Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = VNIR hyperspectral imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2644 KiB  
Article
Four-Dimensional Hyperspectral Imaging for Fruit and Vegetable Grading
by Laraib Haider Naqvi, Badrinath Balasubramaniam, Jiaqiong Li, Lingling Liu and Beiwen Li
Agriculture 2025, 15(15), 1702; https://doi.org/10.3390/agriculture15151702 - 6 Aug 2025
Abstract
Reliable, non-destructive grading of fresh fruit requires simultaneous assessment of external morphology and hidden internal defects. Camera-based grading of fresh fruit using colorimetric (RGB) and near-infrared (NIR) imaging often misses subsurface bruising and cannot capture the fruit’s true shape, leading to inconsistent quality [...] Read more.
Reliable, non-destructive grading of fresh fruit requires simultaneous assessment of external morphology and hidden internal defects. Camera-based grading of fresh fruit using colorimetric (RGB) and near-infrared (NIR) imaging often misses subsurface bruising and cannot capture the fruit’s true shape, leading to inconsistent quality assessment and increased waste. To address this, we developed a 4D-grading pipeline that fuses visible and near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral imaging with structured-light 3D scanning to non-destructively evaluate both internal defects and external form. Our contributions are (1) flagging the defects in fruits based on the reflectance information, (2) accurate shape and defect measurement based on the 3D data of fruits, and (3) an interpretable, decision-tree framework that assigns USDA-style quality (Premium, Grade 1/2, Reject) and size (Small–Extra Large) labels. We demonstrate this approach through preliminary results, suggesting that 4D hyperspectral imaging may offer advantages over single-modality methods by providing clear, interpretable decision rules and the potential for adaptation to other produce types. Full article
18 pages, 3118 KiB  
Article
AetherGeo: A Spectral Analysis Interface for Geologic Mapping
by Gonçalo Santos, Joana Cardoso-Fernandes and Ana C. Teodoro
Algorithms 2025, 18(7), 378; https://doi.org/10.3390/a18070378 - 21 Jun 2025
Viewed by 449
Abstract
AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the user to analyze raster data, with a special focus on processing multi- and hyperspectral images. Being developed in Python 3.12.4, this application is a free, open-source alternative for [...] Read more.
AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the user to analyze raster data, with a special focus on processing multi- and hyperspectral images. Being developed in Python 3.12.4, this application is a free, open-source alternative for spectral analysis, something considered beneficial for researchers, allowing for a flexible approach to start working on the topic without acquiring proprietary software licenses. It provides the user with a set of tools for spectral data analysis through classical approaches, such as band ratios and RGB combinations, but also more elaborate techniques, such as endmember extraction and unsupervised image classification with partial spectral unmixing techniques. While it has been tested on visible and near-infrared (VNIR), short-wave infrared (SWIR), and VNIR-SWIR datasets, the functions implemented have the potential to be applied to other spectral ranges. On top of this, all results can be visualized within the software, and some tools allow for the inspection and comparison of spectra and spectral libraries. Providing software with these capabilities in a unified platform has the potential to positively impact research and education, as students and educators usually have limited access to proprietary software. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

26 pages, 37822 KiB  
Article
Drone-Based VNIR–SWIR Hyperspectral Imaging for Environmental Monitoring of a Uranium Legacy Mine Site
by Victor Tolentino, Andres Ortega Lucero, Friederike Koerting, Ekaterina Savinova, Justus Constantin Hildebrand and Steven Micklethwaite
Drones 2025, 9(4), 313; https://doi.org/10.3390/drones9040313 - 17 Apr 2025
Viewed by 1611
Abstract
Growing awareness of the environmental cost of mining operations has led to increased research on monitoring and restoring legacy mine sites. Hyperspectral imaging (HSI) has emerged as a valuable tool in the mining life cycle, including post-mining environment. By detecting variations in crystal [...] Read more.
Growing awareness of the environmental cost of mining operations has led to increased research on monitoring and restoring legacy mine sites. Hyperspectral imaging (HSI) has emerged as a valuable tool in the mining life cycle, including post-mining environment. By detecting variations in crystal structure and physicochemical attributes on the surface of materials, HSI provides insights into site environmental and ecological conditions. Here, we explore the capabilities of drone-based HSI for mapping surface patterns related to contamination dispersal in a legacy uranium-rare earth element mine site. Hyperspectral data across the visible to near-infrared (VNIR) and short-wave infrared (SWIR) wavelength ranges (400–2500 nm) were collected over selected areas of the former Mary Kathleen mine site in Queensland, Australia. Analyses were performed using data-driven (Spectral Angle Mapper—SAM) and knowledge-based (Band Ratios—BRs) spectral processing techniques. SAM identifies contamination patterns and differentiates mineral compositions within visually similar areas. However, its accuracy is limited when mapping specific minerals, as most endmembers represent mineral groups or mixtures. BR highlights reactive surfaces and clay mixtures, reinforcing key patterns identified by SAM. The results indicate that drone-based HSI can capture and distinguish complex surface trends, demonstrating the technology’s potential to enhance the assessment and monitoring of environmental conditions at a mine site. Full article
Show Figures

