Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (463)

Search Parameters:
Keywords = Urban Energy Balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5311 KiB  
Article
Projections of Urban Heat Island Effects Under Future Climate Scenarios: A Case Study in Zhengzhou, China
by Xueli Ni, Yujie Chang, Tianqi Bai, Pengfei Liu, Hongquan Song, Feng Wang and Man Jin
Remote Sens. 2025, 17(15), 2660; https://doi.org/10.3390/rs17152660 - 1 Aug 2025
Viewed by 388
Abstract
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate [...] Read more.
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate forcing (SSP245) and high forcing (SSP585)—focusing on Zhengzhou, a rapidly urbanizing city in central China. High-resolution simulations captured fine-scale intra-urban temperature patterns and analyze the spatial and seasonal variations in UHI intensity in 2030 and 2060. The results demonstrated significant seasonal variations in UHI effects in Zhengzhou for both 2030 and 2060 under SSP245 and SSP585 scenarios, with the most pronounced warming in summer. Notably, under the SSP245 scenario, elevated autumn temperatures in suburban areas reduced the urban–rural temperature gradient, while intensified rural cooling during winter enhanced the UHI effect. These findings underscore the importance of integrating high-resolution climate modeling into urban planning and developing targeted adaptation strategies based on future UHI patterns to address climate challenges. Full article
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 235
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 295
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 549
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

24 pages, 3365 KiB  
Article
Energy Demand Forecasting Scenarios for Buildings Using Six AI Models
by Khaled M. Salem, Francisco J. Rey-Martínez, A. O. Elgharib and Javier M. Rey-Hernández
Appl. Sci. 2025, 15(15), 8238; https://doi.org/10.3390/app15158238 - 24 Jul 2025
Viewed by 300
Abstract
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural [...] Read more.
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural Networks, Random Forest, XGBoost, Radial Basis Function Network, Autoencoder, and Decision Trees. The primary aim is to identify the most effective model for predicting energy consumption based on historical data, contributing to the relationship between energy systems and urban well-being. The study emphasizes challenges in energy use and advocates for sustainable management practices. By forecasting energy demand over the next three years using linear regression, it provides actionable insights for energy providers, enhancing resilience in urban environments impacted by climate change. The findings deepen our understanding of energy dynamics across various building types and promote a sustainable energy future. Stakeholders will receive targeted recommendations for aligning energy production with consumption trends while meeting environmental responsibilities. Model performance is rigorously evaluated using metrics like Squared Mean Root Percentage Error (RMSPE) and Coefficient of Determination (R2), ensuring robust analysis. Training times for models in the LUCIA building ranged from 2 to 19 s, with the Decision Tree model showing the shortest times, highlighting the need to balance computational efficiency with model performance. Full article
Show Figures

Figure 1

24 pages, 13362 KiB  
Article
Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project
by Michele Grimaldi and Alessandra Marra
Sustainability 2025, 17(15), 6744; https://doi.org/10.3390/su17156744 - 24 Jul 2025
Viewed by 237
Abstract
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development [...] Read more.
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development is still limited in the Member States. To this end, this paper proposes a methodology to identify optimal spatial configurations of RECs, based on proximity criteria and maximization of energy self-sufficiency. This result is achieved through the mapping of the demand, expressive of the energy consumption of residential buildings; the suitable areas for installing photovoltaic panels on the roofs of existing buildings; the supply; the supply–demand balance, from which it is possible to identify Positive Energy Districts (PEDs) and Negative Energy Districts (NEDs). Through an iterative process, the optimal configuration is then sought, aggregating only PEDs and NEDs that meet the chosen criteria. This method is applied to the case study of the Avellino Province in the Campania Region (Italy). The maps obtained allow local authorities to inform citizens about the areas where it is convenient to aggregate with their neighbors in a REC to have benefits in terms of energy self-sufficiency, savings on bills or incentives at the local level, including those deriving from urban plans. The latter can encourage private initiative in order to speed up the RECs’ deployment. The presented model is being implemented in the framework of an ongoing research and development project, titled Renewable Energy Communities Monitoring, Optimization, and Planning (RECMOP). Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 516
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

