF constants C1 = 0.01593
and C2 = 28.13 were obtained for the reference temperature Tref = 30 ◦C. The values for
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the time—temperature factor are presented graphically in Figure 13b. A good agreement
between the experimental (measured) results and the results obtained using nonlinear
regression was found. The MATLAB software package and the “lsqfit” command were
used to approximate the experimental results.

Polymers 2021, 13, x FOR PEER REVIEW 17 of 24 

(a) (b) 

Figure 13. (a) Experimental data for relaxation modulus at various temperatures; (b) Values for time—temperature shift 
factor aT. 

To determine the value of the shift factor between the two isothermal values, a non-
linear regression implemented in MATLAB software was used again, which was run by 
the “lsqfit” command. The procedure was further repeated for other values of the shift 
factor between the values of the relaxation module for the reference temperature (in this 
case Tref = 30 °C) and the values of the relaxation module for the experimental isothermal 
conditions (T2 = 40 °C, T3 = 50 °C and T4 = 60 °C). After determining the individual values 
of the shift factor for all temperature values in relation to the reference, expression (19) 
and nonlinear regression were used to determine the unknown constants C1 and C2. Using 
the mentioned methodology and experimental data, the values of WLF constants C1 = 
0.01593 and C2 = 28.13 were obtained for the reference temperature Tref = 30 °C. The values 
for the time—temperature factor are presented graphically in Figure 13b. A good agree-
ment between the experimental (measured) results and the results obtained using nonlin-
ear regression was found. The MATLAB software package and the “lsqfit” command 
were used to approximate the experimental results. 

3.2. Examples of Numerical Simulations 
Numerical calculations were performed for polymeric materials for which the relax-

ation modulus is already known as well as for the material for which the relaxation mod-
ulus was determined in a previous experimental analysis. Calculations were performed 
for pure mechanical load, temperature influence as well as load with simultaneous cool-
ing of the material. Experimental data or available analytical solutions were used to com-
pare the results. 

3.2.1. Relaxation Test 
In this example, the relaxation test for the sample in Figure 14 made of a viscoelastic 

material is considered. The horizontal movement of the left side of the rod is limited, while 
the uniaxial load is set on the right side of the rod. The resolution domain is divided into 
10 CV with a time step δt = 1 s. 

Figure 13. (a) Experimental data for relaxation modulus at various temperatures; (b) Values for time—temperature shift
factor aT.

3.2. Examples of Numerical Simulations

Numerical calculations were performed for polymeric materials for which the re-
laxation modulus is already known as well as for the material for which the relaxation
modulus was determined in a previous experimental analysis. Calculations were per-
formed for pure mechanical load, temperature influence as well as load with simultaneous
cooling of the material. Experimental data or available analytical solutions were used to
compare the results.

3.2.1. Relaxation Test

In this example, the relaxation test for the sample in Figure 14 made of a viscoelastic
material is considered. The horizontal movement of the left side of the rod is limited, while
the uniaxial load is set on the right side of the rod. The resolution domain is divided into
10 CV with a time step δt = 1 s.
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The relaxation modulus of the material in the form of the Prony series was previously
experimentally determined and is presented in Table 3. The loads were performed on the
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right side of the rod by specifying the displacement increment (Figure 14) which can be
described in mathematical form as follows:

εo = 5.75·10−2; t ≥ 0
}

. (30)

In the given example, 2D spatial discretization with a uniform orthogonal numerical
mesh was used, although the example can also be solved in the 1D domain. For regions 2
and 4 the displacement vector is known at the boundary (Equation (22)), for region 1
(Figure 15) the boundary condition is the symmetry plan (Equation (23)), while for region 3
the known (free surface) load is valid, i.e., the boundary condition is also from Equation (22).
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Figure 15. Numerical mesh for 2D domain (50 × 20 CV).

To solve this case, a grid with (50 × 20) 1000 control volumes was used. Figure 16
shows that as the number of exponential members in the relaxation module increases, the
numerical results increasingly agree with the experimental results.

