Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (854)

Search Parameters:
Keywords = VOC emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1627 KB  
Article
Synergistic Effects of Air Pollution and Carbon Reduction Policies in China’s Iron and Steel Industry
by Jingan Zhu, Zixi Li, Xinling Jiang and Ping Jiang
Energies 2025, 18(20), 5379; https://doi.org/10.3390/en18205379 (registering DOI) - 13 Oct 2025
Abstract
As an energy-intensive sector, China’s iron and steel industry is crucial for achieving “Dual Carbon” goals. This study fills the research gap in systematically comparing the synergistic effects of multiple policies by evaluating five key measures (2020–2023) in ultra-low-emission retrofits and clean energy [...] Read more.
As an energy-intensive sector, China’s iron and steel industry is crucial for achieving “Dual Carbon” goals. This study fills the research gap in systematically comparing the synergistic effects of multiple policies by evaluating five key measures (2020–2023) in ultra-low-emission retrofits and clean energy alternatives. Using public macro-data at the national level, this study quantified cumulative reductions in air pollutants (SO2, NOx, PM, VOCs) and CO2. A synergistic control effect coordinate system and a normalized synergistic emission reduction equivalent (APeq) model were employed. The results reveal significant differences: Sintering machine desulfurization and denitrification (SDD) showed the highest APeq but increased CO2 emissions in 2023. Dust removal equipment upgrades (DRE) and unorganized emission control (UEC) demonstrated stable co-reduction effects. While electric furnace short-process steelmaking (ES) and hydrogen metallurgy (HM) showed limited current benefits, they represent crucial deep decarbonization pathways. The framework provides multi-dimensional policy insights beyond simple ranking, suggesting balancing short-term pollution control with long-term transition by prioritizing clean alternatives. Full article
Show Figures

