Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = Vibrio fischeri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 286
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

14 pages, 1682 KiB  
Article
Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic
by Sanjay K. S. Patel, Rahul K. Gupta and Jung-Kul Lee
J. Xenobiot. 2025, 15(4), 108; https://doi.org/10.3390/jox15040108 - 3 Jul 2025
Viewed by 424
Abstract
In the present investigation, an eco-friendly biocatalyst was developed using Pleurotus eryngii laccase (PeLac) through a copper (Cu)-based protein–inorganic hybrid system for the degradation of bisphenol A, a representative xenobiotic. After partial purification, the specific activity of crude PeLac was [...] Read more.
In the present investigation, an eco-friendly biocatalyst was developed using Pleurotus eryngii laccase (PeLac) through a copper (Cu)-based protein–inorganic hybrid system for the degradation of bisphenol A, a representative xenobiotic. After partial purification, the specific activity of crude PeLac was 92.6 U/mg of total protein. Immobilization of PeLac as Cu3(PO4)2–Lac (Cu–PeLac) nanoflowers (NFs) at 4 °C resulted in a relative activity 333% higher than that of the free enzyme. The Cu–PeLac NFs exhibited greater pH and temperature stability and enhanced catalytic activity compared to free laccase. This enhanced activity was validated through improved electrochemical properties. After immobilization, Cu–PeLac NFs retained up to 8.7-fold higher residual activity after storage at 4 °C for 30 days. Free and immobilized laccase degraded bisphenol A by 41.6% and 99.8%, respectively, after 2 h of incubation at 30 °C. After ten cycles, Cu–PeLac NFs retained 91.2% degradation efficiency. In the presence of potent laccase inhibitors, Cu–PeLac NFs exhibited a 47.3-fold improvement in bisphenol A degradation compared to free PeLac. Additionally, the synthesized Cu–PeLac NFs demonstrated lower acute toxicity against Vibrio fischeri than Cu nanoparticles. This study presents the first report of PeLac immobilization through an eco-friendly protein–inorganic hybrid system, with promising potential for degrading bisphenol A in the presence of inhibitors to support sustainable development. Full article
Show Figures

Figure 1

16 pages, 618 KiB  
Review
Host-Associated Biofilms: Vibrio fischeri and Other Symbiotic Bacteria Within the Vibrionaceae
by Joaquin Lucero and Michele K. Nishiguchi
Microorganisms 2025, 13(6), 1223; https://doi.org/10.3390/microorganisms13061223 - 27 May 2025
Viewed by 645
Abstract
Biofilm formation is important for microbial survival, adaptation, and persistence within mutualistic and pathogenic systems in the Vibironaceae. Biofilms offer protection against environmental stressors, immune responses, and antimicrobial treatments by increasing host colonization and resilience. This review examines the mechanisms of biofilm formation [...] Read more.
Biofilm formation is important for microbial survival, adaptation, and persistence within mutualistic and pathogenic systems in the Vibironaceae. Biofilms offer protection against environmental stressors, immune responses, and antimicrobial treatments by increasing host colonization and resilience. This review examines the mechanisms of biofilm formation in Vibrio species, focusing on quorum sensing, cyclic-di-GMP signaling, and host-specific adaptations that influence biofilm structure and function. We discuss how biofilms differ between mutualistic and pathogenic species based on environmental and host signals. Recent advances in omics technologies such as transcriptomics and metabolomics have enhanced research in biofilm regulation under different conditions. Horizontal gene transfer and phase variation promote the greater fitness of bacterial biofilms due to the diversity of environmental isolates that utilize biofilms to colonize host species. Despite progress, questions remain regarding the long-term effects of biofilm formation and persistence on host physiology and biofilm community dynamics. Research integrating multidisciplinary approaches will help advance our understanding of biofilms and their implications for influencing microbial adaptation, symbiosis, and disease. These findings have applications in biotechnology and medicine, where the genetic manipulation of biofilm regulation can enhance or disrupt microbiome stability and pathogen resistance, eventually leading to targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