Figure 1

21 pages, 15399 KiB  
Article
Research on the Inversion Method of Dust Content on Mining Area Plant Canopies Based on UAV-Borne VNIR Hyperspectral Data
by Yibo Zhao, Shaogang Lei, Xiaotong Han, Yufan Xu, Jianzhu Li, Yating Duan and Shengya Sun
Drones 2025, 9(4), 256; https://doi.org/10.3390/drones9040256 - 27 Mar 2025
Cited by 1 | Viewed by 367
Abstract
Monitoring dust on plant canopies around open-pit coal mines is crucial to assessing environmental pollution and developing effective dust suppression strategies. This research focuses on the Ha’erwusu open-pit coal mine in Inner Mongolia, China, using measured dust content on plant canopies and UAV-borne [...] Read more.
Monitoring dust on plant canopies around open-pit coal mines is crucial to assessing environmental pollution and developing effective dust suppression strategies. This research focuses on the Ha’erwusu open-pit coal mine in Inner Mongolia, China, using measured dust content on plant canopies and UAV-borne VNIR hyperspectral data as the data sources. The study employed five spectral transformation forms—first derivative (FD), second derivative (SD), logarithm transformation (LT), reciprocal transformation (RT), and square root (SR)—alongside the competitive adaptive reweighted sampling (CARS) method to extract characteristic bands associated with canopy dust. Various regression models, including extreme learning machine (ELM), random forest (RF), partial least squares regression (PLSR), and support vector machine (SVM), were utilized to establish dust inversion models. The spatial distribution of canopy dust was then analyzed. The results demonstrate that the geometric and radiometric correction of the UAV-borne VNIR hyperspectral images successfully restored the true spatial information and spectral features. The spectral transformations significantly enhance the feature information for canopy dust. The CARS algorithm extracted characteristic bands representing 20 to 30% of the total spectral bands, evenly spread across the entire range, thereby reducing the estimation model’s computational complexity. Both feature extraction and model selection influence the inversion accuracy, with the LT-CARS and RF combination offering the best predictive performance. Canopy dust content decreases with increasing distance from the dust source. These findings offer valuable insights for canopy dust retention monitoring and offer a solid foundation for dust pollution management and the development of suppression strategies. Full article
Show Figures

