Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (573)

Search Parameters:
Keywords = WiFi signal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5744 KB  
Article
Decoupling Rainfall and Surface Runoff Effects Based on Spatio-Temporal Spectra of Wireless Channel State Information
by Hao Li, Yin Long and Tehseen Zia
Electronics 2025, 14(20), 4102; https://doi.org/10.3390/electronics14204102 - 20 Oct 2025
Viewed by 200
Abstract
Leveraging ubiquitous wireless signals for environmental sensing provides a highly promising pathway toward constructing low-cost and high-density flood monitoring systems. However, in real-world flood scenarios, the wireless channel is simultaneously affected by rainfall-induced signal attenuation and complex multipath effects caused by surface runoff [...] Read more.
Leveraging ubiquitous wireless signals for environmental sensing provides a highly promising pathway toward constructing low-cost and high-density flood monitoring systems. However, in real-world flood scenarios, the wireless channel is simultaneously affected by rainfall-induced signal attenuation and complex multipath effects caused by surface runoff (water accumulation). These two physical phenomena become intertwined in the received signals, resulting in severe feature ambiguity. This not only greatly limits the accuracy of environmental sensing but also hinders communication systems from performing effective channel compensation. How to disentangle these combined effects from a single wireless link represents a fundamental scientific challenge for achieving high-precision wireless environmental sensing and ensuring communication reliability under harsh conditions. To address this challenge, we propose a novel signal processing framework that aims to effectively decouple the effects of rainfall and surface runoff from Channel State Information (CSI) collected using commercial Wi-Fi devices. The core idea of our method lies in first constructing a two-dimensional CSI spatiotemporal spectrogram from continuously captured multicarrier CSI data. This spectrogram enables high-resolution visualization of the unique “fingerprints” of different physical effects—rainfall manifests as smooth background attenuation, whereas surface runoff appears as sparse high-frequency textures. Building upon this representation, we design and implement a Dual-Decoder Convolutional Autoencoder deep learning model. The model employs a shared encoder to learn the mixed CSI features, while two distinct decoder branches are responsible for reconstructing the global background component attributed to rainfall and the local texture component associated with surface runoff, respectively. Based on the decoupled signal components, we achieve simultaneous and highly accurate estimation of rainfall intensity (mean absolute error below 1.5 mm/h) and surface water accumulation (detection accuracy of 98%). Furthermore, when the decoupled and refined channel estimates are applied to a communication receiver for channel equalization, the Bit Error Rate (BER) is reduced by more than one order of magnitude compared to conventional equalization methods. Full article
Show Figures

Figure 1

17 pages, 4563 KB  
Article
Improving Solar Energy-Harvesting Wireless Sensor Network (SEH-WSN) with Hybrid Li-Fi/Wi-Fi, Integrating Markov Model, Sleep Scheduling, and Smart Switching Algorithms
by Heba Allah Helmy, Ali M. El-Rifaie, Ahmed A. F. Youssef, Ayman Haggag, Hisham Hamad and Mostafa Eltokhy
Technologies 2025, 13(10), 437; https://doi.org/10.3390/technologies13100437 - 29 Sep 2025
Viewed by 401
Abstract
Wireless sensor networks (WSNs) are an advanced solution for data collection in Internet of Things (IoT) applications and remote and harsh environments. These networks rely on a collection of distributed sensors equipped with wireless communication capabilities to collect low-cost and small-scale data. WSNs [...] Read more.
Wireless sensor networks (WSNs) are an advanced solution for data collection in Internet of Things (IoT) applications and remote and harsh environments. These networks rely on a collection of distributed sensors equipped with wireless communication capabilities to collect low-cost and small-scale data. WSNs face numerous challenges, including network congestion, slow speeds, high energy consumption, and a short network lifetime due to their need for a constant and stable power supply. Therefore, improving the energy efficiency of sensor nodes through solar energy harvesting (SEH) would be the best option for charging batteries to avoid excessive energy consumption and battery replacement. In this context, modern wireless communication technologies, such as Wi-Fi and Li-Fi, emerge as promising solutions. Wi-Fi provides internet connectivity via radio frequencies (RF), making it suitable for use in open environments. Li-Fi, on the other hand, relies on data transmission via light, offering higher speeds and better energy efficiency, making it ideal for indoor applications requiring fast and reliable data transmission. This paper aims to integrate Wi-Fi and Li-Fi technologies into the SEH-WSN architecture to improve performance and efficiency when used in all applications. To achieve reliable, efficient, and high-speed bidirectional communication for multiple devices, the paper utilizes a Markov model, sleep scheduling, and smart switching algorithms to reduce power consumption, increase signal-to-noise ratio (SNR) and throughput, and reduce bit error rate (BER) and latency by controlling the technology and power supply used appropriately for the mode, sleep, and active states of nodes. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

