Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Victorivirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2934 KiB  
Article
Coat Proteins of the Novel Victoriviruses FaVV1 and FaVV2 Suppress Sexual Reproduction and Virulence in the Pathogen of Fusarium Head Blight
by Shulin Cao, Xiaoyue Yang, Lele Xia, Xing Zhang, Haiyan Sun, Yuanyu Deng, Yan Shu, Aixiang Zhang, Huaigu Chen and Wei Li
Viruses 2024, 16(9), 1424; https://doi.org/10.3390/v16091424 - 6 Sep 2024
Cited by 1 | Viewed by 1267
Abstract
Fusarium head blight (FHB), a disease inflicted by Fusarium graminearum and F. asiaticum, poses a growing threat to wheat in China, particularly in the face of climate change and evolving agricultural practices. This study unveiled the discovery of the victorivirus FgVV2 from [...] Read more.
Fusarium head blight (FHB), a disease inflicted by Fusarium graminearum and F. asiaticum, poses a growing threat to wheat in China, particularly in the face of climate change and evolving agricultural practices. This study unveiled the discovery of the victorivirus FgVV2 from the F. asiaticum strain F16176 and comprehensively characterized the function of the two victoriviruses FaVV1 and FaVV2 in virulence. Through comparative analysis with a virus-free strain, we established that these mycoviruses markedly repress the sexual reproduction and pathogenicity of their fungal hosts. Furthermore, we synthesized the coat protein (CP) genes CP1 from FaVV1 and CP2 from FaVV2, which were fused with the green fluorescent protein (GFP) gene and successfully expressed in Fusarium strains in wild-type isolates of F. asiaticum and F. graminearum. Similar to virus-infected strains, the transformed strains expressing CPs showed a significant decrease in perithecia formation and pathogenicity. Notably, CP2 exhibited a stronger inhibitory effect than CP1, yet the suppression of sexual reproduction in F. graminearum was less pronounced than that in F. asiaticum. Additionally, the pathogenicity of the F. asiaticum and F. graminearum strains expressing CP1 or CP2 was substantially diminished against wheat heads. The GFP-tagged CP1 and CP2 revealed distinct cellular localization patterns, suggesting various mechanisms of interaction with the host. The findings of this study provide a significant research foundation for the study of the interaction mechanisms between FaVV1 and FaVV2 with their hosts, as well as for the exploration and utilization of fungal viral resources. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

14 pages, 506 KiB  
Article
Metagenomic of Liver Tissue Identified at Least Two Genera of Totivirus-like Viruses in Molossus molossus Bats
by Roseane da Silva Couto, Endrya do Socorro Foro Ramos, Wandercleyson Uchôa Abreu, Luis Reginaldo Ribeiro Rodrigues, Luis Fernando Marinho, Vanessa dos Santos Morais, Fabiola Villanova, Ramendra Pati Pandey, Xutao Deng, Eric Delwart, Antonio Charlys da Costa and Elcio Leal
Microorganisms 2024, 12(1), 206; https://doi.org/10.3390/microorganisms12010206 - 19 Jan 2024
Cited by 2 | Viewed by 2220
Abstract
The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in [...] Read more.
The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in diameter, and lack an envelope. There are five genera within this family, including Totivirus, Victorivirus, Giardiavirus, Leishmaniavirus, and Trichomonasvirus. While Totivirus and Victorivirus primarily infect fungi, Giardiavirus, Leishmaniavirus, and Trichomonasvirus infect diverse hosts, including protists, insects, and vertebrates. Recently, new totivirus-like species have been discovered in fish and plant hosts, and through metagenomic analysis, a novel totivirus-like virus (named Tianjin totivirus) has been isolated from bat guano. Interestingly, Tianjin totivirus causes cytopathic effects in insect cells but cannot grow in mammalian cells, suggesting that it infects insects consumed by insectivorous bats. In this study, we used next-generation sequencing and identified totivirus-like viruses in liver tissue from Molossus molossus bats in the Amazon region of Brazil. Comparative phylogenetic analysis based on the RNA-dependent RNA polymerase region revealed that the viruses identified in Molossus bats belong to two distinct phylogenetic clades, possibly comprising different genera within the Totiviridae family. Notably, the mean similarity between the Tianjin totivirus and the totiviruses identified in Molossus bats is less than 18%. These findings suggest that the diversity of totiviruses in bats is more extensive than previously recognized and highlight the potential for bats to serve as reservoirs for novel toti-like viruses. Full article
(This article belongs to the Special Issue Advances in Viral Metagenomics)
Show Figures