Figure 1

17 pages, 10636 KiB  
Article
High-Resolution Reconstruction of Total Organic Carbon Content in Lake Sediments Using Hyperspectral Imaging
by Xuening Lin, Xin Zhou, Hongfei Zhao, Guangcheng Zhang, Yiyan Chen, Shiwei Jiang, Tao Zhan and Luyao Tu
Remote Sens. 2025, 17(4), 706; https://doi.org/10.3390/rs17040706 - 19 Feb 2025
Viewed by 787
Abstract
The total organic carbon (TOC) content in lake sediments is an effective archive indicating past climate changes. However, the resolution of the TOC record has generally been limited by factors such as subsampling intervals, hampering further comprehension of past climate change. Recently, hyperspectral [...] Read more.
The total organic carbon (TOC) content in lake sediments is an effective archive indicating past climate changes. However, the resolution of the TOC record has generally been limited by factors such as subsampling intervals, hampering further comprehension of past climate change. Recently, hyperspectral imaging technology has been increasingly employed to scan lake sediment cores, presenting new opportunities to reconstruct high-resolution sequences, but the reconstruction of long-term high-resolution TOC records using hyperspectral imaging and the climate implications have not been well studied. In this study, we scanned sedimentary cores from Wudalianchi Crater Lake in northeast China with a spatial resolution of 400 × 400 μm, utilizing visible and near-infrared (VNIR) hyperspectral imaging technology. Then, a partial least-squares regression (PLSR) model was constructed by comparing eight different preprocessing methods and optimally selecting the best spectral subset combined with a genetic algorithm (GA). Our analysis demonstrates that the PLSR model, constructed using 62 relevant bands selected by the Savitzky–Golay second derivative (D2) preprocessing method and GA, was the most reliable, with the validation set’s R-value reaching a high of 0.91 and RMSE as low as 1.18%. Notably, the spectral range of 656–669 nm showed a strong positive correlation with measured TOC, indicating its sensitivity for TOC estimation. Given this advantage, we reconstructed the TOC records of sediments from the Wudalianchi Crater Lake during the 38–13 ka BP period, which exhibited significant millennial-scale fluctuation events. These corresponded well with the millennial-scale events in pollen and TOC from Lake Sihailongwan, δ18O records of Greenland ice cores, and δ18O records from Asian stalagmites. Thus, the combination of hyperspectral imaging and the PLSR model is effective in reconstructing high-resolution TOC changes in lake sediments, which is essential for understanding climate change as well as carbon burial in lakes. Full article
Show Figures

Graphical abstract

21 pages, 4371 KiB  
Article
Synergizing Wood Science and Interpretable Artificial Intelligence: Detection and Classification of Wood Species Through Hyperspectral Imaging
by Yicong Qi, Yin Zhang, Shuqi Tang and Zhen Zeng
Forests 2025, 16(1), 186; https://doi.org/10.3390/f16010186 - 19 Jan 2025
Viewed by 1474
Abstract
With the increasing demand for wood in the wood market and the frequent trade of high-value wood, the accurate identification of wood varieties has become essential. This study employs two hyperspectral imaging systems—visible and near-infrared spectroscopy (VNIR) and short-wave infrared spectroscopy (SWIR)—in combination [...] Read more.
With the increasing demand for wood in the wood market and the frequent trade of high-value wood, the accurate identification of wood varieties has become essential. This study employs two hyperspectral imaging systems—visible and near-infrared spectroscopy (VNIR) and short-wave infrared spectroscopy (SWIR)—in combination with a deep learning model to propose a method for wood species identification. Spectral data from wood samples were obtained through hyperspectral imaging technology, and classification was performed using a combination of convolutional neural networks (CNNs) and Transformer models. Multiple spectral preprocessing and feature extraction techniques were applied to enhance data quality and model performance. The experimental results show that the full-band modeling is significantly better than the feature-band modeling in terms of classification accuracy and robustness. Among them, the classification accuracy of SWIR reaches 100%, the number of model parameters is 1,286,228, the total size of the model is 4.93 MB, and the Floating Point Operations (FLOPs) is 1.29 M. Additionally, the Shapley Additive Explanation (SHAP) technique was utilized for model interpretability, revealing key spectral bands and feature regions that the model emphasizes during classification. Compared with other models, CNN-Transformer is more effective in capturing the key features. This method provides an efficient and reliable tool for the wood industry, particularly in wood processing and trade, offering broad application potential and significant economic benefits. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

29 pages, 8502 KiB  
Article
Seed Protein Content Estimation with Bench-Top Hyperspectral Imaging and Attentive Convolutional Neural Network Models
by Imran Said, Vasit Sagan, Kyle T. Peterson, Haireti Alifu, Abuduwanli Maiwulanjiang, Abby Stylianou, Omar Al Akkad, Supria Sarkar and Noor Al Shakarji
Sensors 2025, 25(2), 303; https://doi.org/10.3390/s25020303 - 7 Jan 2025
Viewed by 1295
Abstract
Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) [...] Read more.
Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands. Sensitivity analyses were also conducted to identify the most sensitive bands for seed protein estimation. Convolutional neural networks (CNNs) with attention mechanisms were proposed along with traditional machine learning models based on feature engineering including Random Forest (RF) and Support Vector Machine (SVM) regression for comparative analysis. Additionally, the CNN classification approach was used to estimate low, medium, and high protein concentrations because this type of classification is more applicable for breeding efforts. Our results showed that the proposed CNN with attention mechanisms predicted wheat protein content with R2 values of 0.70 and 0.65 for ventral and dorsal seed orientations, respectively. Although, the R2 of the CNN approach was lower than of the best performing feature-based method, RF (R2 of 0.77), end-to-end prediction capabilities with CNN hold great promise for the automation of wheat protein estimation for breeding. The CNN model achieved better classification of protein concentrations between low, medium, and high protein contents, with an R2 of 0.82. This study’s findings highlight the significant potential of hyperspectral imaging and machine learning techniques for advancing precision breeding practices, optimizing seed sorting processes, and enabling targeted agricultural input applications. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