29 pages, 1644 KB  
Article
Commercial Off-the-Shelf IoT-Based Infant Car Seat Application for Preventing the Forgotten Baby Syndrome
by Apostolos Panagiotopoulos and Vasileios Karyotis
Future Internet 2025, 17(10), 443; https://doi.org/10.3390/fi17100443 - 29 Sep 2025
Viewed by 326
Abstract
The Forgotten Baby Syndrome (FBS), the accidental abandonment of infants in vehicles, continues to result in otherwise preventable tragedies worldwide. This work presents a prototype system called SafeCuddle, designed to mitigate the risks associated with FBS. The proposed solution utilizes an Arduino [...] Read more.
The Forgotten Baby Syndrome (FBS), the accidental abandonment of infants in vehicles, continues to result in otherwise preventable tragedies worldwide. This work presents a prototype system called SafeCuddle, designed to mitigate the risks associated with FBS. The proposed solution utilizes an Arduino UNO R4 WiFi microcontroller integrated with low-cost IoT sensors for real-time data acquisition and processing. Processed signals are visualized via a Python-based desktop application. A key feature of the system is its ability to issue immediate alerts to the driver upon detecting their departure from the vehicle while an infant remains seated in the vehicle. An extensive review of the syndrome’s etiology identifies disrupted routines and the high demands of modern life as primary contributing factors. In response, the proposed system can be easily implemented with commercial off-the-shelf components and aims to support caregivers by acting as a fail-safe mechanism. The paper is structured into two primary sections: (i) an analytical overview of FBS and its contributing factors and (ii) a detailed account of the system’s design, implementation, operational workflow, and evaluation results. The unique contribution of this work lies in the integration of a low-cost, real-time alert system within a modular and easily deployable architecture that can be integrated in existing infant car seats as an aftermarket solution, if properly commercialized, specifically tailored to prevent FBS through immediate driver feedback at the critical moment of risk. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and Internet of Things)
Show Figures

Figure 1

19 pages, 1691 KB  
Article
A Myoelectric Signal-Driven Intelligent Wheelchair System Incorporating Occlusal Control for Assistive Mobility
by Chih-Tsung Chang, Yi-Chieh Hsu, Kai-Jun Pai, Chia-Yi Chou and Fu-Hua Xu
Electronics 2025, 14(19), 3754; https://doi.org/10.3390/electronics14193754 - 23 Sep 2025
Viewed by 285
Abstract
This paper proposes a novel electric wheelchair that uses the surface electromyographic signal (sEMG) signals generated by the occlusal muscles to control the wheelchair during occlusion, instead of the traditional electric wheelchair that requires users to use their hands or feet for control. [...] Read more.
This paper proposes a novel electric wheelchair that uses the surface electromyographic signal (sEMG) signals generated by the occlusal muscles to control the wheelchair during occlusion, instead of the traditional electric wheelchair that requires users to use their hands or feet for control. In this work, the myoelectric signal controls the electric wheelchair so that users with limited mobility and paraplegia can operate the electric wheelchair using the myoelectric signal generated during clenching. This is achieved through the seamless transmission of user data and GPS paths to the cloud and is facilitated by the state-of-the-art Wi-Fi 6E communication technology. By leveraging cloud connectivity, the system can instantly relay critical information, such as the user’s location and movement patterns, ensuring a prompt emergency response. Furthermore, several standard methods exist to set up the myoelectric signal electrodes and analyze the signals. This novel electric wheelchair can change the daily activities of many users who have difficulty walking. This work is presented as a proof-of-concept feasibility study rather than a comprehensive clinical validation. Full article
(This article belongs to the Special Issue Innovative Designs in Human–Computer Interaction)
Show Figures

