Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Vitis vinifera ‘Pinot noir’

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3766 KiB  
Article
Comparative Genomic Analysis of COMT Family Genes in Three Vitis Species Reveals Evolutionary Relationships and Functional Divergence
by Yashi Liu, Zhiyuan Bian, Shan Jiang, Xiao Wang, Lin Jiao, Yun Shao, Chengmei Ma and Mingyu Chu
Plants 2025, 14(13), 2079; https://doi.org/10.3390/plants14132079 - 7 Jul 2025
Viewed by 417
Abstract
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total [...] Read more.
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total of 124 COMT family genes were identified from three Vitis species in this study, namely Pinot noir (Vitis vinifera L.), Vitis amurensis, and Vitis riparia. The amino acid sequence encoded by these genes ranged from 55 to 1422 aa, and their molecular mass ranged from 6640.82 to 77,034.43 Da. Subcellular localization prediction inferred that they were mainly located in the plasma membrane and cytoplasm. The prediction of secondary structures showed that α-helix and irregular coiled-coil were primary structural elements. These genes were unevenly distributed across 10 different chromosomes, respectively. Phylogenetic tree analysis of the amino acid sequences of VvCOMT, VaCOMT, VrCOMT, and AtCOMT proteins showed that they were closely related and were divided into four subgroups. The motif distribution was similar among the cluster genes, and the gene sequence was notably conserved. The 124 members of the COMT gene family possessed a variable number of exons, ranging from 2 to 13. The promoter region of all of these COMTs genes contained multiple cis-acting elements related to hormones (e.g., ABA, IAA, MeJA, GA, and SA), growth and development (e.g., endosperm, circadian, meristem, light response), and various stress responses (e.g., drought, low temperature, wounding, anaerobic, defense, and stress). The intraspecies collinearity analysis suggested that there were one pair, three pairs, and six pairs of collinear genes in Va, Pinot noir, and Vr, respectively, and that tandem duplication contributed more to the expansion of these gene family members. In addition, interspecific collinearity revealed that the VvCOMTs had the strongest homology with the VaCOMTs, followed by the VrCOMTs, and the weakest homology with the AtCOMTs. The expression patterns of different tissues and organs at different developmental stages indicated that the VvCOMT genes had obvious tissue expression specificity. The majority of VvCOMT genes were only expressed at higher levels in certain tissues. Furthermore, we screened 13 VvCOMT genes to conduct qRT-PCR verification according to the transcriptome data of VvCOMTs under abiotic stresses (NaCl, PEG, and cold). The results confirmed that these genes were involved in the responses to NaCl, PEG, and cold stress. This study lays a foundation for the exploration of the function of the COMT genes, and is of great importance for the genetic improvement of abiotic stress resistance in grapes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