35 pages, 4030 KiB  
Article
An Exergy-Enhanced Improved IGDT-Based Optimal Scheduling Model for Electricity–Hydrogen Urban Integrated Energy Systems
by Min Xie, Lei Qing, Jia-Nan Ye and Yan-Xuan Lu
Entropy 2025, 27(7), 748; https://doi.org/10.3390/e27070748 - 13 Jul 2025
Viewed by 232
Abstract
Urban integrated energy systems (UIESs) play a critical role in facilitating low-carbon and high-efficiency energy transitions. However, existing scheduling strategies predominantly focus on energy quantity and cost, often neglecting the heterogeneity of energy quality across electricity, heat, gas, and hydrogen. This paper presents [...] Read more.
Urban integrated energy systems (UIESs) play a critical role in facilitating low-carbon and high-efficiency energy transitions. However, existing scheduling strategies predominantly focus on energy quantity and cost, often neglecting the heterogeneity of energy quality across electricity, heat, gas, and hydrogen. This paper presents an exergy-enhanced stochastic optimization framework for the optimal scheduling of electricity–hydrogen urban integrated energy systems (EHUIESs) under multiple uncertainties. By incorporating exergy efficiency evaluation into a Stochastic Optimization–Improved Information Gap Decision Theory (SOI-IGDT) framework, the model dynamically balances economic cost with thermodynamic performance. A penalty-based iterative mechanism is introduced to track exergy deviations and guide the system toward higher energy quality. The proposed approach accounts for uncertainties in renewable output, load variation, and Hydrogen-enriched compressed natural gas (HCNG) combustion. Case studies based on a 186-bus UIES coupled with a 20-node HCNG network show that the method improves exergy efficiency by up to 2.18% while maintaining cost robustness across varying confidence levels. These results underscore the significance of integrating exergy into real-time robust optimization for resilient and high-quality energy scheduling. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

31 pages, 3620 KiB  
Review
Expansion of Lifestyle Blocks in Peri-Urban New Zealand: A Review of the Implications for Environmental Management and Landscape Design
by Han Xie, Diane Pearson, Sarah J. McLaren and David Horne
Land 2025, 14(7), 1447; https://doi.org/10.3390/land14071447 - 11 Jul 2025
Viewed by 389
Abstract
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental [...] Read more.
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental performance remains understudied. This is the case even though their proliferation is leading to an irreversible loss of highly productive soils and accelerating land fragmentation in peri-urban areas. Through undertaking a systematic literature review of relevant studies on LBs in New Zealand and comparable international contexts, this paper aims to quantify existing knowledge and suggest future research needs and management strategies. It focuses on the environmental implications of LB activities in relation to water consumption, food production, energy use, and biodiversity protection. The results indicate that variation in land use practices and environmental awareness among LB owners leads to differing environmental outcomes. LBs offer opportunities for biodiversity conservation and small-scale food production through sustainable practices, while also presenting environmental challenges related to resource consumption, greenhouse gas (GHG) emissions, and loss of productive land for commercial agriculture. Targeted landscape design could help mitigate the environmental pressures associated with these properties while enhancing their potential to deliver ecological and sustainability benefits. The review highlights the need for further evaluation of the environmental sustainability of LBs and emphasises the importance of property design and adaptable planning policies and strategies that balance environmental sustainability, land productivity, and lifestyle owners’ aspirations. It underscores the potential for LBs to contribute positively to environmental management while addressing associated challenges, providing valuable insights for ecological conservation and sustainable land use planning. Full article
Show Figures

