Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Geological Setting
2.2. Hyperspectral Satellite Data
2.2.1. EO1-Hyperion
2.2.2. PRISMA
2.3. Reference Reflectance Spectra
2.3.1. Spectral Library Data
2.3.2. Lusi Mud Spectra
2.4. Chemical Analysis
2.5. Examination of Hyperspectral Sensors Reflectance Spectra
- Visual inspection of the volcanic area as mapped by the two hyperspectral sensors was used to explore spectra in both walkable and not walkable areas;
- Spectra comparison between satellite and library/in situ.
3. Results
3.1. Comparison Lusi Samples vs. Spectral Library
3.2. Comparison Satellite vs. Spectral Library
3.3. Comparison EO1-Hyperion-PRISMA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 55–68. [Google Scholar] [CrossRef]
- Rast, M.; Painter, T.H. Earth Observation Imaging Spectroscopy for Terrestrial Systems: An Overview of Its History, Techniques, and Applications of Its Missions. Surv. Geophys. 2019, 40, 303–331. [Google Scholar] [CrossRef]
- Mustard, J.F.; Sunshine, J.M. Spectral Analysis for Earth Science: Investigations Using Remote Sensing Data (Chapter 5). In Remote Sensing for Earth Sciences: Manual of Remote Sensing, 3rd ed.; Rencz, A.N., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; Volume 3, pp. 251–306. [Google Scholar]
- Thenkabail, P.S.; Teluguntla, P.; Gumma, M.K.; Dheeravath, V. Hyperspectral Remote Sensing for Terrestrial Applications. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; CRC Press: Boca Raton, FL, USA, 2015; pp. 201–233. ISBN 978-1-48-221795-7. [Google Scholar]
- Clark, R.N. Spectroscopy of Rock and Minerals, and Principles of Spectroscopy (Chapter 1). In Remote Sensing for Earth Sciences: Manual of Remote Sensing, 3rd ed.; Rencz, A.N., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; Volume 3, pp. 251–306. [Google Scholar]
- Kruse, F.A.; Boardman, J.W.; Lefkoff, A.B.; Young, J.M.; Kierein-Young, K.S.; Cocks, T.D.; Jenssen, R.; Cocks, P.A. HyMap: An Australian Hyperspectral sensor solving global problems-reults from USA HyMap data acquisition. In Proceedings of the 10th Australasian Remote Sensing and Photogrammetry Conference, Adelaide, Australia, 21–25 August 2000. [Google Scholar]
- Van der Meer, F.D.; Van der Werff, H.M.A.; Van Ruitenbeek, J.A.; Hecker, C.A.; Bakker, W.H.; MarleenNoomen, F.; Mark Van der Meijde, M.; Carranza, E.J.M.; Boudewijn de Smeth, J.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Jia, J.; Wang, Y.; Chen, J.; Guo, R.; Shu, R.; Wang, J. Status and application of advanced airborne hyperspectral imaging technology: A review. Infrared Phys. Technol. 2020, 104, 103115. [Google Scholar] [CrossRef]
- Kruse, F.; Boardman, J.; Huntington, J. Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Ducart, D.F.; Moreira Silva, A.; Labouré Benfica Toledo, C.; Mozer de Assis, L. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Braz. J. Geol. 2016, 46, 331–349. [Google Scholar] [CrossRef]
- Bedini, E.; Chen, J. Application of PRISMA satellite hyperspectral imagery to mineral alteration mapping at Cuprite, Nevada, USA. J. Hyperspectr. Remote Sens. 2020, 10, 87–94. [Google Scholar] [CrossRef]
- Pearlshtien, D.H.; Pignatti, S.; Greisman-Ran, U.; Ben-Dor, E. PRISMA sensor evaluation: A case study of mineral mapping performance over Makhtesh Ramon, Israel. Int. J. Remote Sens. 2021, 42, 5882–5914. [Google Scholar] [CrossRef]
- Van Noorden, R. Mud volcano floods Java. Nature 2006, 60828-1. [Google Scholar] [CrossRef]
- Mazzini, A.; Svensen, H.; Akhmanov, G.G.; Aloisi, G.; Planke, S.; Malthe-Sørenssen, A.; Istadi, B. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet. Sci. Lett. 2007, 261, 375–388. [Google Scholar] [CrossRef]