25 pages, 1341 KiB  
Article
Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning
by Carolina Ragoni Maniero, Marco Antonio Tecchio, Harleson Sidney Almeida Monteiro, Camilo André Pereira Contreras Sánchez, Giuliano Elias Pereira, Juliane Barreto de Oliveira, Sinara de Nazaré Santana Brito, Francisco José Domingues Neto, Sarita Leonel, Marcelo de Souza Silva, Ricardo Figueira and Pricila Veiga dos Santos
Agriculture 2025, 15(12), 1241; https://doi.org/10.3390/agriculture15121241 - 6 Jun 2025
Viewed by 638
Abstract
The production of winter wines in Southeastern Brazil represents a relatively recent but expanding viticultural approach, with increasing adoption across diverse wine-growing regions. This system relies on the double-pruning technique, which allows for the harvest of grapes during the dry and cooler winter [...] Read more.
The production of winter wines in Southeastern Brazil represents a relatively recent but expanding viticultural approach, with increasing adoption across diverse wine-growing regions. This system relies on the double-pruning technique, which allows for the harvest of grapes during the dry and cooler winter season, favoring a greater accumulation of sugars, acids, and phenolic compounds. This study aimed to characterize the phenological stages, thermal requirements, yield, and fruit quality of the fine wine grape cultivars ‘Sauvignon Blanc’, ‘Merlot’, ‘Tannat’, ‘Pinot Noir’, ‘Malbec’, and ‘Cabernet Sauvignon’ under double-pruning management in a subtropical climate. The vineyard was established in 2020, and two production cycles were evaluated (2022/2023 and 2023/2024). Significant differences in the duration of phenological stages were observed among cultivars, ranging from 146 to 172 days from pruning to harvest. The accumulated thermal demand was higher in the first cycle, with a mean of 1476.9 growing degree days (GDD) across cultivars. The results demonstrate the potential of Vitis vinifera L. cultivars managed with double pruning for high-quality wine production under subtropical conditions, supporting the viability of expanding viticulture in the state of São Paulo. ‘Cabernet Sauvignon’ and ‘Sauvignon Blanc’ showed the highest yields, reaching 3.03 and 2.75 kg per plant, respectively, with productivity values of up to 10.8 t ha−1. ‘Tannat’ stood out for its high sugar accumulation (23.4 °Brix), while ‘Merlot’ exhibited the highest phenolic (234.9 mg 100 g−1) and flavonoid (15.3 mg 100 g−1) contents. These results highlight the enological potential of the evaluated cultivars and confirm the efficiency of the double-pruning system in improving grape composition and wine quality in non-traditional viticultural regions. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

12 pages, 235 KiB  
Article
Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers
by Maxwell K. Kibor, Monica Scali and Rita Vignani
Beverages 2025, 11(3), 81; https://doi.org/10.3390/beverages11030081 - 3 Jun 2025
Viewed by 2638
Abstract
Wine DNA fingerprinting (WDF), retrieved from the amplification of a wider panel of Simple Sequence Repeat (SSR) marker mappings in the Vitis vinifera L. genome, was used to assess the monovarietal nature of Brunello di Montalcino wine. The reliability of the varietal assessment [...] Read more.
Wine DNA fingerprinting (WDF), retrieved from the amplification of a wider panel of Simple Sequence Repeat (SSR) marker mappings in the Vitis vinifera L. genome, was used to assess the monovarietal nature of Brunello di Montalcino wine. The reliability of the varietal assessment was carried out by estimating the PI values associated with resolutive unrooted dendrograms depicting the correct varietal nature of different wines. As few as five SSR DNA markers associated with a PI value of one over a million or less, PI ≤ 10−6, can identify the purity of Sangiovese against Merlot, Pinot Noir, Cabernet Sauvignon, Primitivo (Zinfandel), and genetic variants of the Sangiovese as plant references. WDF was used on other monovarietal wines obtained from Cabernet Sauvignon, Merlot, Chardonnay, and Pinot Noir to test the feasibility of the method. In blended wines, the test was able to trace the main varietal component in a three-variety blend, keeping the varietal fingerprint detectable when the main variety was at least 75% (v/v). The data confirm how local genetic variants of Sangiovese can be tracked in commercial wines, becoming, at wine makers’ demand, part of an evidence synthesis of geographical origin. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Graphical abstract