Figure 1

28 pages, 1660 KB  
Review
Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties
by Devrim Kaya, Clara Santiago, Enrique Pernas, Sammy Truong, Greicha Martinez, Loyda B. Méndez and Yamixa Delgado
Int. J. Environ. Res. Public Health 2025, 22(10), 1549; https://doi.org/10.3390/ijerph22101549 (registering DOI) - 11 Oct 2025
Abstract
Air pollutants pose a growing public health concern in Puerto Rico (PR), particularly from rapid industrialization, military activities, environmental changes and natural disasters. A total of 193 pollutants, comprising the 187 hazardous air pollutants and the 6 criteria air pollutants—including particulate matter (PM), [...] Read more.
Air pollutants pose a growing public health concern in Puerto Rico (PR), particularly from rapid industrialization, military activities, environmental changes and natural disasters. A total of 193 pollutants, comprising the 187 hazardous air pollutants and the 6 criteria air pollutants—including particulate matter (PM), carbon monoxide (CO), volatile organic compounds (VOC), and heavy metals—coincide with rising respiratory disease rates (e.g., lung cancer) documented in national and regional health registries. This study aimed to review major air pollutants in PR, their molecular carcinogenic mechanisms (mostly focused on respiratory-related cancers), and the geographic areas impacted significantly. We conducted an extensive literature search utilizing peer-reviewed scientific articles (PubMed and Web of Science), governmental reports (EPA, WHO, State of Global Air), public health registries, (Puerto Rico Central Cancer Registry and International Agency for Research on Cancer) and local reports. Data on pollutant type, source, molecular pathways, and carcinogenic properties were extracted and synthesized. Our analysis identified ethylene oxide (EtO), polycyclic aromatic hydrocarbons, and PM from industrial sites as key pollutants. The municipalities of Salinas and Vieques, hubs of industrial activity and military exercises, respectively, emerged as critical hotspots where high concentrations of monitored pollutants (e.g., EtO, formaldehyde, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and diesel PM) are associated with a significant prevalence of cancer and respiratory diseases. These agents, known to induce genomic instability and chromosomal aberrations, were correlated with elevated local cancer incidence. Our findings underscore the urgent need for targeted public health interventions and support a multi-pronged strategy that includes: (1) enhanced regulatory oversight of EtO and other hazardous air pollutant emissions; (2) community-based biomonitoring of high-risk populations; and (3) investment in public health infrastructure and a transition to cleaner energy sources. Integrating rigorous environmental science with public health advocacy is essential to strengthen PR’s cancer-control continuum and foster resilience in its most vulnerable communities. Full article
(This article belongs to the Special Issue Air Pollution Exposure and Its Impact on Human Health)
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Sources and Reactivity of Ambient VOCs on the Tibetan Plateau: Insights from a Multi-Site Campaign (2012–2014) for Assessing Decadal Change
by Fangkun Wu, Jie Sun, Yinghong Wang and Zirui Liu
Atmosphere 2025, 16(10), 1148; https://doi.org/10.3390/atmos16101148 - 30 Sep 2025
Viewed by 233
Abstract
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were [...] Read more.
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were simultaneously measured at four remote background sites on the Tibetan Plateau (Nyingchi, Namtso, Ngari, and Mount Everest) from 2012 to 2014 to investigate their concentration, composition, sources, and chemical reactivity. Weekly integrated samples were collected and analyzed using a Gas Chromatograph-Mass Spectrometer/Flame Ionization Detector (GC-MS/FID) system. The total VOC mixing ratios exhibited site-dependent variability, with the highest levels observed in Nyingchi, followed by Mount Everest, Ngari and Namtso. The VOC composition in those remote sites was dominated by alkanes (25.7–48.5%) and aromatics (11.4–34.7%), followed by halocarbons (19.1–28.1%) and alkenes (11.5–18.5%). A distinct seasonal trend was observed, with higher VOC concentrations in summer and lower levels in spring and autumn. Source analysis based on correlations between specific VOC species suggests that combustion emissions (e.g., biomass burning or residential heating) were a major contributor during winter and spring, while traffic-related emissions influenced summer VOC levels. In addition, long-range transport of pollutants from South Asia also significantly impacted VOC concentrations across the plateau. Furthermore, reactivity assessments indicated that alkenes were the dominant contributors to OH radical loss rates, whereas aromatics were the largest drivers of ozone formation potential (OFP). These findings highlight the complex interplay of local emissions and regional transport in shaping VOC chemistry in this high-altitude background environment, with implications for atmospheric oxidation capacity and secondary pollutant formation. Full article
Show Figures

Figure 1

37 pages, 523 KB  
Review
Artificial Intelligence and Machine Learning Approaches for Indoor Air Quality Prediction: A Comprehensive Review of Methods and Applications
by Dominik Latoń, Jakub Grela, Andrzej Ożadowicz and Lukasz Wisniewski
Energies 2025, 18(19), 5194; https://doi.org/10.3390/en18195194 - 30 Sep 2025
Viewed by 483
Abstract
Indoor air quality (IAQ) is a critical determinant of health, comfort, and productivity, and is strongly connected to building energy demand due to the role of ventilation and air treatment in HVAC systems. This review examines recent applications of Artificial Intelligence (AI) and [...] Read more.
Indoor air quality (IAQ) is a critical determinant of health, comfort, and productivity, and is strongly connected to building energy demand due to the role of ventilation and air treatment in HVAC systems. This review examines recent applications of Artificial Intelligence (AI) and Machine Learning (ML) for IAQ prediction across residential, educational, commercial, and public environments. Approaches are categorized by predicted parameters, forecasting horizons, facility types, and model architectures. Particular focus is given to pollutants such as CO2, PM2.5, PM10, VOCs, and formaldehyde. Deep learning methods, especially the LSTM and GRU networks, achieve superior accuracy in short-term forecasting, while hybrid models integrating physical simulations or optimization algorithms enhance robustness and generalizability. Importantly, predictive IAQ frameworks are increasingly applied to support demand-controlled ventilation, adaptive HVAC strategies, and retrofit planning, contributing directly to reduced energy consumption and carbon emissions without compromising indoor environmental quality. Remaining challenges include data heterogeneity, sensor reliability, and limited interpretability of deep models. This review highlights the need for scalable, explainable, and energy-aware IAQ prediction systems that align health-oriented indoor management with energy efficiency and sustainability goals. Such approaches directly contribute to policy priorities, including the EU Green Deal and Fit for 55 package, advancing both occupant well-being and low-carbon smart building operation. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

