Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = Wi-Fi positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 14407 KB  
Article
Exploring Factors Behind Weekday and Weekend Variations in Public Space Vitality in Traditional Villages, Using Wi-Fi Sensing Method
by Sheng Liu, Zhenni Zhu, Yichen Gao, Shanshan Wang and Yanchi Zhou
ISPRS Int. J. Geo-Inf. 2025, 14(10), 386; https://doi.org/10.3390/ijgi14100386 - 2 Oct 2025
Viewed by 492
Abstract
With the rise in rural tourism, public space use has become more complex, causing significant weekday-weekend vitality imbalances. However, the factors shaping these dynamics in traditional villages remain unclear. This study uses Wi-Fi sensing method to analyze vitality variations across weekdays and weekends, [...] Read more.
With the rise in rural tourism, public space use has become more complex, causing significant weekday-weekend vitality imbalances. However, the factors shaping these dynamics in traditional villages remain unclear. This study uses Wi-Fi sensing method to analyze vitality variations across weekdays and weekends, and it develops a 13-metric evaluation framework to examine how built environment factors, from both internal and external dimensions, differentially influence the vitality of public spaces in traditional villages across various time periods. Using 17 public spaces in Yantou Village, Lishui, China, as a case, it finds: (1) Historical Element Proximity consistently and significantly drives public space vitality across all periods; (2) Leisure Facility Count and Decorative Element Count demonstrate strong positive effects during weekend morning peaks. (3) Retail Facility Count significantly reduces vitality during weekend morning peak but enhances it during midday off-peak, whereas Street Vendor Count shows the opposite pattern—increasing vitality in morning peak and decreasing it in midday off-peak. Using Wi-Fi sensing’s high-resolution, real-time, and non-invasive capabilities, this study provides a scientific method to accurately assess the variations in public space vitality and their impact factors between weekdays and weekends in traditional villages, offering technical support for enhancing public space vitality and sustainably revitalizing rural heritage. Full article
(This article belongs to the Special Issue Spatial Information for Improved Living Spaces)
Show Figures

Figure 1

16 pages, 2233 KB  
Article
Research on Fingerprint Map Construction and Real-Time Update Method Based on Indoor Landmark Points
by Yaning Zhu and Yihua Cheng
Sensors 2025, 25(17), 5473; https://doi.org/10.3390/s25175473 - 3 Sep 2025
Viewed by 634
Abstract
WIFI base stations have full indoor coverage, and the inertial navigation system (INS) is independent and autonomous, with high short-term positioning accuracy. However, errors accumulate over time, and an INS/WIFI combination has become the mainstream research direction regarding indoor positioning technology. The accuracy [...] Read more.
WIFI base stations have full indoor coverage, and the inertial navigation system (INS) is independent and autonomous, with high short-term positioning accuracy. However, errors accumulate over time, and an INS/WIFI combination has become the mainstream research direction regarding indoor positioning technology. The accuracy of WIFI fingerprint maps deteriorates significantly with changes in the environment or time, and there is an urgent need to solve the problem of automatic real-time updating of fingerprint maps. This article addresses the issue that the existing real-time acquisition technology for fingerprint point locations has severely restricted the real-time updating of fingerprint maps. For the first time, landmark points are introduced into the fingerprint map, and landmark point fingerprints are defined to construct a new fingerprint map database structure. A method for automatic recognition of landmark points (turning points) based on inertial technology is proposed, which achieves automatic and accurate collection of landmark point fingerprints and improves the reliability of crowdsourcing data. Real-time automatic monitoring of fingerprint signal fluctuations at landmark points and construction of error models have achieved real-time and accurate updates of fingerprint maps. Real scene experiments have shown that the proposed solution significantly improves the long-term stability and reliability of fingerprint maps. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