19 pages, 4136 KiB  
Article
Mechanochemically Modified TiO2 Photocatalysts: Combination of Visible-Light Excitability and Antibacterial Effect
by Orsolya Fónagy, Margit Kovács, Erzsébet Szabó-Bárdos, Petra Csicsor-Kulcsár, Lajos Fodor and Ottó Horváth
Catalysts 2025, 15(4), 316; https://doi.org/10.3390/catal15040316 - 26 Mar 2025
Cited by 1 | Viewed by 468
Abstract
The goal of this work was to prepare modified titanium dioxide catalysts applicable for self-cleaning and disinfecting surfaces, possessing both antibacterial and photocatalytic activity in the visible-light region, via green and affordable synthesis. For this purpose, silverization was chosen due to its antibacterial [...] Read more.
The goal of this work was to prepare modified titanium dioxide catalysts applicable for self-cleaning and disinfecting surfaces, possessing both antibacterial and photocatalytic activity in the visible-light region, via green and affordable synthesis. For this purpose, silverization was chosen due to its antibacterial and electron-capturing effects, and to achieve efficient visible-light excitation, urea was used as a precursor for nitrogen doping. Mechanochemical activation with grinding, as an environmentally friendly process, was applied for the catalyst modification under various conditions, such as the amounts of the modifying substances, the milling time, the ratio of the weights of the material to be ground, and the grinding balls. The photocatalytic activity in the UV and visible range was tested in suspensions with oxalic acid and coumarin as model compounds. The antibacterial effect was measured by the bioluminescence of Vibrio fischeri bacteria. The highest photocatalytic activity in the visible range was observed with the nitrogen-doped titanium dioxide (N-TiO2) prepared with 10% urea. Silveration of N-TiO2 (up to 0.2%) decreased photocatalytic activity while improving the antibacterial efficiency. To maximize both effects, mechanical mixtures of the separately modified catalysts (N-TiO2 and Ag-TiO2) were also examined in different ratios. The 1:1 mixture provided the optimum combination. Full article
(This article belongs to the Special Issue Green Chemistry and Catalysis)
Show Figures

Figure 1

23 pages, 4406 KiB  
Article
Molten-Salt-Assisted Preparation of g-C3N4 for Photocatalytic Degradation of Tetracycline Hydrochloride: Degradation Mechanism, Pathway, and Toxicity Assessment
by Yujie Jiao, Yaqi Mao, Qikai Liu, Yongxia Ma, Fei Fu, Shenglong Jian, Yang Liu and Sujin Lu
Sustainability 2025, 17(3), 1166; https://doi.org/10.3390/su17031166 - 31 Jan 2025
Cited by 1 | Viewed by 914
Abstract
The sustainability of aquaculture tailwater plays a key role in the aquaculture industry. Photocatalytic degradation of recalcitrant antibiotics in aquaculture tailwater has emerged as a significant research focus, with gCN-based photocatalysis offering a promising approach. To address the issue of inefficient degradation associated [...] Read more.
The sustainability of aquaculture tailwater plays a key role in the aquaculture industry. Photocatalytic degradation of recalcitrant antibiotics in aquaculture tailwater has emerged as a significant research focus, with gCN-based photocatalysis offering a promising approach. To address the issue of inefficient degradation associated with gCN, melamine was modified using NaCl solution, resulting in the synthesis of NaMe-x with distinctive microstructure through molten salt assistance. The ability of NaMe-x to degrade tetracycline hydrochloride (TC-HCl) was examined, including an analysis of its degradation pathway, intermediate products, mechanism, and toxicity of the by-products. The results demonstrated that NaCl-based precursor modification markedly enhanced the degradation capacity of gCN for TC-HCl, achieving a maximum degradation rate of 0.02214 min−1, which is 2.1 times higher than that of unmodified gCN. LC-MS analysis revealed intermediates at various degradation stages, and two potential pathways for TC-HCl degradation in the presence of NaMe-1 were identified. In this process, ·O2 and ·OH are the reactive radicals that play a dominant role, and their degradation mechanism is thus proposed. It was confirmed by toxicity experiments that the products after the degradation of TC-HCl by NaMe-1 were not significantly toxic to Chlorella vulgaris (p ˃ 0.05). However, it had a significant effect on Vibrio fischeri (p < 0.01). These findings suggest that the synthesis of NaMe-x via melamine precursor modification substantially improves the degradation performance of gCN and enhances the sustainability of aquaculture tailwater. Full article
(This article belongs to the Special Issue Pollution, Toxicology and Sustainable Solutions in Aquatic System)
Show Figures