21 pages, 22622 KB  
Article
Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations
by Jing Fan, Chao Yu, Yichen Li, Ying Zhang, Meng Fan, Jinhua Tao and Liangfu Chen
Remote Sens. 2025, 17(19), 3321; https://doi.org/10.3390/rs17193321 - 27 Sep 2025
Viewed by 289
Abstract
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of [...] Read more.
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx)—such as the formaldehyde-to-nitrogen dioxide ratio (FNR, defined as HCHO/NO2, where HCHO represents VOCs and NO2 represents NOx)—is one of the most widely used satellite-based indicators. Recent studies have highlighted glyoxal (CHOCHO) as another critical ozone precursor, prompting the proposal of the glyoxal-to-nitrogen dioxide ratio (GNR, CHOCHO/NO2) as an alternative metric. This study systematically compares the performance of FNR and GNR across four major urban agglomerations in China: Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing (CY) region, by integrating satellite remote sensing with ground-based observations. Results reveal that both indices exhibit consistent spatial trends in OFS distribution, transitioning from VOC-limited regimes in urban centers to NOx-limited regimes in surrounding suburban areas. However, differences emerge in threshold values and classification outcomes. During summer, FNR identifies urban areas as transitional regimes (or VOC-limited in regions such as YRD and PRD), while suburban areas are classified as NOx-limited. In contrast, GNR, which shows heightened sensitive to anthropogenic VOCs (AVOCs), exhibits a more restricted spatial extent in the transition regimes. By autumn, most urban areas shift toward VOC-limited regimes, while suburban regions remain NOx-limited. Thresholds for both VOCs and NOx increase during this period, with GNR demonstrating stronger sensitivity to NOx. These findings underscore that the choice between FNR and GNR directly influences OFS determination, as their differing responses to biogenic and anthropogenic emissions lead to different conclusions. Future research should focus on integrating the complementary strengths of both indices to develop a more robust OFS identification method, thereby providing a theoretical basis for formulating effective ozone control strategies. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Trace Gases and Air Quality)
Show Figures

Figure 1

20 pages, 6706 KB  
Article
Effect of Warm-Mix Additive USP on the Performance of Rubberized Asphalt and Fiber-Reinforced Rubberized Asphalt RAP Interlayer
by Jianhang Han, Bin Ding, Yong Hua, Wenbo Liu and Jun Li
Polymers 2025, 17(19), 2616; https://doi.org/10.3390/polym17192616 - 27 Sep 2025
Viewed by 336
Abstract
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance [...] Read more.
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance of polymer-modified asphalt and fiber-reinforced RAP interlayers were systematically investigated. The results indicate that 5% USP optimally improves low-temperature flexibility (141.1% increase in ductility, 28.48% reduction in creep stiffness) while maintaining adequate high-temperature stability, and simultaneously achieves an 82.01% reduction in total VOC emissions at 150 °C. Microscopic analysis and DIC tests confirm that USP enhances polymer–asphalt–aggregate interactions, leading to improved adhesion, reduced water permeability, and extended fatigue life. This work provides a fundamental understanding of polymer–binder–aggregate synergy and offers a practical pathway toward greener, high-performance recycled asphalt pavement technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