Figure 1

27 pages, 1599 KiB  
Article
Optimization of Combined Urban Rail Transit Operation Modes Based on Intelligent Algorithms Under Spatiotemporal Passenger Imbalance
by Weisong Han, Zhihan Shi, Xiaodong Lv and Guangming Zhang
Sustainability 2025, 17(13), 6178; https://doi.org/10.3390/su17136178 - 5 Jul 2025
Viewed by 437
Abstract
With increasing attention to sustainability and energy efficiency in transportation systems, advanced intelligent algorithms provide promising solutions for optimizing urban rail transit operations. This study addresses the challenge of optimizing train operation plans for urban rail transit systems characterized by spatiotemporal passenger flow [...] Read more.
With increasing attention to sustainability and energy efficiency in transportation systems, advanced intelligent algorithms provide promising solutions for optimizing urban rail transit operations. This study addresses the challenge of optimizing train operation plans for urban rail transit systems characterized by spatiotemporal passenger flow imbalance. By exploring a combined short-turning and unpaired train operation mode, a three-objective optimization model was established, aiming to minimize operational costs, reduce passenger waiting times, and enhance load balancing. To effectively solve this complex problem, an Improved GOOSE (IGOOSE) algorithm incorporating elite opposition-based learning, probabilistic exploration based on elite solutions, and golden-sine mutation strategies were developed, significantly enhancing global search capability and solution robustness. A case study based on real operational data adjusted for confidentiality was conducted, and comparative analyses with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) demonstrated the superiority of IGOOSE. Furthermore, an ablation study validated the effectiveness of each enhancement strategy within the IGOOSE algorithm. The optimized operation planning model reduced passenger waiting times by approximately 12.72%, improved load balancing by approximately 39.30%, and decreased the overall optimization objective by approximately 10.25%, highlighting its effectiveness. These findings provide valuable insights for urban rail transit operation management and indicate directions for future research, underscoring the significant potential for energy savings and emission reductions toward sustainable urban development. Full article
Show Figures