Figure 1

22 pages, 3399 KB  
Article
Integrating Cross-Modal Semantic Learning with Generative Models for Gesture Recognition
by Shuangjiao Zhai, Zixin Dai, Zanxia Jin, Pinle Qin and Jianchao Zeng
Sensors 2025, 25(18), 5783; https://doi.org/10.3390/s25185783 - 17 Sep 2025
Viewed by 449
Abstract
Radio frequency (RF)-based human activity sensing is an essential component of ubiquitous computing, with WiFi sensing providing a practical and low-cost solution for gesture and activity recognition. However, challenges such as manual data collection, multipath interference, and poor cross-domain generalization hinder real-world deployment. [...] Read more.
Radio frequency (RF)-based human activity sensing is an essential component of ubiquitous computing, with WiFi sensing providing a practical and low-cost solution for gesture and activity recognition. However, challenges such as manual data collection, multipath interference, and poor cross-domain generalization hinder real-world deployment. Existing data augmentation approaches often neglect the biomechanical structure underlying RF signals. To address these limitations, we present CM-GR, a cross-modal gesture recognition framework that integrates semantic learning with generative modeling. CM-GR leverages 3D skeletal points extracted from vision data as semantic priors to guide the synthesis of realistic WiFi signals, thereby incorporating biomechanical constraints without requiring extensive manual labeling. In addition, dynamic conditional vectors are constructed from inter-subject skeletal differences, enabling user-specific WiFi data generation without the need for dedicated data collection and annotation for each new user. Extensive experiments on the public MM-Fi dataset and our SelfSet dataset demonstrate that CM-GR substantially improves the cross-subject gesture recognition accuracy, achieving gains of up to 10.26% and 9.5%, respectively. These results confirm the effectiveness of CM-GR in synthesizing personalized WiFi data and highlight its potential for robust and scalable gesture recognition in practical settings. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 2233 KB  
Article
Research on Fingerprint Map Construction and Real-Time Update Method Based on Indoor Landmark Points
by Yaning Zhu and Yihua Cheng
Sensors 2025, 25(17), 5473; https://doi.org/10.3390/s25175473 - 3 Sep 2025
Viewed by 634
Abstract
WIFI base stations have full indoor coverage, and the inertial navigation system (INS) is independent and autonomous, with high short-term positioning accuracy. However, errors accumulate over time, and an INS/WIFI combination has become the mainstream research direction regarding indoor positioning technology. The accuracy [...] Read more.
WIFI base stations have full indoor coverage, and the inertial navigation system (INS) is independent and autonomous, with high short-term positioning accuracy. However, errors accumulate over time, and an INS/WIFI combination has become the mainstream research direction regarding indoor positioning technology. The accuracy of WIFI fingerprint maps deteriorates significantly with changes in the environment or time, and there is an urgent need to solve the problem of automatic real-time updating of fingerprint maps. This article addresses the issue that the existing real-time acquisition technology for fingerprint point locations has severely restricted the real-time updating of fingerprint maps. For the first time, landmark points are introduced into the fingerprint map, and landmark point fingerprints are defined to construct a new fingerprint map database structure. A method for automatic recognition of landmark points (turning points) based on inertial technology is proposed, which achieves automatic and accurate collection of landmark point fingerprints and improves the reliability of crowdsourcing data. Real-time automatic monitoring of fingerprint signal fluctuations at landmark points and construction of error models have achieved real-time and accurate updates of fingerprint maps. Real scene experiments have shown that the proposed solution significantly improves the long-term stability and reliability of fingerprint maps. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 1609 KB  
Article
Open-Set Radio Frequency Fingerprint Identification Method Based on Multi-Task Prototype Learning
by Zhao Ma, Shengliang Fang and Youchen Fan
Sensors 2025, 25(17), 5415; https://doi.org/10.3390/s25175415 - 2 Sep 2025
Viewed by 725
Abstract