45 pages, 4261 KiB  
Review
VNIR-SWIR Imaging Spectroscopy for Mining: Insights for Hyperspectral Drone Applications
by Friederike Koerting, Saeid Asadzadeh, Justus Constantin Hildebrand, Ekaterina Savinova, Evlampia Kouzeli, Konstantinos Nikolakopoulos, David Lindblom, Nicole Koellner, Simon J. Buckley, Miranda Lehman, Daniel Schläpfer and Steven Micklethwaite
Mining 2024, 4(4), 1013-1057; https://doi.org/10.3390/mining4040057 - 29 Nov 2024
Cited by 3 | Viewed by 5314
Abstract
Hyperspectral imaging technology holds great potential for various stages of the mining life cycle, both in active and abandoned mines, from exploration to reclamation. The technology, however, has yet to achieve large-scale industrial implementation and acceptance. While hyperspectral satellite imagery yields high spectral [...] Read more.
Hyperspectral imaging technology holds great potential for various stages of the mining life cycle, both in active and abandoned mines, from exploration to reclamation. The technology, however, has yet to achieve large-scale industrial implementation and acceptance. While hyperspectral satellite imagery yields high spectral resolution, a high signal-to-noise ratio (SNR), and global availability with breakthrough systems like EnMAP, EMIT, GaoFen-5, PRISMA, and Tanager-1, limited spatial and temporal resolution poses challenges for the mining sectors, which require decimetre-to-centimetre-scale spatial resolution for applications such as reconciliation and environmental monitoring and daily temporal revisit times, such as for ore/waste estimates and geotechnical assessments. Hyperspectral imaging from drones (Uncrewed Aerial Systems; UASs) offers high-spatial-resolution data relevant to the pit/mine scale, with the capability for frequent, user-defined re-visit times for areas of limited extent. Areas of interest can be defined by the user and targeted explicitly. Collecting data in the visible to near and shortwave infrared (VNIR-SWIR) wavelength regions offers the detection of different minerals and surface alteration patterns, potentially revealing crucial information for exploration, extraction, re-mining, waste remediation, and rehabilitation. This is related to but not exclusive to detecting deleterious minerals for different processes (e.g., clays, iron oxides, talc), secondary iron oxides indicating the leakage of acid mine drainage for rehabilitation efforts, swelling clays potentially affecting rock integrity and stability, and alteration minerals used to vector toward economic mineralisation (e.g., dickite, jarosite, alunite). In this paper, we review applicable instrumentation, software components, and relevant studies deploying hyperspectral imaging datasets in or appropriate to the mining sector, with a particular focus on hyperspectral VNIR-SWIR UASs. Complementarily, we draw on previous insights from airborne, satellite, and ground-based imaging systems. We also discuss common practises for UAS survey planning and ground sampling considerations to aid in data interpretation. Full article
Show Figures