Figure 1

22 pages, 3682 KiB  
Article
Prediction of Urban Construction Land Carbon Effects (UCLCE) Using BP Neural Network Model: A Case Study of Changxing, Zhejiang Province, China
by Qinghua Liao, Xiaoping Zhang, Zixuan Cui and Xunxi Yin
Buildings 2025, 15(13), 2312; https://doi.org/10.3390/buildings15132312 - 1 Jul 2025
Viewed by 361
Abstract
Against the backdrop of the intensifying global climate crisis, urban construction land (UCL), as a major source of carbon emissions, faces the severe challenge of balancing emissions reduction and development in its low-carbon transformation. This study is dedicated to filling the theoretical and [...] Read more.
Against the backdrop of the intensifying global climate crisis, urban construction land (UCL), as a major source of carbon emissions, faces the severe challenge of balancing emissions reduction and development in its low-carbon transformation. This study is dedicated to filling the theoretical and methodological gap in the refined assessment of urban construction land carbon effects (UCLCE) spatial heterogeneity among regions, and proposes and validates an innovative block-scale prediction framework. To achieve this goal, this study takes the central urban area of Changxing, Zhejiang Province, as the study area and establishes a BP neural network model for predicting UCLCE based on multi-source data such as building energy consumption and built environment elements (BEF). The results demonstrate that the BP neural network model effectively predicts the different types of UCLCE, with an average error rate of 30.10%. (1) The total effect and intensity effect exhibit different trends in the study area, and a carbon effect table for different types of UCL is established. (2) The spatial distribution characteristics of UCLCE reveal a distinct reverse-L pattern (“┙”-shaped layout) with positive spatial correlation (Moran’s I = 0.11, p < 0.001). (3) The model’s core practical value lies in enabling forward-looking assessment of carbon effects in urban planning schemes and precise quantification of emissions reduction benefits. Optimization trials on representative blocks achieve up to 25.45% carbon reduction. This study provides theoretical foundations for understanding UCLCE spatial heterogeneity while delivering scientifically grounded tools for diagnosing built environment issues and advancing low-carbon optimization in urban renewal contexts. These contributions carry significant theoretical and practical implications. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 6030 KiB  
Article
Balancing Solar Energy, Thermal Comfort, and Emissions: A Data-Driven Urban Morphology Optimization Approach
by Chenhang Bian, Panpan Hu, Chun Yin Li, Chi Chung Lee and Xi Chen
Energies 2025, 18(13), 3421; https://doi.org/10.3390/en18133421 - 29 Jun 2025
Viewed by 449
Abstract
Urban morphology critically shapes environmental performance, yet few studies integrate multiple sustainability targets within a unified modeling framework for its design optimization. This study proposes a data-driven, multi-scale approach that combines parametric simulation, artificial neural network-based multi-task learning (MTL), SHAP interpretability, and NSGA-II [...] Read more.
Urban morphology critically shapes environmental performance, yet few studies integrate multiple sustainability targets within a unified modeling framework for its design optimization. This study proposes a data-driven, multi-scale approach that combines parametric simulation, artificial neural network-based multi-task learning (MTL), SHAP interpretability, and NSGA-II optimization to assess and optimize urban form across 18 districts in Hong Kong. Four key sustainability targets—photovoltaic generation (PVG), accumulated urban heat island intensity (AUHII), indoor overheating degree (IOD), and carbon emission intensity (CEI)—were jointly predicted using an artificial neural network-based MTL model. The prediction results outperform single-task models, achieving R2 values of 0.710 (PVG), 0.559 (AUHII), 0.819 (IOD), and 0.405 (CEI), respectively. SHAP analysis identifies building height, density, and orientation as the most important design factors, revealing trade-offs between solar access, thermal stress, and emissions. Urban form design strategies are informed by the multi-objective optimization, with the optimal solution featuring a building height of 72.11 m, building centroid distance of 109.92 m, and east-facing orientation (183°). The optimal configuration yields the highest PVG (55.26 kWh/m2), lowest CEI (359.76 kg/m2/y), and relatively acceptable AUHII (294.13 °C·y) and IOD (92.74 °C·h). This study offers a balanced path toward carbon reduction, thermal resilience, and renewable energy utilization in compact cities for either new town planning or existing district renovation. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

33 pages, 5785 KiB  
Article
Spatiotemporal Evolution and Driving Factors of Coupling Coordination Between Carbon Emission Efficiency and Carbon Balance in the Yellow River Basin
by Silu Wang and Shunyi Li
Sustainability 2025, 17(13), 5975; https://doi.org/10.3390/su17135975 - 29 Jun 2025
Viewed by 410
Abstract
This study investigates the coupling coordination between carbon emission efficiency (CEE) and carbon balance (CB) in the Yellow River Basin (YRB), aiming to support high-quality regional development and the realization of China’s “dual carbon” goals. Based on panel data from 74 cities in [...] Read more.
This study investigates the coupling coordination between carbon emission efficiency (CEE) and carbon balance (CB) in the Yellow River Basin (YRB), aiming to support high-quality regional development and the realization of China’s “dual carbon” goals. Based on panel data from 74 cities in the YRB between 2006 and 2022, the Super-SBM model, Ecological Support Coefficient (ESC), and coupling coordination degree (CCD) model are applied to evaluate the synergy between CEE and CB. Spatiotemporal patterns and driving mechanisms are analyzed using kernel density estimation, Moran’s I index, the Dagum Gini coefficient, Markov chains, and the XGBoost algorithm. The results reveal a generally low and declining level of CCD, with the upstream and midstream regions performing better than the downstream. Spatial clustering is evident, characterized by significant positive autocorrelation and high-high or low-low clusters. Although regional disparities in CCD have narrowed slightly over time, interregional differences remain the primary source of variation. The likelihood of leapfrog development in CCD is limited, and high-CCD regions exhibit weak spillover effects. Forest coverage is identified as the most critical driver, significantly promoting CCD. Conversely, population density, urbanization, energy structure, and energy intensity negatively affect coordination. Economic development demonstrates a U-shaped relationship with CCD. Moreover, nonlinear interactions among forest coverage, population density, energy structure, and industrial enterprise scale further intensify the complexity of CCD. These findings provide important implications for enhancing regional carbon governance and achieving balanced ecological-economic development in the YRB. Full article
Show Figures