20 pages, 5797 KiB  
Article
Identification of Grape NRT Gene Family and Analysis of Its Expression in Leaves Under Nitrogen-Deficiency Stress
by Zhongyi Yang, Junjie Mei, Wei Zheng, Falak Sher Khan, Mohammad Nasim Bhuiyan, Kangjie Wang, Mohammad Saidur Rhaman, Naomi Abe-Kanoh and Wei Ji
Horticulturae 2025, 11(3), 252; https://doi.org/10.3390/horticulturae11030252 - 26 Feb 2025
Viewed by 687
Abstract
Nitrogen, an indispensable macronutrient, significantly affects the appearance, quality, and yield of grapes (Vitis vinifera). Adequate nitrate uptake and intracellular transport, facilitated primarily by nitrate transport (NRT) proteins, are crucial for maintaining nutritional balance. However, there are no reports on the [...] Read more.
Nitrogen, an indispensable macronutrient, significantly affects the appearance, quality, and yield of grapes (Vitis vinifera). Adequate nitrate uptake and intracellular transport, facilitated primarily by nitrate transport (NRT) proteins, are crucial for maintaining nutritional balance. However, there are no reports on the NRT gene family in grapes. In this study, we identified 53 Nitrate Transporter 1/Peptide Transporter Family (NPF), 3 nitrate transporter 2 family (NRT2), and 1 Nitrate Assimilation-Related 2 (NAR2) genes in the grapevine Pinot Noir PN40024 genome. A comprehensive analysis of these gene families, including their physicochemical properties, structural organization, chromosomal distribution, collinearity, cis-acting element distribution, and phylogenetic relationships, revealed the rich diversity and evolutionary conservation of the grapevine Nitrate Transporter (NRT) genes. Furthermore, the expression profiles of VvNRTs in different tissues demonstrated that the NRT genes possess spatio-temporal expression specificity. The expression patterns of the NRT genes were examined by transcriptome sequencing in grapevines across various tissues under nitrogen-deficiency conditions. The expression patterns in grapevine leaves under nitrogen-deficiency conditions showed upregulation of the VvNPF2.3 gene in conditions of nitrogen deficiency. This upregulation was strongly associated with a 62.2% reduction in indole-3-acetic acid (IAA) levels and a 21.3% increase in hydrogen peroxide (H2O2) levels, suggesting a complex regulatory response to nitrogen-induced stress. These findings emphasize the potential involvement of NRT genes in the adaptive reaction to nitrogen deficiency and set the stage for future investigations into the molecular mechanisms of nitrogen transportation in grapevines. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

21 pages, 19720 KiB  
Article
Structural and Phylogenetic In Silico Characterization of Vitis vinifera PRR Protein as Potential Target for Plasmopara viticola Infection
by Sofía M. Martínez-Navarro, Xavier de Iceta Soler, Mónica Martínez-Martínez, Manuel Olazábal-Morán, Paloma Santos-Moriano and Sara Gómez
Int. J. Mol. Sci. 2024, 25(17), 9553; https://doi.org/10.3390/ijms25179553 - 3 Sep 2024
Cited by 1 | Viewed by 1294
Abstract
Fungi infection, especially derived from Plasmopara viticola, causes severe grapevine economic losses worldwide. Despite the availability of chemical treatments, looking for eco-friendly ways to control Vitis vinifera infection is gaining much more attention. When a plant is infected, multiple disease-control molecular mechanisms [...] Read more.
Fungi infection, especially derived from Plasmopara viticola, causes severe grapevine economic losses worldwide. Despite the availability of chemical treatments, looking for eco-friendly ways to control Vitis vinifera infection is gaining much more attention. When a plant is infected, multiple disease-control molecular mechanisms are activated. PRRs (Pattern Recognition Receptors) and particularly RLKs (receptor-like kinases) take part in the first barrier of the immune system, and, as a consequence, the kinase signaling cascade is activated, resulting in an immune response. In this context, discovering new lectin-RLK (LecRLK) membrane-bounded proteins has emerged as a promising strategy. The genome-wide localization of potential LecRLKs involved in disease defense was reported in two grapevine varieties of great economic impact: Chardonnay and Pinot Noir. A total of 23 potential amino acid sequences were identified, exhibiting high-sequence homology and evolution related to tandem events. Based on the domain architecture, a carbohydrate specificity ligand assay was conducted with docking, revealing two sequences as candidates for specific Vitis vinifera–Plasmopara viticola host–pathogen interaction. This study confers a starting point for designing new effective antifungal treatments directed at LecRLK targets in Vitis vinifera. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