23 pages, 5508 KB  
Article
From CSI to Coordinates: An IoT-Driven Testbed for Individual Indoor Localization
by Diana Macedo, Miguel Loureiro, Óscar G. Martins, Joana Coutinho Sousa, David Belo and Marco Gomes
Future Internet 2025, 17(9), 395; https://doi.org/10.3390/fi17090395 - 30 Aug 2025
Viewed by 827
Abstract
Indoor wireless networks face increasing challenges in maintaining stable coverage and performance, particularly with the widespread use of high-frequency Wi-Fi and growing demands from smart home devices. Traditional methods to improve signal quality, such as adding access points, often fall short in dynamic [...] Read more.
Indoor wireless networks face increasing challenges in maintaining stable coverage and performance, particularly with the widespread use of high-frequency Wi-Fi and growing demands from smart home devices. Traditional methods to improve signal quality, such as adding access points, often fall short in dynamic environments where user movement and physical obstructions affect signal behavior. In this work, we propose a system that leverages existing Internet of Things (IoT) devices to perform real-time user localization and network adaptation using fine-grained Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) measurements. We deploy multiple ESP-32 microcontroller-based receivers in fixed positions to capture wireless signal characteristics and process them through a pipeline that includes filtering, segmentation, and feature extraction. Using supervised machine learning, we accurately predict the user’s location within a defined indoor grid. Our system achieves over 82% accuracy in a realistic laboratory setting and shows improved performance when excluding redundant sensors. The results demonstrate the potential of communication-based sensing to enhance both user tracking and wireless connectivity without requiring additional infrastructure. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems, 2nd Edition)
Show Figures

Figure 1

16 pages, 2024 KB  
Article
Water-Use Efficiency for Post-Weaning Growth Performance of South African Beef Cattle Under Intensive Production Systems
by Ayanda M. Ngxumeshe, Takalani Mpofu, Khathutshelo Nephawe, Motshekwe Ratsaka and Bohani Mtileni
Animals 2025, 15(17), 2505; https://doi.org/10.3390/ani15172505 - 26 Aug 2025
Viewed by 517
Abstract
This study determined the water-use efficiency for post-weaning growth performance of beef cattle of different frame sizes under intensive production systems. A total of 33 beef cattle weaners of three different frame sizes (small, medium, and large) were randomly allocated individually to metabolic [...] Read more.
This study determined the water-use efficiency for post-weaning growth performance of beef cattle of different frame sizes under intensive production systems. A total of 33 beef cattle weaners of three different frame sizes (small, medium, and large) were randomly allocated individually to metabolic pens. Feed and water were provided ad libitum. The water intake (WI), feed intake (FI), and weight were measured across different feeding phases (starter, grower, and finisher). Water consumption (WC) average daily gain (ADG), weight gain (WG), water intake efficiency (WIE), water footprint per animal (WFP/AU), and WFP/kg were computed. General Linear Model of Statical Analysis software (SAS) version 9.4 was used to analyse the data, and the means were separated using Fisher’s LSD test. The results showed that large-frame beef cattle had significantly higher (p < 0.05) WTf. (412.73 ± 27.27 kg) and WI (3394.09 ± 156.3 L), but also the largest WFP/AU (4407 ± 197.22 L). The medium-frame cattle achieved the highest ADG (1.48 ± 0.14 kg/day) and a moderate WIE (20.15 ± 2.18 L/kg gain), indicating an optimal trade-off between productivity and water use. The small-frame beef cattle exhibited the best WCE (0.051 ± 0.005 kg/L) and the lowest WFP/AU (3822 ± 197.22 L), highlighting superior water-use adaptability. Pearson’s correlation revealed that WCE was positively associated with ADG (r = 0.499; p < 0.05) and negatively with WIE (r = −0.987; p < 0.05). These findings suggest that medium-frame beef cattle provided a balanced compromise between growth performance and resource efficiency, making them more suitable for sustainable production in water-limited environments. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