Radio frequency (RF) fingerprinting, as an emerging physical layer security technology, demonstrates significant potential in the field of Internet of Things (IoT) security. However, most existing methods operate under a ‘closed-set’ assumption, failing to effectively address the continuous emergence of unknown devices in [...] Read more.
Radio frequency (RF) fingerprinting, as an emerging physical layer security technology, demonstrates significant potential in the field of Internet of Things (IoT) security. However, most existing methods operate under a ‘closed-set’ assumption, failing to effectively address the continuous emergence of unknown devices in real-world scenarios. To tackle this challenge, this paper proposes an open-set radio frequency fingerprint identification (RFFI) method based on Multi-Task Prototype Learning (MTPL). The core of this method is a multi-task learning framework that simultaneously performs discriminative classification, generative reconstruction, and prototype clustering tasks through a deep network that integrates an encoder, a decoder, and a classifier. Specifically, the classification task aims to learn discriminative features with class separability, the generative reconstruction task aims to preserve intrinsic signal characteristics and enhance detection capability for out-of-distribution samples, and the prototype clustering task aims to promote compact intra-class distributions for known classes by minimizing the distance between samples and their class prototypes. This synergistic multi-task optimization mechanism effectively shapes a feature space highly conducive to open-set recognition. After training, instead of relying on direct classifier outputs, we propose to adopt extreme value theory (EVT) to statistically model the tail distribution of the minimum distances between known class samples and their prototypes, thereby adaptively determining a robust open-set discrimination threshold. Comprehensive experiments on a real-world dataset with 16 Wi-Fi devices show that the proposed method outperforms five mainstream open-set recognition methods, including SoftMax thresholding, OpenMax, and MLOSR, achieving a mean AUROC of 0.9918. This result is approximately 1.7 percentage points higher than the second-best method, demonstrating the effectiveness and superiority of the proposed approach for building secure and robust wireless authentication systems. This validates the effectiveness and superiority of our approach in building secure and robust wireless authentication systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 5508 KB  
Article
From CSI to Coordinates: An IoT-Driven Testbed for Individual Indoor Localization
by Diana Macedo, Miguel Loureiro, Óscar G. Martins, Joana Coutinho Sousa, David Belo and Marco Gomes
Future Internet 2025, 17(9), 395; https://doi.org/10.3390/fi17090395 - 30 Aug 2025
Viewed by 827
Abstract
Indoor wireless networks face increasing challenges in maintaining stable coverage and performance, particularly with the widespread use of high-frequency Wi-Fi and growing demands from smart home devices. Traditional methods to improve signal quality, such as adding access points, often fall short in dynamic [...] Read more.
Indoor wireless networks face increasing challenges in maintaining stable coverage and performance, particularly with the widespread use of high-frequency Wi-Fi and growing demands from smart home devices. Traditional methods to improve signal quality, such as adding access points, often fall short in dynamic environments where user movement and physical obstructions affect signal behavior. In this work, we propose a system that leverages existing Internet of Things (IoT) devices to perform real-time user localization and network adaptation using fine-grained Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) measurements. We deploy multiple ESP-32 microcontroller-based receivers in fixed positions to capture wireless signal characteristics and process them through a pipeline that includes filtering, segmentation, and feature extraction. Using supervised machine learning, we accurately predict the user’s location within a defined indoor grid. Our system achieves over 82% accuracy in a realistic laboratory setting and shows improved performance when excluding redundant sensors. The results demonstrate the potential of communication-based sensing to enhance both user tracking and wireless connectivity without requiring additional infrastructure. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems, 2nd Edition)
Show Figures