8 pages, 803 KiB  
Communication
Post-Frost Pruning Does Not Impact Vine Yield and Berry Composition in Young Grapevines
by Suraj Kar, Ricky W. Clark, Ian T. Ivey, Joseph B. DeShields, Jeremy Cusimano and Alexander D. Levin
Horticulturae 2024, 10(5), 505; https://doi.org/10.3390/horticulturae10050505 - 14 May 2024
Cited by 1 | Viewed by 1712
Abstract
Spring frost is a perennial and widespread problem across many cool climatic and high-elevation winegrowing regions of the world. Vitis vinifera L. cv. Pinot noir is an early budding cultivar; thus, it is particularly susceptible to late-spring frost damage. In late April 2022, [...] Read more.
Spring frost is a perennial and widespread problem across many cool climatic and high-elevation winegrowing regions of the world. Vitis vinifera L. cv. Pinot noir is an early budding cultivar; thus, it is particularly susceptible to late-spring frost damage. In late April 2022, an advective frost event occurred throughout Western Oregon winegrowing regions and subsequently damaged a substantial number of commercial vineyards. Growers often are unsure of how to manage grapevines after a frost event. Limited research has shown little-to-no effect of pruning vs. non-pruning strategies on vine yield and productivity. In addition, pruning a frost-affected vineyard incurs additional labor costs that may offset the cost–benefit balance for the grower. Therefore, in this experiment, the effect of two different post-frost pruning treatments (cane pruning and spur pruning) on vine yield, berry composition, and vine vegetative growth were tested. No effect of post-frost pruning treatments on vine yield, berry composition, and vine vegetative characteristics was observed. Cluster numbers, cluster weights, and berries per cluster only differed between cane- vs. spur-pruned vines. Therefore, leaving frost-affected vines alone and a scaled-back vineyard management practice could be practical for economic reasons. Full article
(This article belongs to the Topic Effects of Climate Change on Viticulture (Grape))
Show Figures