Figure 1

22 pages, 5927 KiB  
Article
Uncovering a Complex Virome Associated with the Cacao Pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata
by Roy Bogardid Ardón Espinal, Sabrina Ferreira de Santana, Vinícius Castro Santos, Gabriela Nicolle Ramos Lizardo, Raner José Santana Silva, Ronan Xavier Corrêa, Leandro Lopes Loguercio, Aristóteles Góes-Neto, Carlos Priminho Pirovani, Paula Luize Camargos Fonseca and Eric Roberto Guimarães Rocha Aguiar
Pathogens 2023, 12(2), 287; https://doi.org/10.3390/pathogens12020287 - 9 Feb 2023
Cited by 10 | Viewed by 3710
Abstract
Theobroma cacao is one of the main crops of economic importance in the world as the source of raw material for producing chocolate and derivatives. The crop is the main source of income for thousands of small farmers, who produce more than 80% [...] Read more.
Theobroma cacao is one of the main crops of economic importance in the world as the source of raw material for producing chocolate and derivatives. The crop is the main source of income for thousands of small farmers, who produce more than 80% of the world’s cocoa supply. However, the emergence, re-emergence and proliferation of pathogens, such as Ceratocystis spp., the causative agent of Ceratocystis wilt disease and canker disease, have been affecting the sustainability of many crops. Fungal control is laborious, often depending on fungicides that are expensive and/or toxic to humans, prompting researchers to look for new solutions to counteract the proliferation of these pathogens, including the use of biological agents such as mycoviruses. In this study, we investigated the diversity of microorganisms associated with the T. cacao pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata with a focus on the virome using RNA sequencing data available in public databases. We used a comprehensive bioinformatics pipeline containing several steps for viral sequence enrichment and took advantage of an integrated assembly step composed of different assemblers followed by sequence similarity searches using NCBI nonredundant databases. Our strategy was able to identify four putative C. cacaofunesta viruses (hypovirus, sclerotimonavirus, alphapartitivirus and narnavirus) and six C. fimbriata viruses (three alphaendornaviruses, one victorivirus and two mitoviruses). All the viral sequences identified showed similarity to viral genomes in public databases only at the amino acid level, likely representing new viral species. Of note, we present the first report of viruses associated with the cacao pathogens C. cacaofunesta and C. fimbriata and the second report of viral species infecting members of the Ceratocystidaceae family. Our findings highlight the need for further prospective studies to uncover the real diversity of fungus-infecting viruses that can contribute to the development of new management strategies. Full article
(This article belongs to the Special Issue Viruses of Microbes: From Basics to Biotechnological Application)
Show Figures

Figure 1

15 pages, 3086 KiB  
Article
Characterization of Four Novel dsRNA Viruses Isolated from Mucor hiemalis Strains
by Tünde Kartali, Ildikó Nyilasi, Sándor Kocsubé, Roland Patai, Tamás F. Polgár, Nóra Zsindely, Gábor Nagy, László Bodai, Zoltán Lipinszki, Csaba Vágvölgyi and Tamás Papp
Viruses 2021, 13(11), 2319; https://doi.org/10.3390/v13112319 - 21 Nov 2021
Cited by 5 | Viewed by 3611
Abstract
We previously screened the total nucleic acid extracts of 123 Mucor strains for the presence of dsRNA molecules without further molecular analyses. Here, we characterized five novel dsRNA genomes isolated from four different Mucor hiemalis strains with next-generation sequencing (NGS), namely Mucor [...] Read more.
We previously screened the total nucleic acid extracts of 123 Mucor strains for the presence of dsRNA molecules without further molecular analyses. Here, we characterized five novel dsRNA genomes isolated from four different Mucor hiemalis strains with next-generation sequencing (NGS), namely Mucor hiemalis virus 1a (MhV1a) from WRL CN(M) 122; Mucor hiemalis virus 1b (MhV1b) from NRRL 3624; Mucor hiemalis virus 2 (MhV2) from NRRL 3616; and Mucor hiemalis virus 3 (MhV3) and Mucor hiemalis virus (MhV4) from NRRL 3617 strains. Genomes contain two open reading frames (ORF), which encode the coat protein (CP) and the RNA dependent RNA polymerase (RdRp), respectively. In MhV1a and MhV1b, it is predicted to be translated as a fusion protein via -1 ribosomal frameshift, while in MhV4 via a rare +1 (or−2) ribosomal frameshift. In MhV2 and MhV3, the presence of specific UAAUG pentanucleotide motif points to the fact for coupled translation termination and reinitialization. MhV1a, MhV2, and MhV3 are part of the clade representing the genus Victorivirus, while MhV4 is seated in Totivirus genus clade. The detected VLPs in Mucor strains were from 33 to 36 nm in diameter. Hybridization analysis revealed that the dsRNA molecules of MhV1a-MhV4 hybridized to the corresponding molecules. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