26 pages, 724 KB  
Review
Indoor Air Pollution of Volatile Organic Compounds (VOCs) in Hospitals in Thailand: Review of Current Practices, Challenges, and Recommendations
by Wissawa Malakan, Sarin KC, Thanakorn Jalearnkittiwut and Wilasinee Samniang
Atmosphere 2025, 16(10), 1135; https://doi.org/10.3390/atmos16101135 - 27 Sep 2025
Viewed by 878
Abstract
Indoor air pollution has become a significant concern, contributing to the decline in air quality through the presence of gaseous pollutants and particulate matter, especially under poor ventilation. Hospitals, functioning as non-industrial microenvironments, particularly in Thailand, face challenges due to insufficient and incomplete [...] Read more.
Indoor air pollution has become a significant concern, contributing to the decline in air quality through the presence of gaseous pollutants and particulate matter, especially under poor ventilation. Hospitals, functioning as non-industrial microenvironments, particularly in Thailand, face challenges due to insufficient and incomplete databases for effective air quality management. Within these environments, patients with heightened sensitivity, along with hospital staff who are predominantly exposed indoors, face increased risk of exposure to indoor air pollutants. This study aimed to review current evidence on VOCs in hospital settings in Thailand, identifying their sources, concentrations, and health impacts. It also aimed to provide recommendations for improved air quality monitoring and management. The review included studies published between 2008 and 2023 in English or Thai. Studies were selected based on relevance to VOCs in hospital environments, while excluding those lacking sufficient data or methodological rigor. Literature searches were conducted using Google Scholar, ScienceDirect, Scopus, and PubMed. Results from international studies were also considered to address gaps. Data extraction focused on VOC sources, concentrations, measurement methods, and associated health impacts. Results were synthesized into six thematic categories: characterization, health effects, control measures, etiological studies, monitoring systems, and comparative studies. The review identified 87 relevant studies. VOC exposure was associated with several adverse health impacts resulting from short- and long-term exposures, leading to an increased risk of cancer. Identified sources of VOC emissions within hospitals encompass anesthetic gases, sterilization processes, pharmaceuticals, laboratory chemicals, patient care, and household products, as well as building materials and furnishings. Commonly encountered VOCs include alcohols (e.g., ethanol, 2-methyl-2-propanol, isopropanol), ether, isoflurane, nitrous oxide, sevoflurane, chlorine, formaldehyde, aromatic hydrocarbons, limonene, and glutaraldehyde, among those commonly detected in hospital environments. Yet, limited knowledge exists regarding their source contributions, emissions, and concentrations associated with health impacts in Thai hospitals. Full article
Show Figures

Graphical abstract

13 pages, 2217 KB  
Article
Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China
by Yiling Lin, Qiaoling Chen, Youwei Hong, Yanting Chen, Liqian Yin, Jinfang Chen, Gongren Hu, Dan Liao and Ruilian Yu
Atmosphere 2025, 16(10), 1131; https://doi.org/10.3390/atmos16101131 - 26 Sep 2025
Viewed by 302
Abstract
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, [...] Read more.
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, and VOCs) and ambient conditions (JHCHO, JNO2, solar radiation, temperature, relative humidity, wind speed, and wind direction) were conducted in a coastal city in southeast China. The average HCHO concentrations were 2.54 ppbv, 3.38 ppbv, 2.53 ppbv, and 1.98 ppbv in spring, summer, autumn, and winter, respectively. Diurnal variations were high in the daytime and low in the nighttime, and the peak times varied in different seasons. The correlation between HCHO and O3 was not significant in spring and winter, which is likely related to the effects of photochemical reactions and diffusion conditions. The contributions of background (23.0%), primary (47.6%), and secondary (29.4%) sources to HCHO were quantified using multiple linear regression (MLR) models, revealing that secondary formation was the most significant contributor in summer, whereas primary emissions were predominant in spring. These findings help to improve the understanding of the influence of atmospheric formaldehyde on photochemical pollution control in coastal cities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