Figure 1

16 pages, 3930 KiB  
Article
Spectral Fingerprinting of Tencha Processing: Optimising the Detection of Total Free Amino Acid Content in Processing Lines by Hyperspectral Analysis
by Qinghai He, Yihang Guo, Xiaoli Li, Yong He, Zhi Lin and Hui Zeng
Foods 2024, 13(23), 3862; https://doi.org/10.3390/foods13233862 - 29 Nov 2024
Cited by 2 | Viewed by 1016
Abstract
The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial [...] Read more.
The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial for monitoring and optimizing production processes. However, traditional chemical analysis methods are often time-consuming and costly, limiting their application in real-time quality control. Hyperspectral imaging (HSI) has shown significant effectiveness as a component detection tool in various agricultural applications. This study employs VNIR-HSI combined with machine learning algorithms to develop a model for visualizing the total free amino acid content in Tencha samples that have undergone different processing steps on the production line. Four pretreating methods were employed to preprocess the spectra, and partial least squares regression (PLSR) and least squares support vector machine regression (LS–SVR) models were established from the perspectives of individual processes and the entire process. Combining competitive adaptive reweighted sampling (CARS) and variable iterative space shrinkage approach (VISSA) methods for characteristic band selection, specific bands were chosen to predict the amino acid content. By comparing modeling evaluation indicators for each model, the optimal model was identified: the overall model CT+CARS+PLSR, with predictive indicators Rc2 = 0.9885, Rp2 = 0.9566, RMSEC = 0.0956, RMSEP = 0.1749, RPD = 4.8021, enabling the visualization of total free amino acid content in processed Tencha leaves. Here, we establish a benchmark for machine learning-based HSI, integrating this technology into the tea processing workflow to provide a real-time decision support tool for quality control, offering a novel method for the rapid and accurate prediction of free amino acids during tea processing. This achievement not only provides a scientific basis for the tea processing sector but also opens new avenues for the application of hyperspectral imaging technology in food science. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 3137 KiB  
Article
The Potential for Hyperspectral Imaging and Machine Learning to Classify Internal Quality Defects in Macadamia Nuts
by Michael B. Farrar, Marcela Martinez, Kim Jones, Negar Omidvar, Helen M. Wallace, Thomas Chen and Shahla Hosseini Bai
Horticulturae 2024, 10(11), 1129; https://doi.org/10.3390/horticulturae10111129 - 23 Oct 2024
Viewed by 1713
Abstract
Tree nuts are rich in nutrients, and global production and consumption have doubled during the last decade. However, nuts have a range of quality defects that must be detected and removed during post-harvest processing. Tree nuts can develop hidden internal discoloration, and current [...] Read more.
Tree nuts are rich in nutrients, and global production and consumption have doubled during the last decade. However, nuts have a range of quality defects that must be detected and removed during post-harvest processing. Tree nuts can develop hidden internal discoloration, and current sorting methods are prone to subjectivity and human error. Therefore, non-destructive, real-time methods to evaluate internal nut quality are needed. This study explored the potential for VNIR (400–1000 nm) hyperspectral imaging to classify brown center disorder in macadamias. This study compared the accuracy of classifiers developed using images of kernels imaged in face-up and face-down orientations. Classification accuracy was excellent using face-up (>97.9%) and face-down (>94%) images using ensemble and linear discriminate models before and after wavelength selection. Combining images to form a pooled dataset also provided high accuracy (>90%) using artificial neural network and support vector machine models. Overall, HSI has great potential for commercial application in nut processing to detect internal brown centers using images of the outside kernel surface in the VNIR range. This technology will allow rapid and non-destructive evaluation of intact nut products that can then be marketed as a high-quality, defect-free product, compared with traditional methods that rely heavily on representative sub-sampling. Full article
(This article belongs to the Special Issue Advanced Postharvest Technology in Processed Horticultural Products)
Show Figures

Figure 1

22 pages, 3948 KiB  
Article
Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville
by Giovanna Vasco, Hélène Aureli, Isabel Fernández-Lizaranzu, Javier Moreno-Soto, Anabelle Križnar, Rubén Parrilla-Giraldez, Emilio Gómez-González and Miguel Angel Respaldiza Galisteo
Heritage 2024, 7(11), 5986-6007; https://doi.org/10.3390/heritage7110281 - 23 Oct 2024
Cited by 2 | Viewed by 2478
Abstract
In the last decade, the hyperspectral imaging (HSI) method allowed performing non-invasive analysis in the field of cultural heritage. However, a considerable limitation was given by redundant and time-consuming features, with the necessary application of statistical algorithms and image-processing tools to extract relevant [...] Read more.
In the last decade, the hyperspectral imaging (HSI) method allowed performing non-invasive analysis in the field of cultural heritage. However, a considerable limitation was given by redundant and time-consuming features, with the necessary application of statistical algorithms and image-processing tools to extract relevant information. In this study, the Centro Nacional de Aceleradores (CNA) and the Group of Interdisciplinary Physics (GFI) of the School of Engineering (ETSI) of the University of Seville tested the application of three different hyperspectral cameras in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) range for the investigation of an ancient painting. A reference-based procedure was realised to build a starting personal library and to evaluate the best working conditions for non-invasive and non-destructive characterisation with data treatment using the commercially available software Evince® and Specim IQ® to apply, respectively, the Principal Component Analysis (PCA) model functions and the classification method. The evaluation of the protocol was tested by acquiring complementary information by X-ray fluorescence (XRF), Ultraviolet Luminescence (UVL) imaging, and Infrared Reflectography (IRR). This exploration established a simplified protocol to analyse the large collection of paintings of the Archbishop’s Palace and the Cathedral of Seville. Full article
Show Figures