Figure 1

17 pages, 916 KiB  
Article
Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles
by Manuela Lechuga, Mercedes Fernández-Serrano, Josefa Núñez-Olea, Juan Francisco Martínez-Gallegos and Francisco Ríos
Toxics 2025, 13(1), 43; https://doi.org/10.3390/toxics13010043 - 8 Jan 2025
Cited by 2 | Viewed by 2174
Abstract
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life [...] Read more.
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles. Toxicity assessments were conducted using bacteria Vibrio fischeri for aquatic toxicity and Lepidium sativum seeds for terrestrial plant effects, revealing that individual surfactants like the anionic alkyl ether carboxylic acid EC-R12–14E3 exhibit high toxicity levels, while the nonionic fatty-alcohol ethoxylate FAE-R12–14E11 shows comparatively lower environmental impact. The toxicity of surfactant mixtures was analysed, revealing both antagonistic and synergistic effects depending on the surfactants used. The addition of silica nanoparticles generally mitigates the overall toxicity of surfactants, whether used individually or in mixtures. Biodegradation studies followed OECD 301E and 301F guidelines, indicating that individual surfactants generally meet or approach the mineralization threshold, whereas the addition of nanoparticles reduced biodegradation efficacy. Potential skin irritation was predicted through the zein number (ZN), finding that some surfactant combinations with silica nanoparticles reduce irritation levels, highlighting their potential for safer formulation in products that come into direct contact with the skin. Overall, the findings emphasize the need for careful selection of surfactant mixtures and nanoparticle integration to minimize environmental toxicity and potential skin irritation and increase their biodegradability. Full article
Show Figures

Figure 1

13 pages, 4807 KiB  
Article
The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators
by Mengshuang Jia, Xiaohu Yu, Kun Xu, Xiaodan Gu, Nicholas J. Harmer, Youbao Zhao, Yuqiang Xiang, Xia Sheng, Chenglong Li, Xiang-Dang Du, Jiajia Pan and Wenbo Hao
Toxins 2024, 16(11), 477; https://doi.org/10.3390/toxins16110477 - 4 Nov 2024
Cited by 3 | Viewed by 1786
Abstract
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is [...] Read more.
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is a laccase with the unique property of degrading these six mycotoxins in the absence of redox mediators. Nevertheless, their degradation rates are low. This work aims to improve the ability of Lac-W to degrade these six mycotoxins and to elucidate its detoxification mechanism. Including redox mediators increased the Lac-W degradation efficiency drastically, and completely degraded AFB1 and ZEN within one hour. Additionally, Lac-W-AS has good temperature, pH, and ions adaptability in ZEN degradation. Lac-W-AS reduced the ZEN toxicity because ZEN degradation products significantly restored the bioluminescence intensity of Vibrio fischeri. A Lac-W-AS-mediated oxidation product of ZEN was structurally characterized as 15-OH-ZEN by UHPLC-MS/MS. Linear sweep voltammetry showed that AS affected the potential of Lac-W and accelerated the oxidation of ZEN. Finally, the combination of mediators (acetosyringone and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate)) improved the degradation rate of mycotoxins. This work highlights that the combination of Lac-W with mediators serves as a good candidate for degrading multi-mycotoxin contaminants in food and feedstuff. Full article
Show Figures

Figure 1

14 pages, 2177 KiB  
Article
Design of High-Performance Molecular Imprinted Magnetic Nanoparticles-Loaded Hydrogels for Adsorption and Photodegradation of Antibiotics from Wastewater
by Giusy Curcuruto, Andrea A. Scamporrino, Roberta Puglisi, Giuseppe Nicotra, Gianfranco Sfuncia, Giuliana Impellizzeri, Sandro Dattilo, Anne Kahru, Mariliis Sihtmäe, Villem Aruoja, Irina Blinova and Sabrina Carola Carroccio
Polymers 2024, 16(15), 2096; https://doi.org/10.3390/polym16152096 - 23 Jul 2024
Viewed by 1756
Abstract
A hydrogel formulation of 2-hydroxy ethyl methacrylate (HEMA) containing covalently linked magnetite nanoparticles was developed to actively facilitate the selective removal and photocatalytic degradation of antibiotics. To this purpose, the hybrid materials were molecularly imprinted with Lomefloxacin (Lome) or Ciprofloxacin (Cipro), achieving a [...] Read more.
A hydrogel formulation of 2-hydroxy ethyl methacrylate (HEMA) containing covalently linked magnetite nanoparticles was developed to actively facilitate the selective removal and photocatalytic degradation of antibiotics. To this purpose, the hybrid materials were molecularly imprinted with Lomefloxacin (Lome) or Ciprofloxacin (Cipro), achieving a selectivity of 60% and 45%, respectively, starting from a solution of XX concentration. After the adsorption, the embedded magnetite was used with the double function of (i) magnetically removing the material from water and (ii) triggering photo-Fenton (PF) reactions assisted by UVA light and H2O2 to oxidize the captured antibiotic. The success of the material design was confirmed by a comprehensive characterization of the system from chemical–physical and morphological perspectives. Adsorption and degradation tests demonstrated the material’s ability to efficiently degrade Lome until its complete disappearance from the electrospray ionization (ESI) mass spectra. Regeneration tests showed the possibility of reusing the material for up to three cycles. Ecotoxicological tests using algae Rapidocelis subcapitata, crustaceans Daphnia magna, and bacteria Vibrio fischeri were performed to evaluate the ecosafety of our synthesized materials. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