36 pages, 3172 KB  
Review
Indoor Positioning Systems as Critical Infrastructure: An Assessment for Enhanced Location-Based Services
by Tesfay Gidey Hailu, Xiansheng Guo and Haonan Si
Sensors 2025, 25(16), 4914; https://doi.org/10.3390/s25164914 - 8 Aug 2025
Viewed by 1709
Abstract
As the demand for context-aware services in smart environments continues to rise, Indoor Positioning Systems (IPSs) have evolved from auxiliary technologies into indispensable components of mission-critical infrastructure. This paper presents a comprehensive, multidimensional evaluation of IPSs through the lens of critical infrastructure, addressing [...] Read more.
As the demand for context-aware services in smart environments continues to rise, Indoor Positioning Systems (IPSs) have evolved from auxiliary technologies into indispensable components of mission-critical infrastructure. This paper presents a comprehensive, multidimensional evaluation of IPSs through the lens of critical infrastructure, addressing both their technical capabilities and operational limitations across dynamic indoor environments. A structured taxonomy of IPS technologies is developed based on sensing modalities, signal processing techniques, and system architectures. Through an in-depth trade-off analysis, the study highlights the inherent tensions between accuracy, energy efficiency, scalability, and deployment cost—revealing that no single technology meets all performance criteria across application domains. A novel evaluation framework is introduced that integrates traditional performance metrics with emerging requirements such as system resilience, interoperability, and ethical considerations. Empirical results from long-term Wi-Fi fingerprinting experiments demonstrate the impact of temporal signal fluctuations, heterogeneity features, and environmental dynamics on localization accuracy. The proposed adaptive algorithm consistently outperforms baseline models in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), confirming its robustness under evolving conditions. Furthermore, the paper explores the role of collaborative and infrastructure-free positioning systems as a pathway to achieving scalable and resilient localization in healthcare, logistics, and emergency services. Key challenges including privacy, standardization, and real-world adaptability are identified, and future research directions are proposed to guide the development of context-aware, interoperable, and secure IPS architectures. By reframing IPSs as foundational infrastructure, this work provides a critical roadmap for designing next-generation indoor localization systems that are technically robust, operationally viable, and ethically grounded. Full article
(This article belongs to the Special Issue Indoor Positioning Technologies for Internet-of-Things)
Show Figures

Figure 1

22 pages, 3429 KB  
Article
Indoor Positioning and Tracking System in a Multi-Level Residential Building Using WiFi
by Elmer Magsino, Joshua Kenichi Sim, Rica Rizabel Tagabuhin and Jan Jayson Tirados
Information 2025, 16(8), 633; https://doi.org/10.3390/info16080633 - 24 Jul 2025
Viewed by 1401
Abstract
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the [...] Read more.
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the Received Signal Strength Indicator (RSSI) signals from WiFi Anchor Points (APs).Indoor movement is detected through a successive estimation of a target’s multiple positions. Using the K-Nearest Neighbors (KNN) and Particle Swarm Optimization (PSO) algorithms, these RSSI measurements are trained for estimating the position of an indoor target. Additionally, the Density-based Spatial Clustering of Applications with Noise (DBSCAN) has been integrated into the PSO method for removing RSSI-estimated position outliers of the mobile device to further improve indoor position detection and monitoring accuracy. We also employed Time Reversal Resonating Strength (TRRS) as a correlation technique as the third method of localization. Our extensive and rigorous experimentation covers the influence of various weather conditions in indoor detection. Our proposed localization methods have maximum accuracies of 92%, 80%, and 75% for TRRS, KNN, and PSO + DBSCAN, respectively. Each method also has an approximate one-meter deviation, which is a short distance from our targets. Full article
Show Figures

Graphical abstract

22 pages, 5808 KB  
Article
Hyperbolic Spatial Covariance Modeling with Adaptive Signal Filtering for Robust Wi-Fi Indoor Positioning
by Wenxu Wang and Mingxiang Liu
Sensors 2025, 25(13), 4125; https://doi.org/10.3390/s25134125 - 2 Jul 2025
Viewed by 523
Abstract
Robust indoor positioning, crucial to modern location-based services, increasingly leverages Channel State Information (CSI) for its superior multipath resolution over the traditional RSSI. However, current CSI-based methods are hampered by three key limitations: susceptibility to skewed, non-Gaussian noise; informational redundancy from multi-AP configurations; [...] Read more.
Robust indoor positioning, crucial to modern location-based services, increasingly leverages Channel State Information (CSI) for its superior multipath resolution over the traditional RSSI. However, current CSI-based methods are hampered by three key limitations: susceptibility to skewed, non-Gaussian noise; informational redundancy from multi-AP configurations; and spatial discontinuities arising from Euclidean-based modeling. To address these challenges, we propose a unified framework that synergistically combines three innovations: (1) an adaptive filtering pipeline that uses wavelet decomposition and dynamic Kalman updates to suppress skewed noise; (2) a graph attention network that optimizes AP selection by modeling spatiotemporal correlations; and (3) a hyperbolic covariance model that captures the intrinsic non-Euclidean geometry of signal propagation. Evaluations on experimental data demonstrate that our framework achieves superior positioning accuracy and environmental robustness over state-of-the-art methods. Crucially, the hyperbolic representation enhances resilience to obstructions by preserving the signal manifold’s true structure, thereby advancing the practical deployment of fingerprinting systems. Full article
Show Figures