Figure 1

25 pages, 13668 KiB  
Article
Predicting Rock Hardness and Abrasivity Using Hyperspectral Imaging Data and Random Forest Regressor Model
by Saleh Ghadernejad and Kamran Esmaeili
Remote Sens. 2024, 16(20), 3778; https://doi.org/10.3390/rs16203778 - 11 Oct 2024
Cited by 3 | Viewed by 1831
Abstract
This study aimed to develop predictive models for rock hardness and abrasivity based on hyperspectral imaging data, providing valuable information without interrupting the mining processes. The data collection stage first involved scanning 159 rock samples collected from 6 different blasted rock piles using [...] Read more.
This study aimed to develop predictive models for rock hardness and abrasivity based on hyperspectral imaging data, providing valuable information without interrupting the mining processes. The data collection stage first involved scanning 159 rock samples collected from 6 different blasted rock piles using visible and near-infrared (VNIR) and short-wave infrared (SWIR) sensors. The hardness and abrasivity of the samples were then determined through Leeb rebound hardness (LRH) and Cerchar abrasivity index (CAI) tests, respectively. The data preprocessing involved radiometric correction, background removal, and staking VNIR and SWIR images. An integrated approach based on K-means clustering and the band ratio concept was employed for feature extraction, resulting in 28 band-ratio-based features. Afterward, the random forest regressor (RFR) algorithm was employed to develop predictive models for rock hardness and abrasivity separately. The performance assessment showed that the developed models can estimate rock hardness and abrasivity of unseen data with R2 scores of 0.74 and 0.79, respectively, with the most influential features located mainly within the SWIR region. The results indicate that integrated hyperspectral data and RFR technique have strong potential for practical and efficient rock hardness and abrasivity characterization during mining processes. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

22 pages, 4633 KiB  
Article
Enhancing Water-Deficient Potato Plant Identification: Assessing Realistic Performance of Attention-Based Deep Neural Networks and Hyperspectral Imaging for Agricultural Applications
by Janez Lapajne, Ana Vojnović, Andrej Vončina and Uroš Žibrat
Plants 2024, 13(14), 1918; https://doi.org/10.3390/plants13141918 - 11 Jul 2024
Cited by 4 | Viewed by 2117
Abstract
Hyperspectral imaging has emerged as a pivotal technology in agricultural research, offering a powerful means to non-invasively monitor stress factors, such as drought, in crops like potato plants. In this context, the integration of attention-based deep learning models presents a promising avenue for [...] Read more.
Hyperspectral imaging has emerged as a pivotal technology in agricultural research, offering a powerful means to non-invasively monitor stress factors, such as drought, in crops like potato plants. In this context, the integration of attention-based deep learning models presents a promising avenue for enhancing the efficiency of stress detection, by enabling the identification of meaningful spectral channels. This study assesses the performance of deep learning models on two potato plant cultivars exposed to water-deficient conditions. It explores how various sampling strategies and biases impact the classification metrics by using a dual-sensor hyperspectral imaging systems (VNIR -Visible and Near-Infrared and SWIR—Short-Wave Infrared). Moreover, it focuses on pinpointing crucial wavelengths within the concatenated images indicative of water-deficient conditions. The proposed deep learning model yields encouraging results. In the context of binary classification, it achieved an area under the receiver operating characteristic curve (AUC-ROC—Area Under the Receiver Operating Characteristic Curve) of 0.74 (95% CI: 0.70, 0.78) and 0.64 (95% CI: 0.56, 0.69) for the KIS Krka and KIS Savinja varieties, respectively. Moreover, the corresponding F1 scores were 0.67 (95% CI: 0.64, 0.71) and 0.63 (95% CI: 0.56, 0.68). An evaluation of the performance of the datasets with deliberately introduced biases consistently demonstrated superior results in comparison to their non-biased equivalents. Notably, the ROC-AUC values exhibited significant improvements, registering a maximum increase of 10.8% for KIS Krka and 18.9% for KIS Savinja. The wavelengths of greatest significance were observed in the ranges of 475–580 nm, 660–730 nm, 940–970 nm, 1420–1510 nm, 1875–2040 nm, and 2350–2480 nm. These findings suggest that discerning between the two treatments is attainable, despite the absence of prominently manifested symptoms of drought stress in either cultivar through visual observation. The research outcomes carry significant implications for both precision agriculture and potato breeding. In precision agriculture, precise water monitoring enhances resource allocation, irrigation, yield, and loss prevention. Hyperspectral imaging holds potential to expedite drought-tolerant cultivar selection, thereby streamlining breeding for resilient potatoes adaptable to shifting climates. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