12 pages, 3280 KiB  
Article
Toxicity of Silver–Chitosan Nanocomposites to Aquatic Microcrustaceans Daphnia magna and Thamnocephalus platyurus and Naturally Luminescent Bacteria Vibrio fischeri
by Mariliis Sihtmäe, Jüri Laanoja, Irina Blinova, Anne Kahru and Kaja Kasemets
Nanomaterials 2024, 14(14), 1193; https://doi.org/10.3390/nano14141193 - 12 Jul 2024
Cited by 1 | Viewed by 1330
Abstract
All novel materials should be analyzed for their potential environmental hazard. In this study, the toxicity of different silver–chitosan nanocomposites—potential candidates for wound dressings or antimicrobial surface coatings—was evaluated using environmentally relevant aquatic microcrustaceans Daphnia magna and Thamnocephalus platyurus and naturally luminescent bacteria [...] Read more.
All novel materials should be analyzed for their potential environmental hazard. In this study, the toxicity of different silver–chitosan nanocomposites—potential candidates for wound dressings or antimicrobial surface coatings—was evaluated using environmentally relevant aquatic microcrustaceans Daphnia magna and Thamnocephalus platyurus and naturally luminescent bacteria Vibrio fischeri. Three silver-chitosan nanocomposites (nAgCSs) with different weight ratios of Ag to CS were studied. Citrate-coated silver nanoparticles (nAg-Cit), AgNO3 (ionic control) and low molecular weight chitosan (LMW CS) were evaluated in parallel. The primary size of nAgCSs was ~50 nm. The average hydrodynamic sizes in deionized water were ≤100 nm, and the zeta potential values were positive (16–26 mV). The nAgCSs proved very toxic to aquatic crustaceans: the 48-h EC50 value for D. magna was 0.065–0.232 mg/L, and the 24-h LC50 value for T. platyurus was 0.25–1.04 mg/L. The toxic effect correlated with the shedding of Ag ions (about 1%) from nAgCSs. Upon exposure of V. fischeri to nAgCSs for 30 min, bacterial luminescence was inhibited by 50% at 13–33 mg/L. However, the inhibitory effect (minimum bactericidal concentration, MBC) on bacterial growth upon 1 h exposure was observed at higher concentrations of nAgCSs, 40–65 mg/L. LMW CS inhibited bacterial luminescence upon 30-min exposure at 5.6 mg/L, but bacterial growth was inhibited at a much higher concentration (1 h MBC > 100 mg/L). The multi-trophic test battery, where D. magna was the most sensitive test organism, ranked the silver-chitosan nanocomposites from ‘extremely toxic’ [L(E)C50 ≤ 0.1 mg/L] to ‘very toxic’ [L(E)C50 > 0.1–1 mg/L]. Chitosan was toxic (EC(L)50) to crustaceans at ~12 mg/L, and ranked accordingly as ‘harmful’ [L(E)C50 > 10–100 mg/L]. Thus, silver-chitosan nanocomposites may pose a hazard to aquatic organisms and must be handled accordingly. Full article
Show Figures

Figure 1

30 pages, 2488 KiB  
Article
Bioactivity of Eugenol: A Potential Antibiotic Adjuvant with Minimal Ecotoxicological Impact
by Natalia Ferrando, María Rosa Pino-Otín, Eva Terrado, Diego Ballestero and Elisa Langa
Int. J. Mol. Sci. 2024, 25(13), 7069; https://doi.org/10.3390/ijms25137069 - 27 Jun 2024
Cited by 1 | Viewed by 1890
Abstract
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics [...] Read more.
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal. Full article
Show Figures