19 pages, 4701 KB  
Article
Temporal Dynamics and Source Apportionment of PM2.5 in a Coastal City of Southeastern China: Insights from Multiyear Analysis
by Liliang Chen, Jing Wang, Qiyuan Wang, Youwei Hong, Xinhua Wang, Wen Yang, Bin Han, Mazhan Zhuang and Zhipeng Bai
Atmosphere 2025, 16(10), 1119; https://doi.org/10.3390/atmos16101119 - 24 Sep 2025
Viewed by 372
Abstract
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor [...] Read more.
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor modeling. The Positive Matrix Factorization (PMF) model identified five sources: secondary sulfate (31%), coal/vehicle emissions (28%), industrial emissions with secondary organic aerosols (SOA, 20%), ship emissions (14%), and fugitive dust (7%). Interannual variations in source contributions highlighted impacts of anthropogenic activities, meteorology, power plant upgrades, and stricter vehicle standards. PM2.5 declined 19% (2013–2017), driven by emission controls, while SOA surged 42% (2015–2017) due to VOC oxidation and lower temperatures. Backward trajectory and Potential Source Contribution Function (PSCF) analyses revealed significant regional transport from northern industrial zones (32% contribution) and maritime activities. Ship emissions, which have remained relatively stable over the years, underscore the need for stricter marine regulations. Fugitive dust peaked in 2015 (25.8% of PM2.5), linked to urban construction. The findings emphasize the interplay of local emissions and regional transport in shaping PM2.5 pollution, providing a scientific basis for targeted control strategies in coastal cities with similar socioeconomic and geographic contexts. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

24 pages, 4286 KB  
Article
Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations
by Kenichi Tatsumi and Nguyen Thi Hong Diep
Data 2025, 10(9), 151; https://doi.org/10.3390/data10090151 - 22 Sep 2025
Viewed by 451
Abstract
Reliable, high-resolution emission inventories are essential for accurately simulating air quality and for designing evidence-based mitigation policies. Yet their performance over Japan—where transboundary inflow, strict fuel regulations, and complex source mixes coexist—remains poorly quantified. This study therefore benchmarks four widely used anthropogenic inventories—REAS [...] Read more.
Reliable, high-resolution emission inventories are essential for accurately simulating air quality and for designing evidence-based mitigation policies. Yet their performance over Japan—where transboundary inflow, strict fuel regulations, and complex source mixes coexist—remains poorly quantified. This study therefore benchmarks four widely used anthropogenic inventories—REAS v3.2.1, CAMS-GLOB-ANT v6.2, ECLIPSE v6b, and HTAP v3—by coupling each to WRF-Chem (10 km grid) and comparing simulated surface PM2.5, SO2, CO, and NOx with observations from >900 stations across eight Japanese regions for the years 2010 and 2015. All simulations shared identical meteorology, chemistry, and natural-source inputs (MEGAN 2.1 biogenic VOCs; FINN v1.5 biomass burning) so that differences in model output isolate the influence of anthropogenic emissions. HTAP delivered the most balanced SO2 and CO fields (regional mean biases mostly within ±25%), whereas ECLIPSE reproduced NOx spatial gradients best, albeit with a negative overall bias. REAS captured industrial SO2 reliably but over-estimated PM2.5 and NOx in western conurbations while under-estimating them in rural prefectures. CAMS-GLOB-ANT showed systematic biases—under-estimating PM2.5 and CO yet markedly over-estimating SO2—highlighting the need for Japan-specific sulfur-fuel adjustments. For several pollutant–region combinations, absolute errors exceeded 100%, confirming that emissions uncertainty, not model physics, dominates regional air quality error even under identical dynamical and chemical settings. These findings underscore the importance of inventory-specific and pollutant-specific selection—or better, multi-inventory ensemble approaches—when assessing Japanese air quality and formulating policy. Routine assimilation of ground and satellite data, together with inverse modeling, is recommended to narrow residual biases and improve future inventories. Full article
Show Figures