Figure 1

17 pages, 3486 KiB  
Article
Tannin and Iron-Reactive Phenolics Content in Red Cold-Hardy Hybrid Grape Tissues throughout Development and Ripening
by Alexander D. Gapinski, Nicolas Delchier and Aude A. Watrelot
Foods 2024, 13(7), 986; https://doi.org/10.3390/foods13070986 - 23 Mar 2024
Cited by 3 | Viewed by 1683
Abstract
Phenolic compounds, especially tannins, are important for red wine quality. Wines made from cold-hardy hybrid grape cultivars have much lower tannin concentrations than wines from Vitis vinifera grape cultivars. This study assessed the phenolics content of berry tissues of three red cold-hardy hybrid [...] Read more.
Phenolic compounds, especially tannins, are important for red wine quality. Wines made from cold-hardy hybrid grape cultivars have much lower tannin concentrations than wines from Vitis vinifera grape cultivars. This study assessed the phenolics content of berry tissues of three red cold-hardy hybrid cultivars in comparison to V. vinifera cv. ‘Pinot noir’ throughout development and ripening. Basic chemical properties, iron-reactive phenolics content, and tannin content were evaluated in the juice, skins, and seeds of Vitis spp. cvs. ‘Crimson Pearl’, ‘Marquette’, and ‘Petite Pearl’ and ‘Pinot noir’ at six time points from one week post-fruit set to harvest in 2021 and 2022. ‘Crimson Pearl’ displayed similar iron-reactive phenolics and tannin contents in juice, skins (22.6–25.4 mg/g dry skin and 8.0–12.2 mg/g dry skin, respectively), and seeds (12.8–29.8 mg/g dry seed and 4.2–22.0 mg/g dry seed, respectively) as ‘Petite Pearl’ and ‘Marquette’ at harvest in 2022. The hybrid cultivars showed a similar trend of phenolic accumulation as ‘Pinot noir’ but resulted in overall lower content in skins and seeds. Despite differences in developmental trends, the three hybrid grape cultivars displayed similar phenolic content at harvest ripeness. This is the first study examining the phenolic content of ‘Crimson Pearl’ and ‘Petite Pearl’ throughout berry development and ripening. This study provides important information for the wine industry to make informed decisions on making wine with these cultivars. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 660 KiB  
Article
Changes in Physiological Indices, Amino Acids, and Volatile Compounds in Vitis vinifera L. cv. Pinot Noir under UV-B Radiation and Water Deficit Conditions
by Meng Sun, Yifan Zhu, Brian Jordan and Tao Wang
Foods 2024, 13(4), 508; https://doi.org/10.3390/foods13040508 - 6 Feb 2024
Cited by 1 | Viewed by 1262
Abstract
UV-B radiation and water deficit can challenge Pinot noir growth and fruit quality. The aim of this work is to determine the effects of UV-B and water deficit on the physiological indices, amino acids, and volatile compounds of Pinot noir vine and fruit. [...] Read more.
UV-B radiation and water deficit can challenge Pinot noir growth and fruit quality. The aim of this work is to determine the effects of UV-B and water deficit on the physiological indices, amino acids, and volatile compounds of Pinot noir vine and fruit. The results showed that both individual and combined treatments caused a decrease in the leaf SPAD, with the largest amplitude being observed in the combined treatment. Water deficit also decreased the leaf water potential and increased the juice δ13C‰ at harvest, which was the opposite of the latter under UV-B radiation. Interestingly, most of the physiological indices under combined stresses did not show significant changes compared with that under no UV-B and the well-watered control treatment. Moreover, the concentrations of amino acids and volatile compounds in the berries were determined at harvest. The amino acid contents were significantly increased by the combined treatment, particularly proline (Pro), aspartate (Arg), alanine (Ala), and threonine (Thr). There were slight increases in volatile compounds. This research substantially contributed to improve our scientific understanding of UV-B and water deficit responses in an important commercial species. In addition, it highlighted some future research to produce high-quality wines with the anticipated specific characteristics. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 2242 KiB  
Article
High-Resolution Mass Spectrometry-Based Metabolomics for Increased Grape Juice Metabolite Coverage
by Sébastien Nicolas, Benjamin Bois, Kevin Billet, Rémy Romanet, Florian Bahut, Jenny Uhl, Philippe Schmitt-Kopplin and Régis D. Gougeon
Foods 2024, 13(1), 54; https://doi.org/10.3390/foods13010054 - 22 Dec 2023
Cited by 1 | Viewed by 2711
Abstract
The composition of the juice from grape berries is at the basis of the definition of technological ripeness before harvest, historically evaluated from global sugar and acid contents. If many studies have contributed to the identification of other primary and secondary metabolites in [...] Read more.
The composition of the juice from grape berries is at the basis of the definition of technological ripeness before harvest, historically evaluated from global sugar and acid contents. If many studies have contributed to the identification of other primary and secondary metabolites in whole berries, deepening knowledge about the chemical composition of the sole flesh of grape berries (i.e., without considering skins and seeds) at harvest is of primary interest when studying the enological potential of widespread grape varieties producing high-added-value wines. Here, we used non-targeted DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS analyses to explore the extent of metabolite coverage of up to 290 grape juices from four Vitis vinifera grape varieties, namely Chardonnay, Pinot noir, Meunier, and Aligoté, sampled at harvest from 91 vineyards in Europe and Argentina, over three successive vintages. SPE pretreatment of samples led to the identification of more than 4500 detected C,H,O,N,S-containing elemental compositions, likely associated with tens of thousands of distinct metabolites. We further revealed that a major part of this chemical diversity appears to be common to the different juices, as exemplified by Pinot noir and Chardonnay samples. However, it was possible to build significant models for the discrimination of Chardonnay from Pinot noir grape juices, and of Chardonnay from Aligoté grape juices, regardless of the geographical origin or the vintage. Therefore, this metabolomic approach opens access to a remarkable holistic molecular description of the instantaneous composition of such a biological matrix, which is the result of complex interplays among environmental, biochemical, and vine growing practices. Full article
Show Figures