24 pages, 16296 KiB  
Article
Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network
by Aldino Rizaldy, Ahmed Jamal Afifi, Pedram Ghamisi and Richard Gloaguen
Remote Sens. 2024, 16(13), 2336; https://doi.org/10.3390/rs16132336 - 26 Jun 2024
Cited by 5 | Viewed by 3149
Abstract
In this paper, we leverage multimodal data to classify minerals using a multi-stream neural network. In a previous study on the Tinto dataset, which consisted of a 3D hyperspectral point cloud from the open-pit mine Corta Atalaya in Spain, we successfully identified mineral [...] Read more.
In this paper, we leverage multimodal data to classify minerals using a multi-stream neural network. In a previous study on the Tinto dataset, which consisted of a 3D hyperspectral point cloud from the open-pit mine Corta Atalaya in Spain, we successfully identified mineral classes by employing various deep learning models. However, this prior work solely relied on hyperspectral data as input for the deep learning models. In this study, we aim to enhance accuracy by incorporating multimodal data, which includes hyperspectral images, RGB images, and a 3D point cloud. To achieve this, we have adopted a graph-based neural network, known for its efficiency in aggregating local information, based on our past observations where it consistently performed well across different hyperspectral sensors. Subsequently, we constructed a multi-stream neural network tailored to handle multimodality. Additionally, we employed a channel attention module on the hyperspectral stream to fully exploit the spectral information within the hyperspectral data. Through the integration of multimodal data and a multi-stream neural network, we achieved a notable improvement in mineral classification accuracy: 19.2%, 4.4%, and 5.6% on the LWIR, SWIR, and VNIR datasets, respectively. Full article
(This article belongs to the Special Issue Remote Sensing for Geology and Mapping)
Show Figures

Figure 1

20 pages, 9990 KiB  
Technical Note
Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data
by Stefania Amici, Maria Fabrizia Buongiorno, Alessandra Sciarra and Adriano Mazzini
Geosciences 2024, 14(5), 124; https://doi.org/10.3390/geosciences14050124 - 2 May 2024
Cited by 1 | Viewed by 1887
Abstract
Imaging spectroscopy allows us to identify surface materials by analyzing the spectra resulting from the light–material interaction. In this preliminary study, we analyze a pair of hyperspectral cubes acquired by PRISMA (on 20 April 2021) and EO1- Hyperion (on 4 July 2015) over [...] Read more.
Imaging spectroscopy allows us to identify surface materials by analyzing the spectra resulting from the light–material interaction. In this preliminary study, we analyze a pair of hyperspectral cubes acquired by PRISMA (on 20 April 2021) and EO1- Hyperion (on 4 July 2015) over the Indonesian Lusi mud eruption. We show the potential suitability of using the two sensors for characterizing the mineralogical features in demanding “wet and muddy” environments such as Lusi. We use spectral library reflectance spectra like Illite Chlorite from the USGS spectral library, which are known to be associated with Lusi volcanic products, to identify minerals. In addition, we have measured the reflectance spectra and composition of Lusi sampled mud collected in November 2014. Finally, we compare them with reflectance spectra from EO1-Hyperion and PRISMA. The use of hyperspectral sensors at improved SNR, such as PRISMA, has shown the potential to determine the mineral composition of Lusi PRISMA data, which allowed the distinction of areas with different turbidities as well. Artifacts in the VNIR spectral region of the L2 PRISMA reflectance product were found, suggesting that future work needs to take into account an independent atmospheric correction rather than using the L2D PRISMA product. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Geomorphological Hazards)
Show Figures

Figure 1

Back to TopTop