Figure 1

22 pages, 7050 KB  
Article
Emission Control and Sensitivity Regime Shifts Drive the Decline in Extreme Ozone Concentration in the Sichuan Basin During 2015–2024
by Hanqing Kang, Bojun Liu, Lei Hong, Jingchuan Shi, Hua Lu, Ying Zhang and Zhaobing Guo
Remote Sens. 2025, 17(18), 3238; https://doi.org/10.3390/rs17183238 - 19 Sep 2025
Viewed by 508
Abstract
In recent years, ozone (O3) pollution has become a prominent air quality concern in the Sichuan Basin (SCB). Based on surface O3 measurements from 22 cities between 2015 and 2024, this study investigates the evolution of extreme O3 pollution [...] Read more.
In recent years, ozone (O3) pollution has become a prominent air quality concern in the Sichuan Basin (SCB). Based on surface O3 measurements from 22 cities between 2015 and 2024, this study investigates the evolution of extreme O3 pollution events and their underlying causes. While the average O3 concentration, the number of affected cities, and the total O3 pollution hours have all increased during the past decade, extreme O3 concentrations have shown a significant decline since 2020. These trends suggest that O3 pollution in the SCB has become more spatially extensive and less intense. Decomposition analysis attributed ~75% of the post-2020 decline in extreme O3 concentrations to precursor emission reductions, with meteorological variability explaining the remaining ~25%. Satellite observations of formaldehyde (HCHO) and nitrogen dioxide (NO2) column densities indicate a regional shift in O3 formation regimes across the SCB, with many areas transitioning from VOC (volatile organic compound)-limited to transitional or NOx (nitrogen oxide)-limited conditions. This shift likely contributed to the broader spatial extent and longer duration of O3 pollution in recent years. Model sensitivity simulations and Integrated Reaction Rate (IRR) analysis demonstrate that reductions in precursor emissions, particularly NOx, directly weakened daytime photochemical O3 production and disrupted NOx-driven radical propagation under transition and NOx-limited conditions, collectively driving the observed decline in extreme O3 concentrations. Full article
Show Figures

Figure 1

17 pages, 1339 KB  
Article
Unmodified Plant and Waste Oils as Functional Additives in PU Flooring Adhesives: A Comparative Study
by Żaneta Ciastowicz, Renata Pamuła, Edyta Pęczek, Paweł Telega, Łukasz Bobak and Andrzej Białowiec
Molecules 2025, 30(18), 3780; https://doi.org/10.3390/molecules30183780 - 17 Sep 2025
Viewed by 385
Abstract
This work compares reactive (castor) and non-reactive (rapeseed, sunflower, linseed, and used cooking) oils, each at a dosage of 10 wt%, when incorporated into an in-house two-component polyurethane (PU) parquet adhesive. A commercial market adhesive was tested only as an external benchmark and [...] Read more.
This work compares reactive (castor) and non-reactive (rapeseed, sunflower, linseed, and used cooking) oils, each at a dosage of 10 wt%, when incorporated into an in-house two-component polyurethane (PU) parquet adhesive. A commercial market adhesive was tested only as an external benchmark and was not modified. Mechanical properties were evaluated according to EN ISO 17178, inorganic leaching according to EN 12457-4, and volatile organics were screened by headspace GC–MS (not comparable to ISO 16000-9 chamber protocols). All in-house formulations met the EN ISO 17178 acceptance limits. The sunflower oil variant showed the highest shear strength, whereas rapeseed and castor oils provided stable tensile performance. HS-GC-MS did not yield high-confidence VOC identifications; therefore, no regulatory emission claim is made. The formulation with used cooking oil exhibited the largest variability and elevated leaching of Zn and Sb, underscoring the need for feedstock quality control. At 10 wt% loading, standard-compliant performance was obtained with both reactive and non-reactive oils, suggesting that physical modification can be sufficient, while castor oil may additionally react. In contrast to derivatized oils reported elsewhere, our approach employs unmodified oils, thereby avoiding extra reaction steps—such as epoxidation, hydroxylation, and transesterification—that typically increase the carbon footprint, while still meeting relevant standards. Full VOC chamber testing and LCA are beyond the scope of this study. Full article
(This article belongs to the Special Issue From Biomass to High-Value Products: Processes and Applications)
Show Figures