14 pages, 3248 KiB  
Article
Direct Metatranscriptomic Survey of the Sunflower Microbiome and Virome
by Ziyi Wang, Achal Neupane, Jiuhuan Feng, Connor Pedersen and Shin-Yi Lee Marzano
Viruses 2021, 13(9), 1867; https://doi.org/10.3390/v13091867 - 18 Sep 2021
Cited by 8 | Viewed by 3698
Abstract
Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust [...] Read more.
Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust infections. To identify the viruses potentially associated with the disease diagnosed, symptomatic leaves were obtained from diseased plants. Total RNA was extracted corresponding to each disease diagnosed to generate libraries for paired-end high throughput sequencing. Short sequencing reads were assembled de novo and the contigs with similarities to viruses were identified by aligning against a custom protein database. We report the discovery of two novel mitoviruses, four novel partitiviruses, one novel victorivirus, and nine novel totiviruses based on similarities to RNA-dependent RNA polymerases and capsid proteins. Contigs similar to bean yellow mosaic virus and Sclerotinia sclerotiorum hypovirulence-associated DNA virus were also detected. To the best of our knowledge, this is the first report of direct metatranscriptomics discovery of viruses associated with fungal infections of sunflowers bypassing culturing. These newly discovered viruses represent a natural genetic resource from which we can further develop potential biopesticide to control sunflower diseases. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

18 pages, 2808 KiB  
Article
Novel Victorivirus from a Pakistani Isolate of Alternaria alternata Lacking a Typical Translational Stop/Restart Sequence Signature
by Atif Jamal, Yukiyo Sato, Sabitree Shahi, Wajeeha Shamsi, Hideki Kondo and Nobuhiro Suzuki
Viruses 2019, 11(6), 577; https://doi.org/10.3390/v11060577 - 25 Jun 2019
Cited by 33 | Viewed by 5811
Abstract
The family Totiviridae currently contains five genera Totivirus, Victorivirus, Leishmavirus, Trichomonasvirus, and Giardiavirus. Members in this family generally have a set of two-open reading frame (ORF) elements in their genome with the 5′-proximal ORF (ORF1) encoding a capsid [...] Read more.
The family Totiviridae currently contains five genera Totivirus, Victorivirus, Leishmavirus, Trichomonasvirus, and Giardiavirus. Members in this family generally have a set of two-open reading frame (ORF) elements in their genome with the 5′-proximal ORF (ORF1) encoding a capsid protein (CP) and the 3′-proximal one (ORF2) for RNA-dependent RNA polymerase (RdRp). How the downstream open reading frames (ORFs) are expressed is genus-specific. All victoriviruses characterized thus far appear to use the stop/restart translation mechanism, allowing for the expression of two separate protein products from bicitronic genome-sized viral mRNA, while the totiviruses use a −1 ribosomal frame-shifting that leads to a fusion product of CP and RdRp. We report the biological and molecular characterization of a novel victorivirus termed Alternaria alternata victorivirus 1 (AalVV1) isolated from Alternaria alternata in Pakistan. The phylogenetic and molecular analyses showed AalVV1 to be distinct from previously reported victoriviruses. AalVV1 appears to have a sequence signature required for the −1 frame-shifting at the ORF1/2 junction region, rather than a stop/restart key mediator. By contrast, SDS–polyacrylamide gel electrophoresis and peptide mass fingerprinting analyses of purified virion preparations suggested the expression of two protein products, not a CP-RdRp fusion product. How these proteins are expressed is discussed in this study. Possible effects of infection by this virus were tested in two fungal species: A. alternata and RNA silencing proficient and deficient strains of Cryphonectria parasitica, a model filamentous fungus. AalVV1 showed symptomless infection in all of these fungal strains, even in the RNA silencing deficient C. parasitica strain. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