Figure 1

23 pages, 3458 KiB  
Article
New Insight into the Degradation of Sunscreen Agents in Water Treatment Using UV-Driven Advanced Oxidation Processes
by Tajana Simetić, Jasmina Nikić, Marija Kuč, Dragana Tamindžija, Aleksandra Tubić, Jasmina Agbaba and Jelena Molnar Jazić
Processes 2024, 12(6), 1156; https://doi.org/10.3390/pr12061156 - 3 Jun 2024
Cited by 6 | Viewed by 2246
Abstract
This study evaluates, for the first time, the effects of UV/PMS and UV/H2O2/PMS processes on the degradation of sunscreen agents in synthetic and natural water matrices and compares their effectiveness with the more conventional UV/H2O2. [...] Read more.
This study evaluates, for the first time, the effects of UV/PMS and UV/H2O2/PMS processes on the degradation of sunscreen agents in synthetic and natural water matrices and compares their effectiveness with the more conventional UV/H2O2. Investigations were conducted using a mixture of organic UV filters containing 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate. Among the investigated UV-driven AOPs, UV/PMS/H2O2 was the most effective in synthetic water, while in natural water, the highest degradation rate was observed during the degradation of EHMC by UV/PMS. The degradation of UV filters in the UV/PMS system was promoted by sulfate radical (68% of the degradation), with hydroxyl radical contributing approximately 32%, while both radical species contributed approximately equally to the degradation in the UV/H2O2/PMS system. The Vibrio fischeri assay showed an increase in inhibition (up to 70%) at specific stages of UV/H2O2 treatment when applied to natural water, which further decreased to 30%, along with an increase in UV fluence and progressive degradation. The Pseudomonas putida test recorded minor toxicity (<15%) after treatments. Magnetic biochar utilized in conjunction with UV-driven AOPs exhibited superior performance in eliminating residual contaminants, providing an efficient and sustainable approach to mitigate sunscreen agents in water treatment. Full article
Show Figures

Figure 1

18 pages, 4654 KiB  
Article
Polymeric Amorphous Solid Dispersions of Dasatinib: Formulation and Ecotoxicological Assessment
by Katarina Sokač, Martina Miloloža, Dajana Kučić Grgić and Krunoslav Žižek
Pharmaceutics 2024, 16(4), 551; https://doi.org/10.3390/pharmaceutics16040551 - 18 Apr 2024
Cited by 3 | Viewed by 2773
Abstract
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). [...] Read more.
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the formation of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect of the native form of DAS was investigated as well, considering its potential accumulation in the environment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor) exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorption but also has the potential to reduce the proportion of DAS that enters the environment through human excretion. This comprehensive approach highlights the significance of integrating advances in drug development while considering its environmental implications. Full article
Show Figures

Graphical abstract

14 pages, 2546 KiB  
Article
Trametes versicolor Laccase-Based Magnetic Inorganic-Protein Hybrid Nanobiocatalyst for Efficient Decolorization of Dyes in the Presence of Inhibitors
by Sanjay K. S. Patel, Rahul K. Gupta, Karthikeyan K. Karuppanan, Deepak K. Padhi, Sampathkumar Ranganathan, Parasuraman Paramanantham and Jung-Kul Lee
Materials 2024, 17(8), 1790; https://doi.org/10.3390/ma17081790 - 13 Apr 2024
Cited by 10 | Viewed by 1918
Abstract
In the present investigation, an ecofriendly magnetic inorganic-protein hybrid system-based enzyme immobilization was developed using partially purified laccase from Trametes versicolor (TvLac), Fe3O4 nanoparticles, and manganese (Mn), and was successfully applied for synthetic dye decolorization in the presence [...] Read more.
In the present investigation, an ecofriendly magnetic inorganic-protein hybrid system-based enzyme immobilization was developed using partially purified laccase from Trametes versicolor (TvLac), Fe3O4 nanoparticles, and manganese (Mn), and was successfully applied for synthetic dye decolorization in the presence of enzyme inhibitors. After the partial purification of crude TvLac, the specific enzyme activity reached 212 U∙mg total protein−1. The synthesized Fe3O4/Mn3(PO4)2-laccase (Fe3O4/Mn-TvLac) and Mn3(PO4)2-laccase (Mn-TvLac) nanoflowers (NFs) exhibited encapsulation yields of 85.5% and 90.3%, respectively, with relative activities of 245% and 260%, respectively, compared with those of free TvLac. One-pot synthesized Fe3O4/Mn-TvLac exhibited significant improvements in catalytic properties and stability compared to those of the free enzyme. Fe3O4/Mn-TvLac retained a significantly higher residual activity of 96.8% over that of Mn-TvLac (47.1%) after 10 reuse cycles. The NFs showed potential for the efficient decolorization of synthetic dyes in the presence of enzyme inhibitors. For up to five reuse cycles, Fe3O4/Mn-TvLac retained a decolorization potential of 81.1% and 86.3% for Coomassie Brilliant Blue R-250 and xylene cyanol, respectively. The synthesized Fe3O4/Mn-TvLac showed a lower acute toxicity towards Vibrio fischeri than pure Fe3O4 nanoparticles did. This is the first report of the one-pot synthesis of biofriendly magnetic protein-inorganic hybrids using partially purified TvLac and Mn. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science)
Show Figures