3.2.2. Creep Recovery Test

For the next test, the same material (ABS) was selected from the relaxation test (3.2.1)
with identical characteristics of the relaxation modulus, while the load consists of one
period of constant load (σo = 7.5 MPa) to the moment t = 100 s, followed by unloading
(σo = 0 MPa) (Figure 17). The geometry and domain of the solution are identical to those
in Section 3.2.1, and the load limit condition was applied to region 2 of Figure 15. Other
boundary conditions as well as geometry are the same as in Figure 14a. An expression with
one free and one exponential term according to Table 4 was used for the relaxation module.
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For this case, an analytical solution can be found that takes the form:

ε(t) = σo[J(t)− J(t− τ)] , (31)
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where the coefficients in the creep modulus are determined on the basis of a three-parameter
model:

Jo =
1

Eo + E1
; J1 =

1
Eo
− 1

Eo + E1
; r = τ

(
Eo + E1

Eo

)
, (32)

where r is the relaxation time in the creep modulus. More about performing an analytical
solution can be found in the literature [11].
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Figure 17. (a) Creep recovery test; (b) results of creep recovery test.

In Figure 17b a fairly good agreement of the numerical results with the measured
experimental results (−o) is shown. In the same figure it can be seen that the creep
phenomenon is most pronounced at the beginning of the test.

3.2.3. Plane-Strain Time-Varying Test

In this case, the material with the experimentally determined relaxation modulus
from Table 3 was also used. The relaxation module is characterized as a Prony series with
two exponential terms and one free term. The sample density is known and is 900 kg/m3.
Poisson’s ratio for ABS is taken from the literature (υ = 0.35). The geometry and boundary
conditions are given in the following Figure 18a. This test case is analyzed in the 2D
domain, and since no analytical solution is known, the obtained simulation results are
compared with the results of a numerical simulation carried out using the finite element
method. The load at the boundary of the solution domain consists of a time-varying strain,
while the total test time is divided into four regions.
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The first region consists of a linear increase in deformation to a value of 1% (εo = 0.01,
t1 = 5 s), the second is the maintenance of constant deformation until t2 = 50 s, in the third
region a linear unloading is performed until t3 = 55 s (εo = 0), and in the last region the
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relaxation effect is monitored until t4 = 100 s. The time course of the load is also presented
in Figure 18b.

An orthogonal numerical grid of 100 CVs was used to discretize the solution domain
(Figure 18a), while a step of t = 1 s was chosen for time discretization. Figure 19 presents the
numerical results obtained using two numerical methods (Finite Volume Method and Finite
Element Analysis). Two numerical methods were used due to the very difficult performance
of an experiment of this type, and an analytical solution for this test case (υ 6= 0) is not
available. The application of the numerical finite element method was performed using
the well-known ABAQUS software with built-in subroutines for calculating viscoelastic
deformations and stresses. The numerical solutions agree very well in all load regions and
good agreement is especially visible at linear loading or unloading.
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3.2.4. Analysis of Viscoelastic Material with Simultaneous Mechanical and
Thermal Loading

For this case, the material that was previously subjected to experimental analysis
in determining the relaxation modulus in Section 3.1.3 was analyzed. This is a very
convenient test example because the numerically obtained data can be further directly
compared with the experimental data. The thermal effect is taken into account through the
use of shift factors in the form of a WLF function. The values for the coefficients in the WLF
function were taken from Section 3.1.4 since the same material was used. Other physical
characteristics are presented in Table 6, below.

Table 6. Physical properties of ABS—plastics and layer d = 0.19 mm.

Density
ρ (kg/m3)

Heat Conductivity
λt (W/m2K)

Linear Thermal
Expansion α (K−1)

900 0.1 2.2× 10−4

Geometrical characteristics and boundary conditions are presented in Figure 20 where
the initial temperature T1 = 30 ◦C at all points of the domain.
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Figure 20. Geometry and boundary conditions.