15 pages, 4211 KiB  
Article
A Victorivirus and Two Novel Mitoviruses Co-Infected the Plant Pathogen Nigrospora oryzae
by Hong Liu, Rui Liu, Chang Xin Li, Hui Wang, Hong Jian Zhu, Bi Da Gao, Qian Zhou and Jie Zhong
Viruses 2019, 11(1), 83; https://doi.org/10.3390/v11010083 - 19 Jan 2019
Cited by 26 | Viewed by 5372
Abstract
Three dsRNAs, in sizes of approximately 2.5–5 kbp, were detected in the plant pathogenic fungus Nigrospora oryzae strain CS-7.5-4. Genomic analysis showed that the 5.0 kb dsRNA was a victorivirus named as Nigrospora oryzae victorivirus 2 (NoRV2). The genome of NoRV2 was 5166 [...] Read more.
Three dsRNAs, in sizes of approximately 2.5–5 kbp, were detected in the plant pathogenic fungus Nigrospora oryzae strain CS-7.5-4. Genomic analysis showed that the 5.0 kb dsRNA was a victorivirus named as Nigrospora oryzae victorivirus 2 (NoRV2). The genome of NoRV2 was 5166 bp in length containing two overlapping open reading frames (ORFs), ORF1 and ORF2. ORF1 was deduced to encode a coat protein (CP) showing homology to the CPs of viruses belonging to the Totiviridae family. The stop codon of ORF1 and the start codon of ORF2 were overlapped by the tetranucleotide sequence AUGA. ORF2 was predicted to encode an RNA-dependent RNA polymerase (RdRp), which was highly similar to the RdRps of victoriviruses. Virus-like particle examination demonstrated that the genome of NoRV2 was solely encapsidated by viral particles with a diameter of approximately 35 nm. The other two dsRNAs that were less than 3.0 kb were predicted to be the genomes of two mitoviruses, named as Nigrospora oryzae mitovirus 1 (NoMV1) and Nigrospora oryzae mitovirus 2 (NoMV2). Both NoMV1 and NoMV2 were A-U rich and with lengths of 2865 and 2507 bp, respectively. Mitochondrial codon usage inferred that each of the two mitoviruses contains a major large ORF encoding a mitoviral RdRp. Horizontal transfer experiments showed that the NoMV1 and NoMV2 could be cotransmitted horizontally via hyphal contact to other virus-free N. oryzae strains and causes phenotypic change to the recipient, such as an increase in growth rate. This is the first report of mitoviruses in N. oryzae. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

14 pages, 10267 KiB  
Review
Chrysoviruses in Magnaporthe oryzae
by Hiromitsu Moriyama, Syun-ichi Urayama, Tomoya Higashiura, Tuong Minh Le and Ken Komatsu
Viruses 2018, 10(12), 697; https://doi.org/10.3390/v10120697 - 8 Dec 2018
Cited by 19 | Viewed by 6189
Abstract
Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, [...] Read more.
Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, Victorivirus, in the family, Totiviridae; Magnaporthe oryzae. partitivirus 1 (MoPV1) in the family, Partitiviridae; Magnaporthe oryzae. chrysovirus 1 strains A and B (MoCV1-A and MoCV1-B) belonging to cluster II of the family, Chrysoviridae; a mycovirus related to plant viruses of the family, Tombusviridae (Magnaporthe oryzae. virus A); and a (+)ssRNA mycovirus closely related to the ourmia-like viruses (Magnaporthe oryzae. ourmia-like virus 1). Among these, MoCV1-A and MoCV1-B were the first reported mycoviruses that cause hypovirulence traits in their host fungus, such as impaired growth, altered colony morphology, and reduced pigmentation. Recently we reported that, although MoCV1-A infection generally confers hypovirulence to fungi, it is also a driving force behind the development of physiological diversity, including pathogenic races. Another example of modulated pathogenicity caused by mycovirus infection is that of Alternaria alternata chrysovirus 1 (AaCV1), which is closely related to MoCV1-A. AaCV1 exhibits two contrasting effects: Impaired growth of the host fungus while rendering the host hypervirulent to the plant, through increased production of the host-specific AK-toxin. It is inferred that these mycoviruses might be epigenetic factors that cause changes in the pathogenicity of phytopathogenic fungi. Full article
(This article belongs to the Special Issue Mycoviruses)
Show Figures