Graphical abstract

17 pages, 1145 KiB  
Article
UV-B Radiation Induced the Changes in the Amount of Amino Acids, Phenolics and Aroma Compounds in Vitis vinifera cv. Pinot Noir Berry under Field Conditions
by Meng Sun, Brian Jordan, Glen Creasy and Yi-Fan Zhu
Foods 2023, 12(12), 2350; https://doi.org/10.3390/foods12122350 - 12 Jun 2023
Cited by 5 | Viewed by 2014
Abstract
High UV-B radiation can challenge Pinot noir growth in the wine-making region of the Southern Hemisphere. The aim of this work was to determine UV-B effects on amino acids, phenolic composition and aroma compounds of Pinot noir fruit. Sunlight exposure with or without [...] Read more.
High UV-B radiation can challenge Pinot noir growth in the wine-making region of the Southern Hemisphere. The aim of this work was to determine UV-B effects on amino acids, phenolic composition and aroma compounds of Pinot noir fruit. Sunlight exposure with or without UV-B did not affect fruit production capacity, °Brix and total amino acids in the vineyard over the two years. This research reported increased contents of skin anthocyanin and skin total phenolics in berry skins under UV-B. The research showed that there were no changes in C6 compounds. Some monoterpenes concentrations were decreased by UV-B. The information also indicated how important leaf canopy management was for vineyard management. Therefore, UV radiation potentially affected fruit ripeness and crop load, and even stimulated the accumulation of phenolic compounds that may affect Pinot noir quality. This research reported that canopy management (UV-B exposure) may be a good way for vineyard management to increase the accumulation of anthocyanins and tannins in berry skins. Full article
Show Figures

Figure 1

15 pages, 7070 KiB  
Communication
Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules
by Jin Yao, Xingmei Li, Na Wu, Songlin Zhang, Min Gao and Xiping Wang
Int. J. Mol. Sci. 2023, 24(1), 800; https://doi.org/10.3390/ijms24010800 - 2 Jan 2023
Cited by 2 | Viewed by 2515
Abstract
The European grapevine (Vitis vinifera L.) is one of the world’s most widely cultivated and economically important fruit crops. Seedless fruits are particularly desired for table grapes, with seedlessness resulting from stenospermocarpy being an important goal for cultivar improvement. The establishment of [...] Read more.
The European grapevine (Vitis vinifera L.) is one of the world’s most widely cultivated and economically important fruit crops. Seedless fruits are particularly desired for table grapes, with seedlessness resulting from stenospermocarpy being an important goal for cultivar improvement. The establishment of an RNA in situ hybridisation (ISH) system for grape berries and ovules is, therefore, important for understanding the molecular mechanisms of ovule abortion in stenospermocarpic seedless cultivars. We improved RNA in situ hybridisation procedures for developing berries and ovules by targeting two transcription factor genes, VvHB63 and VvTAU, using two seeded varieties, ‘Red Globe’ and ‘Pinot Noir’, and two seedless cultivars, ‘Flame Seedless’ and ‘Thompson Seedless’. Optimisation focused on the time of proteinase K treatment, probe length, probe concentration, hybridisation temperature and post-hybridisation washing conditions. The objectives were to maximise hybridisation signals and minimise background interference, while still preserving tissue integrity. For the target genes and samples tested, the best results were obtained with a pre-hybridisation proteinase K treatment of 30 min, probe length of 150 bp and concentration of 100 ng/mL, hybridisation temperature of 50 °C, three washes with 0.2× saline sodium citrate (SSC) solution and blocking with 1% blocking reagent for 45 min during the subsequent hybridisation. The improved ISH system was used to study the spatiotemporal expression patterns of genes related to ovule development at a microscopic level. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 1428 KiB  
Article
Pathogen Adaptation to American (Rpv3-1) and Eurasian (Rpv29) Grapevine Loci Conferring Resistance to Downy Mildew
by Elena Marone Fassolo, Beatrice Lecchi, Demetrio Marcianò, Giuliana Maddalena and Silvia Laura Toffolatti
Plants 2022, 11(19), 2619; https://doi.org/10.3390/plants11192619 - 5 Oct 2022
Cited by 4 | Viewed by 2248
Abstract
Durable resistance is a key objective in genetic improvement for disease resistance in grapevines, which must survive for years in the field in the presence of adaptable pathogen populations. In this study, the adaptation of 72 Northern Italian isolates of Plasmopara viticola, [...] Read more.
Durable resistance is a key objective in genetic improvement for disease resistance in grapevines, which must survive for years in the field in the presence of adaptable pathogen populations. In this study, the adaptation of 72 Northern Italian isolates of Plasmopara viticola, the downy mildew agent, has been investigated into Bianca, possessing Rpv3-1, the most frequently exploited resistance locus for genetic improvement, and Mgaloblishvili, a Vitis vinifera variety possessing the newly discovered Rpv29 locus. Infection parameters (latency period, infection frequency, and disease severity) and oospore production and viability were evaluated and compared to those of Pinot noir, the susceptible reference. The expected levels of disease control were achieved by both resistant cultivars (>90% on Bianca; >25% on Mgaloblishvili), despite the high frequency of isolates able to grow on one (28%) or both (46%) accessions. The disease incidence and severity were limited by both resistant cultivars and the strains able to grow on resistant accessions showed signatures of fitness penalties (reduced virulence, infection frequency, and oospore density). Together, these results indicate an adequate pathogen control but suitable practices must be adopted in the field to prevent the diffusion of the partially adapted P. viticola strains to protect resistance genes from erosion. Full article
(This article belongs to the Collection New Trends in Plant Science in Italy)
Show Figures