Figure 1

13 pages, 1297 KB  
Proceeding Paper
Future Planning Based on Student Movement Linked with Their Wi-Fi Signals
by Qi Hao, N. Z. Jhanjhi, Sayan Kumar Ray, Farzeen Ashfaq and Marina Artiyasa
Eng. Proc. 2025, 107(1), 55; https://doi.org/10.3390/engproc2025107055 - 28 Aug 2025
Viewed by 274
Abstract
There is large scale data collected from the various Wi-Fi networks on modern university campuses which contribute to observing student behavioral patterns. This paper explores the use of Wi-Fi connection information and internet browsing habits to forecast student dining preferences, improving data-driven models [...] Read more.
There is large scale data collected from the various Wi-Fi networks on modern university campuses which contribute to observing student behavioral patterns. This paper explores the use of Wi-Fi connection information and internet browsing habits to forecast student dining preferences, improving data-driven models for campus eating service optimizations. This study combines spatial–temporal features with browsing behavior analysis and employs advanced machine learning techniques to develop a multi-modal learning framework. Moreover, when Chinese consumers go out to eat, the analysis of anonymized Wi-Fi data also reveals considerable relationships among digital footprints and dining choices using a predictive model that can reach an accuracy level between 84 and 88%. The discoveries assist in the advancement of educational data mining and are beneficial for the real-world optimization of campus services, all under strong privacy protection using an end-to-end comprehensive data protection framework. Full article
Show Figures

Figure 1

27 pages, 7905 KB  
Article
SimID: Wi-Fi-Based Few-Shot Cross-Domain User Recognition with Identity Similarity Learning
by Zhijian Wang, Lei Ouyang, Shi Chen, Han Ding, Ge Wang and Fei Wang
Sensors 2025, 25(16), 5151; https://doi.org/10.3390/s25165151 - 19 Aug 2025
Viewed by 667
Abstract
In recent years, indoor user identification via Wi-Fi signals has emerged as a vibrant research area in smart homes and the Internet of Things, thanks to its privacy preservation, immunity to lighting conditions, and ease of large-scale deployment. Conventional deep-learning classifiers, however, suffer [...] Read more.
In recent years, indoor user identification via Wi-Fi signals has emerged as a vibrant research area in smart homes and the Internet of Things, thanks to its privacy preservation, immunity to lighting conditions, and ease of large-scale deployment. Conventional deep-learning classifiers, however, suffer from poor generalization and demand extensive pre-collected data for every new scenario. To overcome these limitations, we introduce SimID, a few-shot Wi-Fi user recognition framework based on identity-similarity learning rather than conventional classification. SimID embeds user-specific signal features into a high-dimensional space, encouraging samples from the same individual to exhibit greater pairwise similarity. Once trained, new users can be recognized simply by comparing their Wi-Fi signal “query” against a small set of stored templates—potentially as few as a single sample—without any additional retraining. This design not only supports few-shot identification of unseen users but also adapts seamlessly to novel movement patterns in unfamiliar environments. On the large-scale XRF55 dataset, SimID achieves average accuracies of 97.53%, 93.37%, 92.38%, and 92.10% in cross-action, cross-person, cross-action-and-person, and cross-person-and-scene few-shot scenarios, respectively. These results demonstrate SimID’s promise for robust, data-efficient indoor identity recognition in smart homes, healthcare, security, and beyond. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