- Mazzini, A.; Nermoen, A.; Krotkiewski, M.; Podladchikov, Y.; Planke, S.; Svensen, H. Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia. Mar. Pet. Geol. 2009, 26, 1751–1765. [Google Scholar] [CrossRef]
- Mazzini, A.; Etiope, G.; Svensen, H. A new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry. Earth Planet. Sci. Lett. 2012, 317, 305–318. [Google Scholar] [CrossRef]
- Mazzini, A. 10 years of Lusi eruption: Lessons learned from multidisciplinary studies (LUSI LAB). Mar. Pet. Geol. 2018, 90, 1–9. [Google Scholar] [CrossRef]
- Mazzini, A.; Sciarra, A.; Etiope, G.; Sadavarte, P.; Houweling, S.; Pandey, S.; Husein, A. Relevant methane emission to the atmosphere from a geological gas manifestation. Sci. Rep. 2021, 11, 4138. [Google Scholar] [CrossRef] [PubMed]
- Lupi, M.; Mazzini, A.; Sciarra, A.; Collignon, M.; Schmid, D.W.; Husein, A.; Romeo, G.; Obermann, A.; Karyono, K. Enhanced hydrothermal processes at the new-born Lusi eruptive systems, Indonesia. J. Volcanol. Geotherm. Res. 2018, 366, 47–57. [Google Scholar] [CrossRef]
- Sciarra, A.; Mazzini, A.; Inguaggiato, S.; Vita, F.; Lupi, M.; Hadi, S. Radon and carbon gas anomalies along the Watukosek Fault System and Lusi mud eruption, Indonesia. Mar. Pet. Geol. 2018, 90, 77–90. [Google Scholar] [CrossRef]
- Zaputlyaeva, A.; Mazzini, A.; Caracausi, A.; Sciarra, A. Mantle-derived fluids in the East Java sedimentary basin, Indonesia. J. Geophys. Res. Solid Earth 2019, 124, 7962–7977. [Google Scholar] [CrossRef]
- Zaputlyaeva, A.; Mazzini, A.; Blumenberg, M.; Scheeder, G.; Kürschner, W.M.; Kus, J.; Jones, M.T.; Frieling, J. Recent magmatism drives hydrocarbon generation in north-east Java, Indonesia. Sci. Rep. 2020, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- Lupi, M.; De Gori, P.; Valoroso, L.; Baccheschi, P.; Minetto, R.; Mazzini, A. Northward migration of the Javanese volcanic arc along thrust faults. Earth Planet. Sci. Lett. 2021, 577, 117258. [Google Scholar] [CrossRef]
- Mazzini, A.; Sciarra, A.; Lupi, M.; Ascough, P.; Akhmanov, G.; Karyono, K.; Husein, A. Deep fluids migration and submarine emersion of the Kalang Anyar mud volcano (Java, Indonesia): A multidisciplinary study. Mar. Pet. Geol. 2023, 148, 105970. [Google Scholar] [CrossRef]
- Istadi, B.P.; Wibowo, H.T.; Sunardi, E.; Hadi, S.; Sawolo, N. Mud Volcano and Its Evolution. Earth Sci. 2012, 17, 375–434. [Google Scholar] [CrossRef]
- Malvoisin, B.; Mazzini, A.; Miller, S.A. Deep hydrothermal activity driving the Lusi mud eruption. Earth Planet. Sci. Lett. 2018, 497, 42–49. [Google Scholar] [CrossRef]
- Moscariello, A.; Do Couto, D.; Mondino, F.; Booth, J.; Lupi, M.; Mazzini, A. Genesis and evolution of the Watukosek fault system in the Lusi area (East Java). Mar. Pet. Geol. 2018, 90, 125–137. [Google Scholar] [CrossRef]
- Samankassou, E.; Mazzini, A.; Chiaradia, M.; Spezzaferri, S.; Moscariello, A.; Do Couto, D. Origin and age of carbonate clasts from the Lusi eruption, Java, Indonesia. Mar. Pet. Geol. 2017, 90, 138–148. [Google Scholar] [CrossRef]
- Folkman, M.A.; Pearlman, J.; Liao, L.B.; Jarecke, P.J. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration. In Hyperspectral Remote Sensing of the Land and Atmosphere, Proceedings of the Second International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, Sendai, Japan, 9–12 October 2000; SPIE Press: Bellingham, WA, USA, 2001. [Google Scholar]
- Middleton, E.M.; Campbell, P.K.E.; Ong, L.; Landis, D.R.; Zhang, Q.; Neigh, C.S.; Pollack, N.H. Hyperion: The first global orbital spectrometer, earth observing1 (EO-1) satellite (2000–2017). In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 3039–3042. [Google Scholar] [CrossRef]
- USGS. EO1-Hyperion Data. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-Hyperion (accessed on 27 July 2017).