Figure 1

21 pages, 5394 KiB  
Article
Leaf Eco-Physiological Profile and Berries Technological Traits on Potted Vitis vinifera L. cv Pinot Noir Subordinated to Zeolite Treatments under Drought Stress
by Eleonora Cataldo, Maddalena Fucile and Giovan Battista Mattii
Plants 2022, 11(13), 1735; https://doi.org/10.3390/plants11131735 - 29 Jun 2022
Cited by 13 | Viewed by 2040
Abstract
In Mediterranean areas, extreme weather conditions such as high diurnal temperatures during the growing season could tweak vine physiology and metabolism, affecting grapes’ quality. Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water resources of the vineyards, forcing [...] Read more.
In Mediterranean areas, extreme weather conditions such as high diurnal temperatures during the growing season could tweak vine physiology and metabolism, affecting grapes’ quality. Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water resources of the vineyards, forcing the winemakers to continuously face an increasing water demand in recent decades, which has led them to non-sustainable choices for ambient (i.e., irrigation solutions). The aspiration of this experiment was to explore the effects of zeolite treatments (clinoptilolite type) on Vitis vinifera L. (potted vines) ecophysiology and berry metabolism under two water regimes. The plants were subordinated to two different predawn water potential regimes (0 ≤ ΨPD ≤ −0.4, WWCtrl and −0.4 ≤ ΨPD ≤ −0.9, WSCtrl), both associated with zeolite treatments (WWt and WSt). Gas exchanges, predawn and midday stem water potential, chlorophyll fluorescence, temperature, and relative water content were overseen on leaves at veraison, maturation, and harvest. Technological analyses were performed on the berries. Moreover, data were analyzed with principal component analysis and Pearson’s correlations. This experiment supplies new evidence that zeolite applications could impact both physiological profiles (higher photosynthesis and stomatal conductance) as well as berry skin metabolism (sugar and size) of vines, giving a better skill to counteract low water availability during the season and maintaining a better hydraulic conductivity. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