21 pages, 1550 KB  
Article
Exploiting Maritime Wi-Fi: Practical Assessment of Onboard Network Vulnerabilities
by Marko Vukšić, Jasmin Ćelić, Ivan Panić and Aleksandar Cuculić
J. Mar. Sci. Eng. 2025, 13(8), 1576; https://doi.org/10.3390/jmse13081576 - 17 Aug 2025
Viewed by 1175
Abstract
With the growing integration of digital technologies on modern vessels, ranging from satellite links and mobile networks to onboard Wi-Fi, the exposure of maritime systems to cyber threats has become a pressing concern. Wireless networks on ships, although essential for operations and crew [...] Read more.
With the growing integration of digital technologies on modern vessels, ranging from satellite links and mobile networks to onboard Wi-Fi, the exposure of maritime systems to cyber threats has become a pressing concern. Wireless networks on ships, although essential for operations and crew welfare, often lack sufficient protection and are frequently overlooked in broader cybersecurity strategies. This article explores vulnerabilities linked to Man-in-the-Middle attacks and rogue access points, particularly in port areas where attackers may exploit signal range and proximity. A simulation carried out in a public setting near the Port of Rijeka demonstrated how standard crew devices could be lured into connecting to a counterfeit Wi-Fi network, resulting in traffic interception and potential data leaks. Although practical limitations, such as signal attenuation and distance, reduce the feasibility of such intrusions at sea, the risk remains significant while in port. Insecure configurations and common user behaviors were identified as key enablers. The article outlines a series of countermeasures aligned with international guidelines ranging from segmentation and encryption to crew training and intrusion detection. Addressing these wireless vulnerabilities is essential for building resilience and ensuring that digital transformation efforts in the maritime sector do not come at the expense of security. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 5524 KB  
Article
A Low-Power Portable Gas Sensor System with Adaptive ROIC and Wi-Fi Communication for Biomedical Applications
by Jun-Nyeong Kim, Soon-Kyu Kwon, Byung-Choul Park and Hyeon-June Kim
Chemosensors 2025, 13(8), 303; https://doi.org/10.3390/chemosensors13080303 - 12 Aug 2025
Viewed by 858
Abstract
This study presents a portable gas sensor system that achieves high performance while minimizing power consumption and production costs for biomedical applications. The proposed system integrates a low-power readout integrated circuit (ROIC) capable of processing large-amplitude sensor signals using a 1.2 V ADC, [...] Read more.
This study presents a portable gas sensor system that achieves high performance while minimizing power consumption and production costs for biomedical applications. The proposed system integrates a low-power readout integrated circuit (ROIC) capable of processing large-amplitude sensor signals using a 1.2 V ADC, significantly reducing the power consumption compared with conventional high-voltage solutions. To address the inherent limitations of single-core/single-thread microcontrollers, an optimized Wi-Fi communication algorithm is implemented, enabling real-time data transmission and accurate signal reconstruction without data loss. Experimental validation using a hydrogen gas detection setup demonstrated that the system achieves less than 0.15% error in reconstructed signals, while substantially reducing overall power consumption and component cost. Comparative analysis confirms that the proposed approach achieves a performance comparable to conventional systems while offering significant reductions in energy usage and hardware expense. These results demonstrate the feasibility of a scalable, low-cost solution for portable gas sensing, particularly in biomedical applications requiring precise and reliable monitoring. Full article
Show Figures