The material is gradually heated by means of a linearly changed temperature To.
The design of the test device is such that a sample is fixed at one end in the experimental
chamber while a constant stress load is set at the other end. The temperature rate is constant
and after t = 180 s it is 60 ◦C. The load at the end of the rod is σ = 1.51× 10+5 Pa.

After the geometry was made and the initial and boundary conditions were applied,
the following results were obtained as in Figure 21. The presentation of the results shows a
fairly good agreement between the results obtained using the numerical method in relation
to the experimentally determined results from moving the end of the rod.
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Figure 21. Experimental and numerical data for displacement.

4. Discussion

The experimental research of relaxation functions presented in this paper can be
applied to a wide range of polymeric materials, starting from “pure” plastics, such as
ABS, to materials formed as a mixture of polymers and some basic material (e.g., wood
or a combination of wood and glue). The selected application examples demonstrate the
specific determination of the coefficients in the Prony series based on the experimental
values of the relaxation function. Two examples of determining the analytical form of the
relaxation function show that the methodology for determining the unknown coefficients
in the Prony series is applicable in the real time (t) domain as well as in the angular velocity
(ω)-domain. After determining the analytical expression under isothermal conditions,
the influence of temperature on the values of the relaxation function was investigated,
where the time-temperature principle was applied. The application of this principle
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was performed within the experimental window, where the “shift-factor” values were
determined using the WLF equation and nonlinear regression between the experimental
values and the assumed analytical expression. After this analysis, a numerical calculation
was performed for non-isothermal conditions with such an experimentally determined
relaxation function and shift factor, with a small difference between the numerical and
experimental results. A rheometer test device was used for testing the samples, as well as a
universal ZwickRoell compression and extension testing machine. Both devices provided
quite good control of the input parameters, primarily the control of the sample load,
whether it was a creep or relaxation test. Nonlinear regression, i.e., the well-known least
squares method using the subroutines in MATLAB, very quickly gave good results of
“fitting” the experimental data for an arbitrary and optimized set of coefficients in the
Prony series. For the application of the recursive algorithm, the finite volume method was
used, which was implemented in earlier papers for the problems of viscoelastic solids.
The basis for all numerical calculations is the software package SA-2D developed for the
analysis of thermo-viscoelastic deformations. Finally, it was shown that for polymer 3D
printed materials a relaxation function can be determined in the form of a Prony series
based on the experiments performed in this study. Based on the analytical expressions of
the Prony series and shift factors, the numerical calculations yielded results that differed
very little from the experimental ones. The numerical results using the recursive algorithm
did not deviate significantly from the experimental ones even when considering problems
with non-isothermal conditions.
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Nomenclature

a, b coefficients in discretized equations
aT shift factor
c specific heat
d location vector
e internal energy
E Young’s relaxation modulus
f force
G shear relaxation modulus
I unit tensor
i Cartesian unit vector
J creep compliance
K volume relaxation modulus
k thermal conductivity
P0, Pj centers of control volumes
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q heat flux vector
Q, q source terms
r distance vector
n vector of outer normal
t time
t’ reduced time
T temperature
U total displacement vector
u displacement vector
V volume
α thermal expansion coefficient
Ґ diffused term
δt time increment
δT temperature increment
δε strain increment
λ, µ Lame’s coefficients
ρ density
σ stress tensor
τ incremental time
ν Poisson’s number
ω angular velocity
ϕ generic variable
γ angular strain
Subscripts
B boundary
i Cartesian components
j cell index (volume)
k index in the Prony series
r radial direction
x,y,z Cartesian coordinates
Superscripts
i time-step counter
j iteration counter
T transpose
Abbreviations
DMA dynamic-mechanic analysis
FDM fused deposition modeling
PLA poly-lactic acid
ABS acrylonitrile butadiene styrene
PE polietilen
CFS closed-form shifting
TTSP time temperature

superposition principle
FE finite element method
FVM finite volume method
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