15 pages, 2388 KiB  
Article
Genetic Analysis of the Grapevine GATA Gene Family and Their Expression Profiles in Response to Hormone and Downy Mildew Infection
by Tingting Chen, Jing Peng, Meijie Li, Mengru Dou, Yan Lei, Yuejing Wang and Yan Xu
Horticulturae 2022, 8(4), 303; https://doi.org/10.3390/horticulturae8040303 - 3 Apr 2022
Cited by 5 | Viewed by 2761
Abstract
Grapevine (Vitis. vinifera L.) is one of the most economically important fruit crops throughout the world. However, grape production is increasingly impacted by numerous diseases, including downy mildew, caused by the oomycete Plasmopara viticola. In grapevine and other plants, members of [...] Read more.
Grapevine (Vitis. vinifera L.) is one of the most economically important fruit crops throughout the world. However, grape production is increasingly impacted by numerous diseases, including downy mildew, caused by the oomycete Plasmopara viticola. In grapevine and other plants, members of the GATA family of transcription factors play key roles in light and phytohormone signaling. However, little is known about their potential roles in biotic defense responses. As a first step, we identified 27 GATA transcription factors in grapevine and defined their transcriptional responses to three biotic stress-related phytohormones (SA, MeJA, and BR) in callus cells, and challenge with P. viticola in a downy mildew-sensitive cultivar, V. vinifera ‘Pinot noir’, and a resistant cultivar, V. piasezkii ‘Liuba-8′. Many of the VvGATA genes had higher expression at 0.5 h after hormones treatments. Moreover, a group of VvGATAs was dramatically induced in ‘Liuba-8′ at 24 post infection by P. viticola. However, the same genes were significantly repressed and showed low expression levels in ‘Pinot noir’. Additionally, VvGATA27 was located in the nucleus and had transcriptional activity. Taken together, the study identified the GATA full gene families in grapes on phylogenetic analysis and protein structure. Moreover, this study provided a basis for discussing the roles of VvGATAs in response to hormones and P. viticola infection. Our results provided evidence for the selection of candidate genes against downy mildew and lay the foundation for further investigation of VvGATA transcription factors. Full article
(This article belongs to the Special Issue Stress Biology of Horticultural Plants)
Show Figures

Figure 1

10 pages, 1313 KiB  
Article
‘Pinore’: The New Red Wine Variety Cross-Bred between ‘Pinot Noir’ and ‘Regent’ Vines
by Stanko Vršič and Klemen Vršič
Plants 2021, 10(12), 2666; https://doi.org/10.3390/plants10122666 - 3 Dec 2021
Viewed by 3275
Abstract
Renewed interest in varieties that are more tolerant to diseases has emerged, which is mainly due to increased awareness by producers and consumers regarding the impact of phytochemicals in the environment. This paper describes the first Slovenian grapevine variety ‘Pinore’ crossed between the [...] Read more.
Renewed interest in varieties that are more tolerant to diseases has emerged, which is mainly due to increased awareness by producers and consumers regarding the impact of phytochemicals in the environment. This paper describes the first Slovenian grapevine variety ‘Pinore’ crossed between the Vitis vinifera L. ‘Pinot Noir’ clone Mf and ‘Regent’ vines. The aim was to create an early ripening grape cultivar that has a good tolerance to biotic stress (e.g., downy and powdery mildew, botrytis) combined with the benefits of established cultivars and their intense wine colors. Some ampelographic characteristics of young shoots, mature leaves, bunches, and berries are presented, and its major agronomic traits, ripening time, grape yield, quality performances, and disease resistance were evaluated over a three-year period (2014–2017). Wine sensory analyses were performed and compared with the international variety ‘Pinot Noir’. The examined genotype showed good agronomic performance and a high wine quality as far as the content of polyphenols is concerned, especially in terms of anthocyanins and tolerance to diseases (Ren3/9 and Rpv3.1); it is significantly different compared to the reference variety ‘Pinot Noir’. In terms of ampelographic characteristics, the main differences are in the number of leaf lobes, the depth of the lateral sinuses, and the content of anthocyanins in its flesh. The investigated genotype has been proposed to the Committee of new varieties in Slovenia for the variety recognition procedure, and completion of the procedure planned for the end of 2023. Full article
Show Figures

Figure 1

Back to TopTop