- Quick Atmospheric Correction (QUAC) Guide. Available online: https://www.nv5geospatialsoftware.com/docs/QUAC.html (accessed on 15 December 2020).
- Amici, S.; Piscini, A. Exploring PRISMA Scene for Fire Detection: Case Study of 2019 Bushfires in Ben Halls Gap National Park, NSW, Australia. Remote Sens. 2021, 13, 1410. [Google Scholar] [CrossRef]
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. The Quick Atmospheric Correction (QUAC) Code: Algorithm Description and Recent Upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- ENVI Reference Guide, Version 4.7. 2009. Available online: https://www.nv5geospatialsoftware.com/portals/0/pdfs/enviex/envi_ex_user_guide.pdf (accessed on 1 March 2024).
- Coppo, P.; Brandani, F.; Faraci, M.; Sarti, F.; Dami, M.; Chiarantini, L.; Cosi, M. Leonardo spaceborne infrared payloads for earth observation: SLSTRs for Copernicus sentinel 3 and PRISMA hyperspectral camera for PRISMA satellite. Appl. Opt. 2020, 59, 6888–6901. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote. Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Livo, K.E.; Kruse, F.; Clark, R.; Kokaly, R.; Shanks, W.C. Hydrothermally Altered Rock and Hot-Spring Deposits at Yellowstone National Park—Characterized Using Airborne Visible- and Infrared-Spectroscopy Data. Geology 2007, 1717, 453–507. [Google Scholar]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, N., Ed.; John Wiley & Sons: New York, NY, USA, 1999; pp. 3–52. [Google Scholar]
- Madeira, J.; Bedidi, A.; Pouget, J.; Cervelle, B.; Flay, N. Spectrometric indices (visible) of hematite and goethite contents in lateritic soils. Application to a TM image for soil mapping of Brasilia area. Int. J. Remote Sens. 1997, 18, 2835–2852. [Google Scholar] [CrossRef]
- Matthieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; U.S. Geological Survey Data Series 1035; US Geological Survey, USGS: Reston, VA, USA, 2017; p. 61. [Google Scholar] [CrossRef]
- Hunt, G.R. Near-infrared (1.3–2.4 μm) spectra of alteration minerals—Potential for use in remote sensing. Geophysics 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Di Giuseppe, D.; Bianchini, G.; Faccini, B.; Coltorti, M. Combination of wavelength dispersive X-ray fluorescence analysis and multivariate statistic for alluvial soils classification: A case study from the Padanian Plain (Northern Italy). X-ray Spectrom. 2014, 43, 165–174. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Spectral of altered rocks in the visible and near infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Di Felice, F.; Mazzini, A.; Di Stefano, G.; Romeo, G. Drone high resolution infrared imaging of the Lusi mud eruption. Mar. Pet. Geol. 2018, 90, 38–51. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1005. [Google Scholar] [CrossRef]
- Agustawijaya, D.S.; Karyadi, K.; Krisnayanti, B.D.; Sutanto, S. Rare earth element contents of the Lusi mud: An attempt to identify the environmental origin of the hot mudflow in East Java–Indonesia. Open Geosci. 2017, 9, 689–706. [Google Scholar] [CrossRef]