Figure 1

13 pages, 1777 KiB  
Communication
Mycoviral Population Dynamics in Spanish Isolates of the Entomopathogenic Fungus Beauveria bassiana
by Charalampos Filippou, Inmaculada Garrido-Jurado, Nicolai V. Meyling, Enrique Quesada-Moraga, Robert H. A. Coutts and Ioly Kotta-Loizou
Viruses 2018, 10(12), 665; https://doi.org/10.3390/v10120665 - 24 Nov 2018
Cited by 14 | Viewed by 5037
Abstract
The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market [...] Read more.
The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market due to environmental and health concerns. The aim of this work is to investigate the presence and diversity of mycoviruses in large panels of entomopathogenic fungi, mostly from Spain and Denmark. In total, 151 isolates belonging to the genera Beauveria, Metarhizium, Lecanicillium, Purpureocillium, Isaria, and Paecilomyces were screened for the presence of dsRNA elements and 12 Spanish B. bassiana isolates were found to harbor mycoviruses. All identified mycoviruses belong to three previously characterised species, the officially recognised Beauveria bassiana victorivirus 1 (BbVV-1) and the proposed Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1); individual B. bassiana isolates may harbor up to three of these mycoviruses. Notably, these mycovirus species are under distinct selection pressures, while recombination of viral genomes increases population diversity. Phylogenetic analysis of the RNA-dependent RNA polymerase gene sequences revealed that the current population structure in Spain is potentially a result of both vertical and horizontal mycovirus transmission. Finally, pathogenicity experiments using the Mediterranean fruit fly Ceratitis capitata showed no direct correlation between the presence of any particular mycovirus and the virulence of the B. bassiana isolates, but illustrated potentially interesting isolates that exhibit relatively high virulence, which will be used in more detailed virulence experimentation in the future. Full article
(This article belongs to the Special Issue Mycoviruses)
Show Figures

Figure 1

14 pages, 890 KiB  
Review
Description, Distribution, and Relevance of Viruses of the Forest Pathogen Gremmeniella abietina
by Leticia Botella and Jarkko Hantula
Viruses 2018, 10(11), 654; https://doi.org/10.3390/v10110654 - 20 Nov 2018
Cited by 18 | Viewed by 4707
Abstract
The European race of the ascomycetous species Gremmeniella abietina (Lagerberg) Morelet includes causal agents of shoot blight and stem canker of several conifers in Europe and North America, which are known to host a diverse virome. GaRV6 is the latest and sixth mycovirus [...] Read more.
The European race of the ascomycetous species Gremmeniella abietina (Lagerberg) Morelet includes causal agents of shoot blight and stem canker of several conifers in Europe and North America, which are known to host a diverse virome. GaRV6 is the latest and sixth mycovirus species reported within G. abietina. Before its description, one victorivirus and one gammapartitivirus species were described in biotype A, two mitoviruses in both biotypes A and B and a betaendornavirus in biotype B. Possible phenotypic changes produced by mycoviruses on G. abietina mycelial growth have been reported in Spanish mitovirus-free and GaRV6-hosting G. abietina isolates, which had higher growth rates at the optimal temperature of 15 °C, but no other major differences have been observed between partitivirus-like dsRNA and dsRNA-free isolates. In this review, we reappraise the diversity of viruses found in G. abietina so far, and their relevance in clarifying the taxonomy of G. abietina. We also provide evidence for the presence of two new viruses belonging to the families Fusariviridae and Endornaviridae in Spanish isolates. Full article
(This article belongs to the Special Issue Mycoviruses)
Show Figures

Figure 1

14 pages, 4981 KiB  
Communication
Mycoviruses in the Plant Pathogen Ustilaginoidea virens Are Not Correlated with the Genetic Backgrounds of Its Hosts
by Jie Zhong, Chuan Yuan Cheng, Bi Da Gao, Qian Zhou and Hong Jian Zhu
Int. J. Mol. Sci. 2017, 18(5), 963; https://doi.org/10.3390/ijms18050963 - 3 May 2017
Cited by 6 | Viewed by 4513
Abstract
Ustilaginoidea virens, the causal agent of rice false smut, is one of the most devastating grain diseases that causes loss of yield in most rice-growing areas worldwide. In this study, we performed a dsRNA screen to isolate mycoviruses from 35 U. virens [...] Read more.
Ustilaginoidea virens, the causal agent of rice false smut, is one of the most devastating grain diseases that causes loss of yield in most rice-growing areas worldwide. In this study, we performed a dsRNA screen to isolate mycoviruses from 35 U. virens strains. The results revealed that 34 of the tested isolates were infected by various dsRNA elements, displaying highly viral diversity and mixed infections. We characterized a 5.3 kbp dsRNA from a typical isolate containing dsRNA segments with sizes ranging from 0.5 to 5.3 kbp. Sequence analysis of its genomic properties indicated that it is a novel victorivirus, named Ustilaginoidea virens RNA virus 5 (UvRV5), that belongs to the family Totiviridae. RT-PCR detection was performed and indicated that not all the dsRNA bands that were 5.3 kbp in size contained UvRV5. Moreover, the genetic relatedness of all the U. virens strains was estimated according to phylogenetic analysis of the partial intergenic spacer region (IGS) sequences. However, concordance was not found between the dsRNA profiles and the IGS-based genetic relatedness of their host fungi. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop