Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = VPS33B gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3024 KiB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Viewed by 30
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
Small Interfering RNAs Targeting VP4, VP3, 2B, or 3A Coding Regions of Enterovirus A71 Inhibit Viral Replication In Vitro
by Yun Ji Ga, Yun Young Go and Jung-Yong Yeh
Biomedicines 2025, 13(7), 1760; https://doi.org/10.3390/biomedicines13071760 - 18 Jul 2025
Viewed by 345
Abstract
Background: Enterovirus A71 (EV-A71) is considered as the primary causative agent of hand, foot, and mouth disease (HFMD) in young children, leading to severe neurological complications and contributing to substantial mortalities in recent HFMD outbreaks across Asia. Despite this, there is currently [...] Read more.
Background: Enterovirus A71 (EV-A71) is considered as the primary causative agent of hand, foot, and mouth disease (HFMD) in young children, leading to severe neurological complications and contributing to substantial mortalities in recent HFMD outbreaks across Asia. Despite this, there is currently no effective antiviral treatment available for EV-A71. RNA interference (RNAi) is a powerful mechanism of post-transcriptional gene regulation that utilizes small interfering RNA (siRNA) to target and degrade specific RNA sequences. Objectives: The aim of this study was to design various siRNAs targeting EV-A71 genomic regions and evaluate the RNAi efficacy against a novel, previously genetically uncharacterized EV-A71 strain. Methods: A novel EV-A71 strain was first sequenced to design target-specific siRNAs. The viral titers, viral protein expression, cytopathic effects, and cell viability of EV-A71-infected HeLa cells were examined to evaluate the specific viral inhibition by the siRNAs. Results: A substantial reduction in viral titers and viral protein synthesis was observed in EV-A71-infected HeLa cells treated with specific siRNAs targeting the VP4, VP3, 2B, and 3A genes. siRNAs delayed cytopathic effects and increased cell viability of EV-A71-infected HeLa cells. Nonspecific interferon induction caused by siRNAs was not observed in this study. In contrast, replication of coxsackievirus B3, another important member of the Enterovirus genus, remained unaffected. Conclusions: Overall, the findings demonstrate that RNAi targeting genomic regions of EV-A71 VP4, VP3, 2B, or 3A could become a potential strategy for controlling EV-A71 infection, and this promising result can be integrated into future anti-EV-A71 therapy developments. Full article
(This article belongs to the Special Issue Encephalitis and Viral Infection: Mechanisms and Therapies)
Show Figures

Figure 1

14 pages, 10060 KiB  
Article
Enhancement of 3-MA in Paclitaxel Treatment of MDA-MB-231 Tumor-Bearing Nude Mice and Its Mechanisms
by Jing Wang, Zhe Xiong, Yaowen Liu, Muhammad Ameen Jamal, Xia Wang, Chang Yang, Ziyi Gu, Xiaojing Chen, Jingjing Xiong, Yubo Qing, Honghui Li, Kaixiang Xu, Hong-Jiang Wei and Hong-Ye Zhao
Int. J. Mol. Sci. 2025, 26(13), 6191; https://doi.org/10.3390/ijms26136191 - 27 Jun 2025
Viewed by 1143
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges due to its high aggressiveness, poor prognosis, and the lack of effective targeted therapies. Paclitaxel (PTX) is a chemotherapeutic agent commonly used in the treatment of TNBC; however, its efficacy is often compromised by drug resistance [...] Read more.
Triple-negative breast cancer (TNBC) poses significant challenges due to its high aggressiveness, poor prognosis, and the lack of effective targeted therapies. Paclitaxel (PTX) is a chemotherapeutic agent commonly used in the treatment of TNBC; however, its efficacy is often compromised by drug resistance mediated by autophagy. This study investigated the synergistic effects of the autophagy inhibitor 3-methyladenine (3-MA) and PTX in a TNBC nude mouse model. Monitoring tumor volume and employing HE staining, immunofluorescence, and transmission electron microscopy revealed that PTX monotherapy induced tumor autophagy, characterized by the accumulation of LC3B/VPS34 proteins and an increase in autophagosomes. However, the co-administration of 3-MA reversed this process, significantly decreasing the tumor growth rate. Immunofluorescence and qPCR demonstrated that the combination group had fewer Ki-67-positive cells and more Caspase-3-positive cells, along with upregulated expression of autophagy-related genes and Caspase-family apoptosis genes. Consequently, this study suggests that inhibiting autophagy with 3-MA disrupts the autophagy-mediated protective mechanism of tumor cells, promoting the activation of apoptotic signals and enhancing the antitumor activity of PTX. These findings may offer new molecular mechanistic insights and potential therapeutic strategies for overcoming PTX resistance in TNBC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 696 KiB  
Article
Exome Study of Single Nucleotide Variations in Patients with Syndromic and Non-Syndromic Autism Reveals Potential Candidate Genes for Diagnostics and Novel Single Nucleotide Variants
by Lyudmila Belenska-Todorova, Milen Zamfirov, Tihomir Todorov, Slavena Atemin, Mila Sleptsova, Zornitsa Pavlova, Tanya Kadiyska, Ales Maver, Borut Peterlin and Albena Todorova
Cells 2025, 14(12), 915; https://doi.org/10.3390/cells14120915 - 17 Jun 2025
Viewed by 2605
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment that occurs due to mutations related to the formation of the nervous system, combined with the impact of various epigenetic and environmental factors. This necessitates the identification of the genetic variations involved in ASD pathogenesis. [...] Read more.
Autism spectrum disorder (ASD) is a neurodevelopmental impairment that occurs due to mutations related to the formation of the nervous system, combined with the impact of various epigenetic and environmental factors. This necessitates the identification of the genetic variations involved in ASD pathogenesis. We performed whole exome sequencing (WES) in a cohort of 22 Bulgarian male and female individuals showing ASD features alongside segregation analyses of their families. A targeted panel of genes was chosen and analyzed for each case, based on a detailed examination of clinical data. Gene analyses revealed that specific variants concern key neurobiological processes involving neuronal architecture, development, and function. These variants occur in a number of genes, including SHANK3, DLG3, NALCN, and PACS2 which are critical for synaptic signaling imbalance, CEP120 and BBS5 for ciliopathies, SPTAN1 for spectrins structure, SPATA5, TRAK1, and VPS13B for neuronal organelles trafficking and integrity, TAF6, SMARCB1, DDX3X, MECP2, and SETD1A for gene expression, CDK13 for cell cycle control, ALDH5A1, DPYD, FH, and PDHX for mitochondrial function, and PQBP1, HUWE1, and WDR45 for neuron homeostasis. Novel single nucleotide variants in the SPATA5, CEP120, BBS5, SETD1A, TRAK1, VPS13B, and DDX3X genes have been identified and proposed for use in ASD diagnostics. Our data contribute to a better understanding of the complex neurobiological features of autism and are applicable in the diagnosis and development of personalized therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

19 pages, 2634 KiB  
Article
From Gene to Pathways: Understanding Novel Vps51 Variant and Its Cellular Consequences
by Damla Aygun and Didem Yücel Yılmaz
Int. J. Mol. Sci. 2025, 26(12), 5709; https://doi.org/10.3390/ijms26125709 - 14 Jun 2025
Viewed by 542
Abstract
Disorders of vesicular trafficking and genetic defects in autophagy play a critical role in the development of metabolic and neurometabolic diseases. These processes govern intracellular transport and lysosomal degradation, thereby maintaining cellular homeostasis. In this article, we present two siblings with a novel [...] Read more.
Disorders of vesicular trafficking and genetic defects in autophagy play a critical role in the development of metabolic and neurometabolic diseases. These processes govern intracellular transport and lysosomal degradation, thereby maintaining cellular homeostasis. In this article, we present two siblings with a novel homozygous variant in VPS51 (Vacuolar protein sorting 51) gene (c.1511C>T; p.Thr504Met), exhibiting developmental delay, a thin corpus callosum, severe intellectual disability, epilepsy, microcephaly, hearing loss, and dysphagia. This study aimed to investigate the effects of the novel VPS51 gene variation at the RNA and protein level in fibroblasts derived from patients. A comparative proteomic analysis, which has not been previously elucidated, was performed to identify uncharacterized proteins associated with vesicular trafficking. Furthermore, the impact of disrupted pathways on mitochondria–lysosome contact sites was assessed, offering a thorough pathophysiological evaluation of GARP/EARP (Golgi Associated Retrograde Protein / Endosome Associated Retrograde Protein) complex dysfunction. An analysis of mRNA expression indicated decreased levels of the VPS51 gene, alongside modifications in the expression of autophagy-related genes (LC3B, p62, RAB7A, TBC1D15). Western blotting demonstrated a reduction in VPS51 and autophagy-related protein levels. Proteomic profiling revealed 585 differentially expressed proteins, indicating disruptions in vesicular trafficking, lysosomal function, and mitochondrial metabolism. Proteins involved in mitochondrial β-oxidation and oxidative phosphorylation exhibited downregulation, whereas pathways related to glycolysis and lipid synthesis showed upregulation. Live-cell confocal microscopy revealed a notable increase in mitochondria–lysosome contact sites in patient fibroblasts, suggesting that VPS51 protein dysfunction contributes to impaired organelle communication. The findings indicate that the novel VPS51 gene variation influences intracellular transport, autophagy, and metabolic pathways, offering new insights into its involvement in neurometabolic disorders. Full article
(This article belongs to the Special Issue Genomic Research of Rare Diseases)
Show Figures

Figure 1

15 pages, 1677 KiB  
Article
Screening out microRNAs and Their Molecular Pathways with a Potential Role in the Regulation of Parvovirus B19 Infection Through In Silico Analysis
by Vívian de Almeida Salvado, Arthur Daniel Rocha Alves, Wagner Luis da Costa Nunes Pimentel Coelho, Mayla Abrahim Costa, Alexandro Guterres and Luciane Almeida Amado
Int. J. Mol. Sci. 2025, 26(11), 5038; https://doi.org/10.3390/ijms26115038 - 23 May 2025
Viewed by 439
Abstract
Parvovirus B19 (B19V) infection in healthy individuals is commonly asymptomatic or has non-specific symptoms, such as fever, headache, chills, myalgia, rash, and arthralgia. However, some groups of individuals, such as pregnant women, patients with hemolytic disorders, and immunocompromised individuals, may present severe forms [...] Read more.
Parvovirus B19 (B19V) infection in healthy individuals is commonly asymptomatic or has non-specific symptoms, such as fever, headache, chills, myalgia, rash, and arthralgia. However, some groups of individuals, such as pregnant women, patients with hemolytic disorders, and immunocompromised individuals, may present severe forms of the infection, which may even lead to a negative outcome. To better understand what leads to this divergence of outcomes in different populational groups, this study sought to analyze the role of miRNAs in the pathogenesis of B19V infection. The miRNAs that potentially bind to the B19V transcripts were identified using complete genomic sequences retrieved from Genbank and miRNAs cataloged in miRbase. The results of this alignment between the seed region of the miRNAs with the B19V complete genome identified 1517 miRNAs that showed 100% identity, of which 412 are bound to NS1, VP1, and VP2 transcripts. Based on the number of total binds to the genome, these miRNAs were ranked, and the top five, miR-4799-5p, miR-5690, miR-335-3p, miR-193b-5p, and miR-6771-3p, were selected to evaluate the target genes and signaling pathways in which they act. We identified 214 common genes among the top five miRNAs, and five of these genes bind to at least two of these miRNAs. Based on WikiPathways and KEGG, these 214 genes act on 29 statistically significant pathways, and the three main pathways were selected. Our results revealed some miRNAs that may be involved in regulating B19V replication and that can act as potential biomarkers for the prognosis of infection. Full article
(This article belongs to the Special Issue Regulation by Non-Coding RNAs 2025)
Show Figures

Figure 1

34 pages, 4404 KiB  
Article
Mapping Small Extracellular Vesicle Secretion Potential in Healthy Human Gingiva Using Spatial Transcriptomics
by Blanka Maria Borowiec, Małgorzata Blatkiewicz, Marta Dyszkiewicz-Konwińska, Dorota Bukowska, Bartosz Kempisty, Marcin Ruciński, Michał Nowicki and Joanna Budna-Tukan
Curr. Issues Mol. Biol. 2025, 47(4), 256; https://doi.org/10.3390/cimb47040256 - 7 Apr 2025
Viewed by 657
Abstract
Regenerative processes occur at various levels in all organisms, yet their complexity continues to raise new questions about their mechanisms. It has been demonstrated that small extracellular vesicles (sEVs), secreted by all cells and influencing their function, play a significant role in regeneration. [...] Read more.
Regenerative processes occur at various levels in all organisms, yet their complexity continues to raise new questions about their mechanisms. It has been demonstrated that small extracellular vesicles (sEVs), secreted by all cells and influencing their function, play a significant role in regeneration. In the context of regenerative processes, oral mucosal tissues consistently receive interest, as they are among the most rapidly healing tissues in the human body. In this study, we utilized spatial transcriptomics to map gene expression to specific spatial locations within the gingiva tissue section, using publicly available transcriptomic data. This analysis revealed new insights into this tissue and the biogenesis of sEVs within it. The identified clusters encompassed two main regions—the epithelium and lamina propria—as well as minor niches within them. Using Gene Ontology (GO) analysis, we identified two clusters most enriched in extracellular vesicle-related GO processes. These included the superficial and deeper layers of the sulcular epithelium, one of the most peripheral regions of the gingiva. Of the 43 genes identified in the literature as having a potential or documented role in sEVs biogenesis, 12 were selected for further analysis. MUC1, SDCBP2, and VPS37B showed clear specificity and the highest expression in the superficial layer of the sulcular epithelium. CHMP4C also exhibited high expression in this layer, though its levels were comparable to the outer layer of the oral epithelium. Other well-established sEVs marker genes, such as ANXA2, CD9, CD63, CD81, FLOT1, RAB22A, RAB27B, and RAB5A, were also expressed in the examined tissue; however, their expression was not specifically exclusive to the sulcular epithelium. Our study is the first to perform a meta-analysis of available gingival transcriptomic data in the specific context of sEVs biogenesis. The presented data and conclusions provide new insights into the role of different structures within healthy human gingiva and shed new light on both known and potential markers of sEVs biogenesis. These findings may contribute to the development of regeneration-targeted research, especially on oral tissues. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 2295 KiB  
Article
Characterization of Microbiome Diversity in the Digestive Tract of Penaeus vannamei Fed with Probiotics and Challenged with Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease
by Lucio Galaviz-Silva, Abraham O. Rodríguez de la Fuente, Ricardo Gomez-Flores, José C. Ibarra-Gámez, Itza Eloisa Luna-Cruz, Joel H. Elizondo-Luevano, Ricardo Sánchez-Díaz and Zinnia J. Molina Garza
Pathogens 2025, 14(4), 320; https://doi.org/10.3390/pathogens14040320 - 27 Mar 2025
Viewed by 664
Abstract
The microbiome of the shrimp’s digestive tract shows differences between healthy and acute hepatopancreatic necrosis disease (AHPND)-affected shrimp. The present study aimed to evaluate the impact of probiotic consumption on the microbial community in experimentally AHPND-infected shrimp. Effective probiotics (EPs) Vibrio alginolyticus (Va32A), [...] Read more.
The microbiome of the shrimp’s digestive tract shows differences between healthy and acute hepatopancreatic necrosis disease (AHPND)-affected shrimp. The present study aimed to evaluate the impact of probiotic consumption on the microbial community in experimentally AHPND-infected shrimp. Effective probiotics (EPs) Vibrio alginolyticus (Va32A), V. campbellii (VcHA), and Bacillus pumilus (BPY100) and non-effective probiotics (NEPs) B. pumilus (Bp43, and BpY119), were employed in bioassays with Penaeus vannamei and challenged with AHPND-causing V. parahaemolyticus (VpAHPND). Stomach (Sto), intestine (Int), and hepatopancreas (Hep) were analyzed by metabarcoding (16S rRNA gene) to characterize the microbiome and biomarkers. Hep-VcHA showed the highest alpha diversity (Shannon index = 5.88; 166 ASVs), whereas the lowest was for Hep-Bp43 (2.33; 7 ASVs). Proteobacteria, Actinobacteria, Bacteroidetes, and Saccharibacteria were the most abundant phyla. The relative abundance of Vibrio sp. was the highest in the Hep and Int of Bp43, BPY119 and the positive control, followed by Rhodobacteraceae in the EP group. Principle coordinate analysis (PCoA) showed a cluster grouped negative (Sto and Hep) control with almost all organs in the EP group causing 28.79% of the variation. The core microbiome of EP was mainly represented by Rhodobacteraceae, Caldilineaceae, Celeribacter indicus, Illumatobacter, Microbacterium, Ruegeria atlantica, Saccharibacteria sp., Shimia biformata, and Thalassobius mediterraneus, whose relative abundance was enriched by probiotics, which may explain their protective roles against VpAHPND, whereas the low survival in the NEP group was associated with a higher diversity of Vibrio spp. Our results present an ecosystem-friendly alternative based on beneficial microorganisms to prevent and control AHPND and probably other bacterial diseases in shrimp farming. Full article
(This article belongs to the Special Issue Fish Pathogens: An Ongoing Challenge for Aquaculture)
Show Figures

Figure 1

15 pages, 3214 KiB  
Article
Unraveling Allelic Impacts on Pre-Harvest Sprouting Resistance in TaVP1-B of Chinese Wheat Accessions Using Pan-Genome
by Danfeng Wang, Jinjin Xie, Jingwen Wang, Mengdi Mu, Haifeng Xiong, Fengshuo Ma, Peizhen Li, Menghan Jia, Shuangjing Li, Jiaxin Li, Mingyue Zhu, Peiwen Li, Haiyan Guan, Yi Zhang and Hao Li
Plants 2025, 14(4), 504; https://doi.org/10.3390/plants14040504 - 7 Feb 2025
Cited by 1 | Viewed by 913
Abstract
The TaVP1-B gene, located on the 3B chromosome of wheat, is a homolog of the Viviparous-1 (VP-1) gene of maize and was reported to confer resistance to pre-harvest sprouting (PHS) in wheat. In this study, the structure of the TaVP1-B gene [...] Read more.
The TaVP1-B gene, located on the 3B chromosome of wheat, is a homolog of the Viviparous-1 (VP-1) gene of maize and was reported to confer resistance to pre-harvest sprouting (PHS) in wheat. In this study, the structure of the TaVP1-B gene was analyzed using the wheat pan-genome consisting of 20 released cultivars (19 wheat are from China), and 3 single nucleotide polymorphisms (SNPs), which were identified at the 496 bp, 524 bp, and 1548 bp of the TaVP1-B CDS region, respectively. Haplotypes analysis showed that these SNPs were in complete linkage disequilibrium and that only two haplotypes designated as hap1 (TGG) and hap2 (GAA) were present. Association analysis between TaVP1-B haplotypes and PHS resistance of the 20 wheat cultivars in four experiment environments revealed that the average PHS resistance of accessions with hap1 was significantly better than that of accessions with hap2, which infers the effects of TaVP1-B on wheat PHS resistance. To further investigate the impacts of alleles at the TaVP1-B locus on PHS resistance, the SNP at 1548 bp of the TaVP1-B CDS region was converted to a KASP marker, which was used for genotyping 304 Chinese wheat cultivars, whose PHS resistance was evaluated in three environments. The average sprouting rates (SRs) of 135 wheat cultivars with the hap1 were significantly lower than the 169 cultivars with the hap2, validating the impacts of TaVP1-B on PHS resistance in Chinese wheat. The present study provided the breeding-friendly marker for functional variants in the TaVP1-B gene, which can be used for genetic improvement of PHS resistance in wheat. Full article
(This article belongs to the Special Issue Seed Dormancy in Crops)
Show Figures

Figure 1

8 pages, 1188 KiB  
Article
The Emergence of Coxsackievirus A16 Subgenotype B1c: A Key Driver of the Hand, Foot, and Mouth Disease Epidemic in Guangdong, China
by Huiling Zeng, Biao Zeng, Lina Yi, Lin Qu, Jiadian Cao, Fen Yang, Haiyi Yang, Chunyan Xie, Yuxi Yan, Wenwen Deng, Shuling Li, Yingtao Zhang, Baisheng Li, Jing Lu and Hanri Zeng
Viruses 2025, 17(2), 219; https://doi.org/10.3390/v17020219 - 3 Feb 2025
Viewed by 1199
Abstract
Background: In 2024, mainland China witnessed a significant upsurge in Hand, Foot, and Mouth Disease (HFMD) cases. Coxsackievirus A16 (CVA16) is one of the primary causative agents of HFMD. Long-term monitoring of theCVA16 infection rate and genotype changes is crucial for the prevention [...] Read more.
Background: In 2024, mainland China witnessed a significant upsurge in Hand, Foot, and Mouth Disease (HFMD) cases. Coxsackievirus A16 (CVA16) is one of the primary causative agents of HFMD. Long-term monitoring of theCVA16 infection rate and genotype changes is crucial for the prevention and control of HFMD. Methods: A total of 40,673 clinical specimens were collected from suspected HFMD cases in Guangdong province from 2018 to 2024, including rectal swabs (n = 27,954), throat swabs (n = 6791), stool (n = 5923), cerebrospinal fluid (n = 3), and herpes fluid (n = 2). A total of 24,410 samples were detected as EV-positive and further typed by RT-PCR. A total of 872 CVA16-positive samples were isolated and further sequenced to obtain the full-length VP1 sequence. Phylogenetic analysis was performed based on viral protein 1 gene (VP1). Results: In the first 25 weeks of 2024, reported cases of HFMD were 1.36 times higher than the mean rates of 2023. In 2024, CVA16 predominated at 75.42%, contrasting with the past etiological pattern in which the CVA6 was predominant with the detection rate ranging from 32.85 to 77.61% from 2019 to 2023. Phylogenetic analysis based on the VP1 gene revealed that the B1a and B1b subtypes co-circulated in Guangdong from 2018 to 2022. The B1c outbreak clade, detected in Guangdong in 2023, constituted 68.24% of the 148 strains of CVA16 collected in 2024, suggesting a subtype shift in the CVA16 virus. There were three specific amino acid variations (P3S, I235V, and T240A) in the VP1 sequence of B1c. Conclusions: The new emergence of the CVA16 B1c outbreak clade in Guangdong during 2023–2024 highlights the necessity for the enhanced surveillance of the virus evolution epidemiological dynamic in this region. Furthermore, it is imperative to closely monitor the etiological pattern changes in Hand, Foot, and Mouth Disease (HFMD) in other regions as well. Such vigilance will be instrumental in guiding future vaccination strategies for HFMD. Full article
Show Figures

Figure 1

19 pages, 12303 KiB  
Article
Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase (RdRp) Region and VP1 Gene in Sapovirus GI.1 and GI.2
by Fuminori Mizukoshi, Ryusuke Kimura, Tatsuya Shirai, Asumi Hirata-Saito, Eri Hiraishi, Kosuke Murakami, Yen Hai Doan, Hiroyuki Tsukagoshi, Nobuhiro Saruki, Takeshi Tsugawa, Kana Kidera, Yoshiyuki Suzuki, Naomi Sakon, Kazuhiko Katayama, Tsutomu Kageyama, Akihide Ryo and Hirokazu Kimura
Microorganisms 2025, 13(2), 322; https://doi.org/10.3390/microorganisms13020322 - 1 Feb 2025
Viewed by 1074
Abstract
Human sapovirus (HuSaV) is a significant cause of gastroenteritis. This study aims to analyze the evolutionary dynamics of the RNA-dependent RNA polymerase (RdRp) and capsid (VP1) genes of the HuSaV GI.1 and GI.2 genotypes between 1976 and 2020. Using [...] Read more.
Human sapovirus (HuSaV) is a significant cause of gastroenteritis. This study aims to analyze the evolutionary dynamics of the RNA-dependent RNA polymerase (RdRp) and capsid (VP1) genes of the HuSaV GI.1 and GI.2 genotypes between 1976 and 2020. Using bioinformatics tools such as the Bayesian phylogenetics software BEAST 2 package (v.2.7.6), we constructed time-scale evolutionary trees based on the gene sequences. Most of the recent common ancestors (MRCAs) of the RdRp region and VP1 gene in the present HuSaV GI.1 diverged around 1930 and 1933, respectively. The trees of the HuSaV GI.1 RdRp region and VP1 gene were divided into two clusters. Further, the MRCAs of the RdRp region and VP1 gene in HuSaV GI.2 diverged in 1960 and 1943, respectively. The evolutionary rates were higher for VP1 gene in HuSaV GI.1 than that in HuSaV GI.2, furthermore, were higher in GI.1 Cluster B than GI.1 Cluster A. In addition, a steep increase was observed in the time-scaled genome population size of the HuSaV GI.1 Cluster B. These results indicate that the HuSaV GI.1 Cluster B may be evolving more actively than other genotypes. The conformational B-cell epitopes were predicted with a higher probability in RdRp for GI.1 and in VP1 for GI.2, respectively. These results suggest that the RdRp region and VP1 gene in HuSaV GI.1 and GI.2 evolved uniquely. These findings suggest unique evolutionary patterns in the RdRp region and VP1 gene of HuSaV GI.1 and GI.2, emphasizing the need for a ‘One Health’ approach to better understand and combat this pathogen. Full article
(This article belongs to the Special Issue Microbial Evolutionary Genomics and Bioinformatics)
Show Figures

Figure 1

15 pages, 3555 KiB  
Case Report
First Isolation, Molecular Identification, and Phylogenetic Characterization of A3B5 Very Virulent Infectious Bursal Disease Virus in Pullets in Chile
by Leandro Cádiz, Miguel Guzmán, Paola Rivera, Fernando Navarrete, Paulina Torres and Héctor Hidalgo
Microbiol. Res. 2025, 16(2), 31; https://doi.org/10.3390/microbiolres16020031 - 23 Jan 2025
Viewed by 1156
Abstract
Infectious bursal disease virus (IBDV) is an important pathogen affecting the poultry industry worldwide. IBDV serotype 1, including classical virulent strains (cvIBDV), variant strains (varIBDV), and very virulent strains (vvIBDV), is pathogenic for chickens. IBDV mainly infects immature B-lymphocytes in the bursa of [...] Read more.
Infectious bursal disease virus (IBDV) is an important pathogen affecting the poultry industry worldwide. IBDV serotype 1, including classical virulent strains (cvIBDV), variant strains (varIBDV), and very virulent strains (vvIBDV), is pathogenic for chickens. IBDV mainly infects immature B-lymphocytes in the bursa of Fabricius, weakening the humoral immune response and leading to secondary infections and increased morbidity and mortality. The Laboratory of Avian Pathology received ten live 8-week-old pullets from a laying hen operation experiencing increased mortality, prostration, diarrhea, and sudden death. Upon necropsy, the affected birds presented swollen, hemorrhagic, and edematous bursa of Fabricius, as well as hemorrhage in the breast and thigh muscles. RT-PCR confirmed that the samples from the bursa of Fabricius were positive for IBDV. Phylogenetic analysis of the VP1 and VP2 gene nucleotide sequences classified the strain, isolated in embryonated chicken eggs, as the A3B5 genotype. Amino acid sequence analysis of the VP2 hypervariable region revealed the presence of amino acid residues commonly found in vvIBDV. Additional studies are required to investigate the epidemiological situation of this genotype in Chile and to evaluate current vaccination plans and their effectiveness against new variants. Full article
Show Figures

Figure 1

10 pages, 876 KiB  
Communication
Application of Minimally Invasive Oral Swab Samples for qPCR-Based Sexing in Neognathae Birds
by Maria-Carmen Turcu, Anamaria Ioana Paștiu, Lucia-Victoria Bel, Anca-Alexandra Doboși and Dana Liana Pusta
Vet. Sci. 2025, 12(1), 73; https://doi.org/10.3390/vetsci12010073 - 20 Jan 2025
Viewed by 1433
Abstract
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial [...] Read more.
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial for their breeders, especially considering that most companion birds do not display clear sexual characteristics. Molecular genetic sexing has been demonstrated to be the most reliable method for determining the sexes of monomorphic birds. The objective of the present study was to demonstrate rapid, effective, and precise identification of sex in birds through quantitative real-time PCR (qPCR) using samples obtained via a minimally invasive technique (oral swabs). This qPCR method assesses variations in gene copy numbers within conserved Z-specific genes such as CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B, which are absent from the W chromosome. A total of 34 samples were included in this study from the following 17 bird species: domestic pigeon (Columba livia domestica), domestic chicken (Gallus gallus domesticus), domestic goose (Anser anser f domesticus), domestic duck (Anas platyrhynchos domesticus), Mute swan (Cygnus olor), Budgerigar (Melopsittacus undulatus), Lovebird (Agapornis roseicollis), Cockatiel (Nymphicus hollandicus), Red-rumped parrot (Psephotus haematonotus), Rose-ringed parakeet (Psittacula krameri), African grey parrot (Psittacus erithacus), domestic Canary (Serinus canaria forma domestica), Goldfinch (Carduelis carduelis major), Gouldian Finch (Chloebia gouldiae), Red Siskin (Carduelis cucullata), Australian Zebra Finch (Taeniopygia castanotis), and Common buzzard (Buteo buteo). The results proved that the CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B genes can reveal the sexes in the Neognath birds tested. Full article
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Characterization, Quantification, and Molecular Identification of Co-Infection of Canine Parvovirus (CPV-2) Variants in Dogs Affected by Gastroenteritis in Ecuador During 2022–2023
by Anthony Loor-Giler, Silvana Santander-Parra, Sara Castillo-Reyes, Martin Campos, Renán Mena-Pérez, Santiago Prado-Chiriboga and Luis Nuñez
Vet. Sci. 2025, 12(1), 46; https://doi.org/10.3390/vetsci12010046 - 11 Jan 2025
Viewed by 2052
Abstract
Canine parvovirus (CPV-2) is a highly contagious virus in canines, and it is mostly spread by touching infected feces. Dogs of all ages can catch it, but puppies are more likely to suffer from it. Severe signs include vomiting, diarrhea with blood, feeling [...] Read more.
Canine parvovirus (CPV-2) is a highly contagious virus in canines, and it is mostly spread by touching infected feces. Dogs of all ages can catch it, but puppies are more likely to suffer from it. Severe signs include vomiting, diarrhea with blood, feeling tired, and not drinking enough water. There are three different types of the original CPV-2 that have been found so far, which are CPV-2a, 2b, and 2c. The genome of CPV-2 is about 5.2 kb long and has two open reading frames (ORFs), namely the VP region and the NS region. Based on changes in amino acids at position 426, the VP2 protein distinguishes the gene apart in the VP region. Using a molecular method, this study contemplated the presence of CPV-2 and its variants in dogs that had gastroenteritis, as well as other infections. There were 511 samples tested, and 401 (78.47%) of them were positive for CPV-2. Of these, 144 (25.91%) were positive for the original genotype, 258 (64.34%) for genotype 2a, 343 (85.54%) for genotype 2b, and 167 (41.65%) for genotype 2c. Using the multiplex qPCR for genotyping, CPV-2a and CPV-2b were determined as the most frequent co-infections (16.45%). The three genotypes (2a, 2b, and 2c) were found in the samples examined based on the amino acids at position 426 of the VP2 protein, as demonstrated by the VP2 gene sequencing. Furthermore, it was discovered that in certain samples, a genetic modification at position 297 was connected to the virus’s pathogenicity. Full article
Show Figures

Figure 1

19 pages, 7728 KiB  
Article
Genetic Diversity and Epidemiology of Enteroviruses and Rhinoviruses in Children Hospitalized with Acute Respiratory Infections in Novosibirsk, Russia (2023–2024)
by Alina R. Nokhova, Tereza A. Saroyan, Mariya V. Solomatina, Tatyana A. Gutova, Anastasiya A. Derko, Nikita A. Dubovitskiy, Tatyana A. Murashkina, Kirill A. Sharshov, Alexander M. Shestopalov and Olga G. Kurskaya
Viruses 2024, 16(12), 1924; https://doi.org/10.3390/v16121924 - 16 Dec 2024
Cited by 1 | Viewed by 1452
Abstract
Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses [...] Read more.
Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023–2024 epidemic season using PCR. The detection rate of HRV/EV was 11% (220/1992). We performed typing of 58 HRV and 28 EV viruses by partial sequencing of the VP1 gene. Rhinovirus A was the most common among HRV, followed by rhinovirus C; rhinovirus B was detected in only three cases. Enteroviruses were represented by all four species, with the EV-D68 genotype being the most frequently detected. Phylogenetic analysis of the VP1 fragment of EV-D68 showed that all our sequences belonged to the B3 subclade. We identified the first case of EV-C105 infection in Russia in a two-year-old girl hospitalized with pneumonia. Phylogenetically, the Novosibirsk strain EV-C105 was closely related to a strain discovered in France in 2018. This research helped to fill a critical gap in understanding the epidemiological landscape of HRV/EV in pediatric populations within Russia. Full article
(This article belongs to the Special Issue Enteroviruses: Respiratory and Nervous System Infections)
Show Figures

Figure 1

Back to TopTop