Figure 1

32 pages, 2945 KB  
Article
SelfLoc: Robust Self-Supervised Indoor Localization with IEEE 802.11az Wi-Fi for Smart Environments
by Hamada Rizk and Ahmed Elmogy
Electronics 2025, 14(13), 2675; https://doi.org/10.3390/electronics14132675 - 2 Jul 2025
Viewed by 1941
Abstract
Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator [...] Read more.
Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator (RSSI) data to achieve fine-grained positioning using commodity Wi-Fi infrastructure. Unlike conventional methods that depend heavily on labeled data, SelfLoc adopts a contrastive learning framework to extract spatially discriminative and temporally consistent representations from unlabeled wireless measurements. The system integrates a dual-contrastive strategy: temporal contrasting captures sequential signal dynamics essential for tracking mobile agents, while contextual contrasting promotes spatial separability by ensuring that signal representations from distinct locations remain well-differentiated, even under similar signal conditions or environmental symmetry. To this end, we design signal-specific augmentation techniques for the physical properties of RTT and RSSI, enabling the model to generalize across environments. SelfLoc also adapts effectively to new deployment scenarios with minimal labeled data, making it suitable for dynamic and collaborative industrial applications. We validate the effectiveness of SelfLoc through experiments conducted in two realistic indoor testbeds using commercial Android devices and seven Wi-Fi access points. The results demonstrate that SelfLoc achieves high localization precision, with a median error of only 0.55 m, and surpasses state-of-the-art baselines by at least 63.3% with limited supervision. These findings affirm the potential of SelfLoc to support spatial intelligence and collaborative automation, aligning with the goals of Industry 4.0 and Society 5.0, where seamless human–machine interactions and intelligent infrastructure are key enablers of next-generation smart environments. Full article
(This article belongs to the Special Issue Collaborative Intelligent Automation System for Smart Industry)
Show Figures

Figure 1

23 pages, 678 KB  
Article
Unified Probabilistic and Similarity-Based Position Estimation from Radio Observations
by Max Werner, Markus Bullmann, Toni Fetzer and Frank Deinzer
Sensors 2025, 25(13), 4092; https://doi.org/10.3390/s25134092 - 30 Jun 2025
Viewed by 479
Abstract
We propose a modeling approach for position estimation based on the observed radio propagation in an environment. The approach is purely similarity-based and therefore free of explicit physical assumptions. What distinguishes it from classical related methods are probabilistic position estimates. Instead of just [...] Read more.
We propose a modeling approach for position estimation based on the observed radio propagation in an environment. The approach is purely similarity-based and therefore free of explicit physical assumptions. What distinguishes it from classical related methods are probabilistic position estimates. Instead of just providing a point estimate for a given signal sequence, our model returns the distribution of possible positions as continuous probability density function, which allows for appropriate integration into recursive state estimation systems. The estimation procedure starts by using a kernel to compare incoming data with reference recordings from known positions. Based on the obtained similarities, weights are assigned to the reference positions. An arbitrarily chosen density estimation method is then applied given this assignment. Thus, a continuous representation of the distribution of possible positions in the environment is provided. We apply the solution in a Particle Filter (PF) system for smartphone-based indoor localization. The approach is tested both with radio signal strength (RSS) measurements (Wi-Fi and Bluetooth Low Energy RSSI) and round-trip time (RTT) measurements, given by Wi-Fi Fine Timing Measurement. Compared to distance-based models, which are dedicated to the specific physical properties of each measurement type, our similarity-based model achieved overall higher accuracy at tracking pedestrians under realistic conditions. Since it does not explicitly consider the physics of radio propagation, the proposed model has also been shown to work flexibly with either RSS or RTT observations. Full article
Show Figures