Figure 1

36 pages, 3172 KB  
Review
Indoor Positioning Systems as Critical Infrastructure: An Assessment for Enhanced Location-Based Services
by Tesfay Gidey Hailu, Xiansheng Guo and Haonan Si
Sensors 2025, 25(16), 4914; https://doi.org/10.3390/s25164914 - 8 Aug 2025
Viewed by 1709
Abstract
As the demand for context-aware services in smart environments continues to rise, Indoor Positioning Systems (IPSs) have evolved from auxiliary technologies into indispensable components of mission-critical infrastructure. This paper presents a comprehensive, multidimensional evaluation of IPSs through the lens of critical infrastructure, addressing [...] Read more.
As the demand for context-aware services in smart environments continues to rise, Indoor Positioning Systems (IPSs) have evolved from auxiliary technologies into indispensable components of mission-critical infrastructure. This paper presents a comprehensive, multidimensional evaluation of IPSs through the lens of critical infrastructure, addressing both their technical capabilities and operational limitations across dynamic indoor environments. A structured taxonomy of IPS technologies is developed based on sensing modalities, signal processing techniques, and system architectures. Through an in-depth trade-off analysis, the study highlights the inherent tensions between accuracy, energy efficiency, scalability, and deployment cost—revealing that no single technology meets all performance criteria across application domains. A novel evaluation framework is introduced that integrates traditional performance metrics with emerging requirements such as system resilience, interoperability, and ethical considerations. Empirical results from long-term Wi-Fi fingerprinting experiments demonstrate the impact of temporal signal fluctuations, heterogeneity features, and environmental dynamics on localization accuracy. The proposed adaptive algorithm consistently outperforms baseline models in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), confirming its robustness under evolving conditions. Furthermore, the paper explores the role of collaborative and infrastructure-free positioning systems as a pathway to achieving scalable and resilient localization in healthcare, logistics, and emergency services. Key challenges including privacy, standardization, and real-world adaptability are identified, and future research directions are proposed to guide the development of context-aware, interoperable, and secure IPS architectures. By reframing IPSs as foundational infrastructure, this work provides a critical roadmap for designing next-generation indoor localization systems that are technically robust, operationally viable, and ethically grounded. Full article
(This article belongs to the Special Issue Indoor Positioning Technologies for Internet-of-Things)
Show Figures

Figure 1

11 pages, 2425 KB  
Article
Single-Layer High-Efficiency Metasurface for Multi-User Signal Enhancement
by Hui Jin, Peixuan Zhu, Rongrong Zhu, Bo Yang, Siqi Zhang and Huan Lu
Micromachines 2025, 16(8), 911; https://doi.org/10.3390/mi16080911 - 6 Aug 2025
Viewed by 640
Abstract
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. [...] Read more.
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. A high-efficiency metasurface array is fabricated based on PCB technology, which utilizes subwavelength units for wide-range phase modulation to construct a multi-user energy convergence model in the WiFi band. By optimizing phase gradients through the geometric phase principle, the metasurface achieves collaborative wavefront manipulation for multiple target regions with high transmission efficiency, reducing system complexity compared to traditional multi-layer structures. Measurements in a microwave anechoic chamber and tests in an office environment demonstrate that the metasurface can simultaneously create signal enhancement zones for multiple users, featuring stable focusing capability and environmental adaptability. This lightweight design facilitates deployment in dense networks, providing an effective solution for signal optimization in indoor distributed systems and IoT communications. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

22 pages, 3429 KB  
Article
Indoor Positioning and Tracking System in a Multi-Level Residential Building Using WiFi
by Elmer Magsino, Joshua Kenichi Sim, Rica Rizabel Tagabuhin and Jan Jayson Tirados
Information 2025, 16(8), 633; https://doi.org/10.3390/info16080633 - 24 Jul 2025
Viewed by 1401
Abstract
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the [...] Read more.
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the Received Signal Strength Indicator (RSSI) signals from WiFi Anchor Points (APs).Indoor movement is detected through a successive estimation of a target’s multiple positions. Using the K-Nearest Neighbors (KNN) and Particle Swarm Optimization (PSO) algorithms, these RSSI measurements are trained for estimating the position of an indoor target. Additionally, the Density-based Spatial Clustering of Applications with Noise (DBSCAN) has been integrated into the PSO method for removing RSSI-estimated position outliers of the mobile device to further improve indoor position detection and monitoring accuracy. We also employed Time Reversal Resonating Strength (TRRS) as a correlation technique as the third method of localization. Our extensive and rigorous experimentation covers the influence of various weather conditions in indoor detection. Our proposed localization methods have maximum accuracies of 92%, 80%, and 75% for TRRS, KNN, and PSO + DBSCAN, respectively. Each method also has an approximate one-meter deviation, which is a short distance from our targets. Full article
Show Figures

Graphical abstract

Back to TopTop