Figure 1

20 pages, 3437 KB  
Article
Semi-Quantitative Characterization of Volatile Organic Compounds in Indoor and Outdoor Air Using Passive Samplers: A Case Study of Milan, Italy
by Vllaznim Mula, Jane Bogdanov, Jasmina Petreska Stanoeva, Lulzim Zeneli, Valbonë Mehmeti, Fabrizio Gelmini, Armond Daci, Avni Berisha, Zoran Zdravkovski and Giangiacomo Beretta
Atmosphere 2025, 16(9), 1088; https://doi.org/10.3390/atmos16091088 - 16 Sep 2025
Cited by 1 | Viewed by 1140
Abstract
This study presents a semi-quantitative characterization of volatile organic compound (VOC) concentrations and their emission sources in indoor and outdoor environments across four residential and laboratory sites in Milan, Italy, during the summer of 2024. Radiello® passive samplers (Fondazione Salvatore Maugeri in [...] Read more.
This study presents a semi-quantitative characterization of volatile organic compound (VOC) concentrations and their emission sources in indoor and outdoor environments across four residential and laboratory sites in Milan, Italy, during the summer of 2024. Radiello® passive samplers (Fondazione Salvatore Maugeri in Padova, Italy) were employed for VOC collection, followed by gas chromatography–mass spectrometry analysis. The semi-quantitative mean total VOC (TVOC) concentration was 220.8 ± 195.4 µg/m3 for the outdoor air and slightly higher at 243.6 ± 134.3 µg/m3 for the indoor air, resulting in an indoor-to-outdoor relative ratio of 1.10. The outdoor VOC profile was dominated by hydrocarbons, accounting for 80.3% ± 4.6% (173.2 ± 143.8 µg/m3) of TVOCs, followed by aromatic hydrocarbons at 13.3% ± 5.5% (37.2 ± 49.7 µg/m3). Indoors, hydrocarbons also predominated, representing 34.1% ± 15.2% (95.2 ± 80.1 µg/m3) of the TVOCs, followed by terpenes at 20.7% ± 15.5% (49.0 ± 46.4 µg/m3). Other VOC groups contributed smaller fractions in both environments. The emission profiles from cleaning and personal care products were assessed semi-quantitatively to determine their relative percentage contributions to the indoor VOCs. Source attribution was further supported by diagnostic relative ratios—benzene/toluene, toluene/benzene, and (m + p)-xylene/ethylbenzene—which provided insight into dominant emission sources and photochemical aging. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