Figure 1

21 pages, 33900 KB  
Article
Scalable, Flexible, and Affordable Hybrid IoT-Based Ambient Monitoring Sensor Node with UWB-Based Localization
by Mohammed Faeik Ruzaij Al-Okby, Thomas Roddelkopf, Jiahao Huang, Mohsin Bukhari and Kerstin Thurow
Sensors 2025, 25(13), 4061; https://doi.org/10.3390/s25134061 - 29 Jun 2025
Viewed by 733
Abstract
Ambient monitoring in chemical laboratories and industrial sites that use toxic, hazardous, or flammable materials is essential to protect the lives of workers, material resources, and infrastructure at these sites. In this research paper, we present an innovative approach for developing a low-cost [...] Read more.
Ambient monitoring in chemical laboratories and industrial sites that use toxic, hazardous, or flammable materials is essential to protect the lives of workers, material resources, and infrastructure at these sites. In this research paper, we present an innovative approach for developing a low-cost and portable sensor node that detects and warns of hazardous chemical gas and vapor leaks. The system also enables leak location tracking using an indoor tracking and positioning system operating in ultra-wideband (UWB) technology. An array of sensors is used to detect gases, vapors, and airborne particles, while the leak location is identified through a UWB unit integrated with an Internet of Things (IoT) processor. This processor transmits real-time location data and sensor readings via wireless fidelity (Wi-Fi). The real-time indoor positioning system (IPS) can automatically select a tracking area based on the distances measured from the three nearest anchors of the movable sensor node. The environmental sensor data and distances between the node and the anchors are transmitted to the cloud in JSON format via the user datagram protocol (UDP), which allows the fastest possible data rate. A monitoring server was developed in Python to track the movement of the portable sensor node and display live measurements of the environment. The system was tested by selecting different paths between several adjacent areas with a chemical leakage of different volatile organic compounds (VOCs) in the test path. The experimental tests demonstrated good accuracy in both hazardous gas detection and location tracking. The system successfully issued a leak warning for all tested material samples with volumes up to 500 microliters and achieved a positional accuracy of approximately 50 cm under conditions without major obstacles obstructing the UWB signal between the active system units. Full article
(This article belongs to the Special Issue Sensing and AI: Advancements in Robotics and Autonomous Systems)
Show Figures

Figure 1

24 pages, 1307 KB  
Article
A Self-Supervised Specific Emitter Identification Method Based on Contrastive Asymmetric Masked Learning
by Dong Wang, Yonghui Huang, Tianshu Cui and Yan Zhu
Sensors 2025, 25(13), 4023; https://doi.org/10.3390/s25134023 - 27 Jun 2025
Viewed by 671
Abstract
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, [...] Read more.
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, facing challenges in non-cooperative communication scenarios. To address these issues, this paper proposes a novel contrastive asymmetric masked learning-based SEI (CAML-SEI) method, effectively solving the problem of SEI under scarce labeled samples. The proposed method constructs an asymmetric auto-encoder architecture, comprising an encoder network based on channel squeeze-and-excitation residual blocks to capture radio frequency fingerprint (RFF) features embedded in signals, while employing a lightweight single-layer convolutional decoder for masked signal reconstruction. This design promotes the learning of fine-grained local feature representations. To further enhance feature discriminability, a learnable non-linear mapping is introduced to compress high-dimensional encoded features into a compact low-dimensional space, accompanied by a contrastive loss function that simultaneously achieves feature aggregation of positive samples and feature separation of negative samples. Finally, the network is jointly optimized by combining signal reconstruction and feature contrast tasks. Experiments conducted on real-world ADS-B and Wi-Fi datasets demonstrate that the proposed method effectively learns generalized RFF features, and the results show superior performance compared with other SEI methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