- Sohrabi, R.; Malvoisin, B.; Mazzini, A.; Miller, S.A. Multi-GPU based 3D numerical modeling of fluid migration and clay dehydration influence on Lusi hydrothermal activity (Java, Indonesia). J. Volcanol. Geotherm. Res. 2021, 419, 107377. [Google Scholar] [CrossRef]
Specification | EO1-Hyperion | PRISMA |
---|---|---|
Swath with | 7.75 km | 30 km |
Spectral channels | VNIR (70 channels, 356–1058 nm), SWIR (172 channels, 852–2577 nm) | VNIR (66 channels, (400–1010 nm) SWIR (174 channels, 920–2505 nm) PAN 1 channel |
Spectral bandwidth | 10 nm | VNIR (9–13 nm) SWIR (9–14.5 nm) |
Signal-to-Noise Ratio (SNR) | 161 (550 nm); 147 (700 nm); 110 (1125 nm); 40 (2125 nm) | >160 (>450 at 650 nm) >100 (>360 at 1550 nm; >240 (PAN) |
Altitude | 705 km | 615 km |
Revisit time | 16 days | 29 days (nadir) and 7 days (off nadir) |
Absolute radiometric accuracy | N/A | Better than 5%, |
Oxide ASCII | Amount MUD from Stream | Amount Illite IMt-1.a | Weight Percent, % | Oxide Html |
---|---|---|---|---|
SiO2 | 52.60 | 52.10 | wt% | SiO2 |
TiO2 | 0.81 | 0.79 | wt% | TiO2 |
Al2O3 | 18.28 | 21.90 | wt% | Al2O3 |
Fe2O3 | 7.71 | 6.44 | wt% | Fe2O3 |
MnO | 0.14 | Less than 0.02 | wt% | MnO |
MgO | 2.82 | 2.39 | wt% | MgO |
CaO | 3.73 | 1.07 | wt% | CaO |
Na2O | 3.65 | 0.30 | wt% | Na2O |
K2O | 1.50 | 7.84 | wt% | K2O |
P2O5 | 0.11 | 0.10 | wt% | P2O5 |
LOI | 8.64 | 6.91 | wt% | LOI |
Total | 99.99 | 99.56 | wt% | Total |
Oxide ASCII | Amount MUD Dry | Amount Illite GDS4 Marblehead | Weight Percent, % | Oxide Html |
---|---|---|---|---|
SiO2 | 53.71 | 51.62 | wt% | SiO2 |
TiO2 | 0.81 | 0.92 | wt% | TiO2 |
Al2O3 | 18.60 | 23.96 | wt% | Al2O3 |
Fe2O3 | 7.95 | 1.63 | wt% | Fe2O3 |
FeO | - | 0.29 | FeO | |
MnO | 0.13 | 0.01 | wt% | MnO |
MgO | 2.91 | 3.83 | wt% | MgO |
CaO | 3.30 | 0.74 | wt% | CaO |
Na2O | 3.07 | 0.47 | wt% | Na2O |
K2O | 1.57 | 8.12 | wt% | K2O |
P2O5 | 0.12 | 0.09 | wt% | P2O5 |
H2O+ | - | 5.00 | wt% | H2O+ |
H2O− | 2.9 | wt% | H2O− | |
LOI | 7.83 | 6.91 | wt% | LOI |
Total | 100.00 | 99.41 | wt% | Total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amici, S.; Buongiorno, M.F.; Sciarra, A.; Mazzini, A. Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data. Geosciences 2024, 14, 124. https://doi.org/10.3390/geosciences14050124
Amici S, Buongiorno MF, Sciarra A, Mazzini A. Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data. Geosciences. 2024; 14(5):124. https://doi.org/10.3390/geosciences14050124
Chicago/Turabian StyleAmici, Stefania, Maria Fabrizia Buongiorno, Alessandra Sciarra, and Adriano Mazzini. 2024. "Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data" Geosciences 14, no. 5: 124. https://doi.org/10.3390/geosciences14050124
APA StyleAmici, S., Buongiorno, M. F., Sciarra, A., & Mazzini, A. (2024). Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data. Geosciences, 14(5), 124. https://doi.org/10.3390/geosciences14050124