20 pages, 4399 KB  
Article
Assessing the Aromatic-Driven Glyoxal Formation and Its Interannual Variability in Summer and Autumn over Eastern China
by Xiaoyang Chen, Xi Chen, Yiming Liu, Chong Shen, Shaorou Dong, Qi Fan, Shaojia Fan, Tao Deng, Xuejiao Deng and Haibao Huang
Remote Sens. 2025, 17(18), 3174; https://doi.org/10.3390/rs17183174 - 12 Sep 2025
Viewed by 392
Abstract
Aromatics and their key oxidation intermediate such as formaldehyde and dicarbonyl compounds (glyoxal and methyglyoxal) are crucial precursors for ozone (O3) and secondary organic aerosols (SOA). However, the spatial–temporal variation in aromatics’ contribution to these intermediate species and O3/SOA [...] Read more.
Aromatics and their key oxidation intermediate such as formaldehyde and dicarbonyl compounds (glyoxal and methyglyoxal) are crucial precursors for ozone (O3) and secondary organic aerosols (SOA). However, the spatial–temporal variation in aromatics’ contribution to these intermediate species and O3/SOA over Eastern China during the past decades remains insufficiently quantified. This study combines satellite observations of formaldehyde and glyoxal column densities (2008–2014) with an innovative tracer method implemented in the Community Multiscale Air Quality (CMAQ) modeling system to quantify aromatic-driven dicarbonyl chemistry. Simulations of summer and autumn in 2010, 2012, 2014, and 2016 are conducted to demonstrate the change in aromatics and its impact through the years. Estimated primary and intermediate VOCs show good consistency with measurements at a supersite; and the simulated vertical column density of formaldehyde and glyoxal agree with satellite observations in spatial distributions. The contribution of aromatic hydrocarbons to the columnar concentration of glyoxal has seen a significant increase since 2010, which can, to some extent, explain the interannual trend of glyoxal column concentrations in key regions of Beijing–Tianjin–Heibei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). A cross-comparison reveals a good consistency between the observed glyoxal columnar concentrations to formaldehyde columnar concentration ratio (RGF) from satellite measurements and the high contribution areas of aromatics to glyoxal: pronounced values are observed in the above three key regions in Eastern China. Additionally, the applicability of RGF and its indicative nature in Eastern China was discussed, revealing notable seasonal and regional variations in RGF. Revised RGF thresholds ([0.015–0.03] for models vs. [0.04–0.06] for satellites) improve summer precursor classification, while a threshold of >0.04 could distinguish the areas with high anthropogenic impacts during autumn. These findings advance understanding of VOC oxidation pathways in polluted regions, providing critical insights for ozone and secondary organic aerosol mitigation strategies. The integrated satellite model approach demonstrates the growing atmospheric influence of aromatics amid changing emission patterns in Eastern China. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

19 pages, 4832 KB  
Article
A Focus on the Emission of Volatile Organic Compounds (VOCs) from Raw Materials Potentially Used in Human Odor Sampling
by Elsa Boudard, Nabil Moumane, José Dugay, Jérôme Vial, Michel Sablier and Didier Thiébaut
Separations 2025, 12(9), 250; https://doi.org/10.3390/separations12090250 - 11 Sep 2025
Viewed by 520
Abstract
The present study provided an exhaustive examination of VOC emissions originating from 13 different raw materials susceptible to being used in the sampling of the human volatilome and encompassing both polymeric and non-polymeric compositions. To achieve this aim, thermodesorption coupled with comprehensive two-dimensional [...] Read more.
The present study provided an exhaustive examination of VOC emissions originating from 13 different raw materials susceptible to being used in the sampling of the human volatilome and encompassing both polymeric and non-polymeric compositions. To achieve this aim, thermodesorption coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (TD-GC×GC/ToFMS) was employed. For each material, we report the total number of detected peaks, total volatile organic compound (TVOC) concentration, distribution of VOC emissions across different chemical families, minimum and maximum individual concentrations, as well as hypotheses regarding the origins of some specific VOCs depending on the material considered. The findings from this investigation revealed that materials, such as silicone and polyurethane, could emit an extensive array of VOCs, with up to 2000 chromatographic peaks detected, and emissions of total volatile organic compounds (TVOCs) reaching levels of 5.4 µg·g−1 and 9.8 µg·g−1, respectively. In the case of polyamide, some VOCs could be related to potential reagents involved in its synthesis. While highlighting materials that should be used with caution depending on the topic and target analytes, this study identified materials that exhibited minimal VOC emissions, such as polytetrafluoroethylene, aluminum, and stainless steel, after an adequate conditioning step. The selected analytical technique, TD-GC×GC/ToFMS, proved its relevance to identify and characterize semi-quantitatively VOC emissions coming from those materials. Such information was essential within the frame of the development of a body odor sampling system, our primary objective. Full article
(This article belongs to the Topic Advances in Chromatographic Separation)
Show Figures

Figure 1

Back to TopTop