27 pages, 8848 KB  
Article
Empirical Investigation on Practical Robustness of Keystroke Recognition Using WiFi Sensing for Future IoT Applications
by Haoming Wang, Aryan Sharma, Deepak Mishra, Aruna Seneviratne and Eliathamby Ambikairajah
Future Internet 2025, 17(7), 288; https://doi.org/10.3390/fi17070288 - 27 Jun 2025
Viewed by 806
Abstract
The widespread use of WiFi Internet-of-Things (IoT) devices has rendered them valuable tools for detecting information about the physical environment. Recent studies have demonstrated that WiFi Channel State Information (CSI) can detect physical events like movement, occupancy increases, and gestures. This paper empirically [...] Read more.
The widespread use of WiFi Internet-of-Things (IoT) devices has rendered them valuable tools for detecting information about the physical environment. Recent studies have demonstrated that WiFi Channel State Information (CSI) can detect physical events like movement, occupancy increases, and gestures. This paper empirically investigates the conditions under which WiFi sensing technology remains effective for keystroke detection. To achieve this timely goal of assessing whether it can raise any privacy concerns, experiments are conducted using commodity hardware to predict the accuracy of WiFi CSI in detecting keys pressed on a keyboard. Our novel results show that, in an ideal setting with a robotic arm, the position of a specific key can be predicted with 99% accuracy using a simple machine learning classifier. Furthermore, human finger localisation over a key and actual key-press recognition is also successfully achieved, with 94% and 89% reduced accuracy values, respectively. Moreover, our detailed investigation reveals that to ensure high accuracy, the gap distance between each test object must be substantial, while the size of the test group should be limited. Finally, we show WiFi sensing technology has limitations in small-scale gesture recognition for generic settings where proper device positioning is crucial. Specifically, detecting keyed words achieves an overall accuracy of 94% for the forefinger and 87% for multiple fingers when only the right hand is used. Accuracy drops to 56% when using both hands. We conclude WiFi sensing is effective in controlled indoor environments, but it has limitations due to the device location and the limited granularity of sensing objects. Full article
Show Figures

Graphical abstract

19 pages, 6328 KB  
Article
Seamless Indoor–Outdoor Localization Through Transition Detection
by Jaehyun Yoo
Electronics 2025, 14(13), 2598; https://doi.org/10.3390/electronics14132598 - 27 Jun 2025
Viewed by 586
Abstract
Indoor localization techniques operate independently of Global Navigation Satellite Systems (GNSSs), which are primarily designed for outdoor environments. However, integrating indoor and outdoor positioning often leads to inconsistent and delayed location estimates, especially at transition zones such as building entrances. This paper develops [...] Read more.
Indoor localization techniques operate independently of Global Navigation Satellite Systems (GNSSs), which are primarily designed for outdoor environments. However, integrating indoor and outdoor positioning often leads to inconsistent and delayed location estimates, especially at transition zones such as building entrances. This paper develops a probabilistic transition detection algorithm to identify indoor, outdoor, and transition zones, aiming to enhance the continuity and accuracy of positioning. The algorithm leverages multi-source sensor data, including WiFi Received Signal Strength Indicator (RSSI), Bluetooth Low-Energy (BLE) RSSI, and GNSS metrics such as carrier-to-noise ratio. During transitions, the system incorporates Inertial Measurement Unit (IMU)-based tracking to ensure smooth switching between positioning engines. The outdoor engine utilizes a Kalman Filter (KF) to fuse IMU and GNSS data, while the indoor engine employs fingerprinting techniques using WiFi and BLE. This paper presents experimental results using three distinct devices across three separate buildings, demonstrating superior performance compared to both Google’s Fused Location Provider (FLP) algorithm and a GPS. Full article
(This article belongs to the Special Issue Wireless Sensor Network: Latest Advances and Prospects)
Show Figures

Figure 1

29 pages, 2186 KB  
Article
WiPIHT: A WiFi-Based Position-Independent Passive Indoor Human Tracking System
by Xu Xu, Xilong Che, Xianqiu Meng, Long Li, Ziqi Liu and Shuai Shao
Sensors 2025, 25(13), 3936; https://doi.org/10.3390/s25133936 - 24 Jun 2025
Viewed by 821
Abstract
Unlike traditional vision-based camera tracking, human indoor localization and activity trajectory recognition also employ other methods such as infrared tracking, acoustic localization, and locators. These methods have significant environmental limitations or dependency on specialized equipment. Currently, WiFi-based human sensing is a novel and [...] Read more.
Unlike traditional vision-based camera tracking, human indoor localization and activity trajectory recognition also employ other methods such as infrared tracking, acoustic localization, and locators. These methods have significant environmental limitations or dependency on specialized equipment. Currently, WiFi-based human sensing is a novel and important method for human activity recognition. However, most WiFi-based activity recognition methods have limitations, such as using WiFi fingerprints to identify human activities. They either require extensive sample collection and training, are constrained by a fixed environmental layout, or rely on the precise positioning of transmitters (TXs) and receivers (RXs) within the space. If the positions are uncertain, or change, the sensing performance becomes unstable. To address the dependency of current WiFi indoor human activity trajectory reconstruction on the TX-RX position, we propose WiPIHT, a stable system for tracking indoor human activity trajectories using a small number of commercial WiFi devices. This system does not require additional hardware to be carried or locators to be attached, enabling passive, real-time, and accurate tracking and trajectory reconstruction of indoor human activities. WiPIHT is based on an innovative CSI channel analysis method, analyzing its autocorrelation function to extract location-independent real-time movement speed features of the human body. It also incorporates Fresnel zone and motion velocity direction decomposition to extract movement direction change patterns independent of the relative position between the TX-RX and the human body. By combining real-time speed and direction curve features, the system derives the shape of the human movement trajectory. Experiments demonstrate that, compared to existing methods, our system can accurately reconstruct activity trajectory shapes even without knowing the initial positions of the TX or the human body. Additionally, our system shows significant advantages in tracking accuracy, real-time performance, equipment, and cost. Full article
(This article belongs to the Special Issue Recent Advances in Smart Mobile Sensing Technology)
Show Figures

Figure 1

12 pages, 1445 KB  
Article
Does Electromagnetic Pollution in the ART Laboratory Affect Sperm Quality? A Cross-Sectional Observational Study
by Giorgio Maria Baldini, Dario Lot, Daniele Ferri, Luigi Montano, Mario Valerio Tartagni, Antonio Malvasi, Antonio Simone Laganà, Mario Palumbo, Domenico Baldini and Giuseppe Trojano
Toxics 2025, 13(6), 510; https://doi.org/10.3390/toxics13060510 - 18 Jun 2025
Viewed by 2207
Abstract
In recent decades, exposure to electromagnetic fields (EMFs) generated by standard devices has raised concerns about possible effects on reproductive health. This cross-sectional observational study examined the impact of EMFs on sperm motility in a sample of 102 healthy males aged 20–35 years [...] Read more.
In recent decades, exposure to electromagnetic fields (EMFs) generated by standard devices has raised concerns about possible effects on reproductive health. This cross-sectional observational study examined the impact of EMFs on sperm motility in a sample of 102 healthy males aged 20–35 years in the IVF laboratory. Semen samples were exposed to different sources of EMF for one hour, and motility was assessed immediately thereafter. The results showed a significant reduction in progressive sperm motility after exposure to EMFs generated by mobile phones and Wi-Fi repeaters in the laboratory. In contrast, other equipment showed no significant effects. The study demonstrated a statistically significant reduction in progressive sperm motility following in vitro exposure to electromagnetic fields (EMFs) emitted by mobile communication devices and wireless local area network access points. Conversely, other electromagnetic emitting devices evaluated did not elicit significant alterations in this parameter. These findings suggest a potential negative impact of specific EMF sources on semen quality, underscoring the necessity for further comprehensive research to elucidate the clinical implications and to develop potential mitigation strategies aimed at reducing risks to male reproductive health. This study discourages the introduction of mobile phones in IVF laboratories and recommends positioning Wi-Fi repeaters on the ceiling. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

Back to TopTop