Figure 1

15 pages, 3004 KiB  
Article
The Mediterranean Zoanthid Parazoanthus axinellae as a Novel Source of Antimicrobial Compounds
by Loredana Stabili, Stefano Piraino and Lucia Rizzo
J. Mar. Sci. Eng. 2024, 12(2), 354; https://doi.org/10.3390/jmse12020354 - 18 Feb 2024
Cited by 4 | Viewed by 1839
Abstract
Marine bioprospecting is a dynamic research field that explores the oceans and their biodiversity as noteworthy sources of new bioactive compounds. Anthozoans are marine animals belonging to the Cnidaria phylum characterized by highly specialized mechanosensory cells used both for defence against predators and [...] Read more.
Marine bioprospecting is a dynamic research field that explores the oceans and their biodiversity as noteworthy sources of new bioactive compounds. Anthozoans are marine animals belonging to the Cnidaria phylum characterized by highly specialized mechanosensory cells used both for defence against predators and prey capture. Here, high concentration of cnidocysts have been isolated from the Mediterranean zoanthid coral Parazoanthus axinellae (Schmidt, 1862) and their antimicrobial potential has been investigated. The cnidocyst extract exerted significant antibacterial activity against some human pathogens capable of developing resistance to conventional antibiotics such as Streptococcus agalactiae and Coccus sp., and against several Vibrio species, including some microbial strains for humans and farmed fish, such as Vibrio alginolyticus, Vibrio anguillarum, Vibrio fischeri, Vibrio harveyi, and Vibrio vulnificus. Results have been discussed in light of both the ecological aspects and biotechnological value of the cnidocyst extract in the nutritional, nutraceutical, and pharmaceutical fields. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

13 pages, 2950 KiB  
Article
A Battery of Simple Bioassays for Domestic and Industrial Wastewater Treatment Plants in Konya, Turkey
by Süheyla Tongur and Hande Atmaca
Sustainability 2024, 16(1), 316; https://doi.org/10.3390/su16010316 - 29 Dec 2023
Viewed by 1785
Abstract
Wastewater ingredients present risks to the environment and can cause health problems. The aim of this study was to identify the toxicological effects of influent and effluent wastewater from Konya Urban Wastewater Treatment Plant (KU WWTP) and Konya Organized Industrial Zone Wastewater Treatment [...] Read more.
Wastewater ingredients present risks to the environment and can cause health problems. The aim of this study was to identify the toxicological effects of influent and effluent wastewater from Konya Urban Wastewater Treatment Plant (KU WWTP) and Konya Organized Industrial Zone Wastewater Treatment Plant (KOI WWTP). Three different trophic level toxicity tests were conducted to determine the possible harmful effects of wastewater on the environment. The base toxic unit values of the Lepidium sativum toxicity test for the inlet and outlet samples of KU WWTP were found to be 1.43 and 1.10, respectively. Both values classified the analyzed wastewater into the “toxic” category. Wastewater entering the KU wastewater treatment facility was classified as “toxic” for the presence of toxic substances according to the Vibrio fischeri toxicity testing. Influent samples from the KOI wastewater treatment plant were classified as “toxic” with the Vibrio fischeri toxicity test. In addition, based on the fish bioassay value (TDF), wastewater from the KOI treatment facility was also classified as “toxic”. It was concluded that increased chemical oxygen demand and concentrations of total nitrogen and phosphorus and of certain heavy metals above the limits played a decisive role in classifying the samples as “toxic”. The results of this study suggest that all three tests have the potential to assess wastewater toxicity and that changes in wastewater properties may result in differences in test sensitivity. Full article
(This article belongs to the Special Issue A Multidisciplinary Approach to Sustainability)
Show Figures

Graphical abstract

Back to TopTop