Figure 1

24 pages, 5026 KiB  
Article
Quantifying the Thermal and Energy Impacts of Urban Morphology Using Multi-Source Data: A Multi-Scale Study in Coastal High-Density Contexts
by Chenhang Bian, Chi Chung Lee, Xi Chen, Chun Yin Li and Panpan Hu
Buildings 2025, 15(13), 2266; https://doi.org/10.3390/buildings15132266 - 27 Jun 2025
Viewed by 313
Abstract
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate [...] Read more.
Urban thermal environments, characterized by the interplay between indoor and outdoor conditions, pose growing challenges in high-density coastal cities. This study proposes a multi-scale, integrative framework that couples a satellite-derived land surface temperature (LST) analysis with microscale building performance simulations to holistically evaluate the high-density urban thermal environment in subtropical climates. The results reveal that compact, high-density morphologies reduce outdoor heat stress (UTCI) through self-shading but lead to significantly higher cooling loads, energy use intensity (EUI), and poorer daylight autonomy (DA) due to restricted ventilation and limited sky exposure. In contrast, more open, vegetation-rich forms improve ventilation and reduce indoor energy demand, yet exhibit higher UTCI values in exposed areas and increased lighting energy use in poorly oriented spaces. This study also proposes actionable design strategies, including optimal building spacing (≥15 m), façade orientation (30–60° offset from west), SVF regulation (0.4–0.6), and the integration of vertical greenery to balance solar access, ventilation, and shading. These findings offer evidence-based guidance for embedding morphological performance metrics into planning policies and building design codes. This work advances the integration of outdoor and indoor performance evaluation and supports climate-adaptive urban form design through quantitative, policy-relevant insights. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 5063 KiB  
Review
Recycled Aggregates for Sustainable Construction: Strengthening Strategies and Emerging Frontiers
by Ying Peng, Shenruowen Cai, Yutao Huang and Xue-Fei Chen
Materials 2025, 18(13), 3013; https://doi.org/10.3390/ma18133013 - 25 Jun 2025
Viewed by 449
Abstract
The transformative trajectory of urban development in the contemporary era has engendered a substantial escalation in construction waste generation, particularly in China, where it constitutes approximately 40% of the total solid waste stream. Traditional landfill disposal methodologies pose formidable ecological challenges, encompassing soil [...] Read more.
The transformative trajectory of urban development in the contemporary era has engendered a substantial escalation in construction waste generation, particularly in China, where it constitutes approximately 40% of the total solid waste stream. Traditional landfill disposal methodologies pose formidable ecological challenges, encompassing soil contamination, groundwater pollution, and significant greenhouse gas emissions. Furthermore, the unsustainable exploitation of natural sandstone resources undermines energy security and disrupts ecological balance. In response to these pressing issues, an array of scholars and researchers have embarked on an exploratory endeavor to devise innovative strategies for the valorization of construction waste. Among these strategies, the conversion of waste into recycled aggregates has emerged as a particularly promising pathway. However, the practical deployment of recycled aggregates within the construction industry is impeded by their inherent physico-mechanical properties, such as heightened water absorption capacity and diminished compressive strength. To surmount these obstacles, a multitude of enhancement techniques, spanning physical, chemical, and thermal treatments, have been devised and refined. This paper undertakes a comprehensive examination of the historical evolution, recycling methodologies, and enhancement strategies pertinent to recycled aggregates. It critically evaluates the efficacy, cost–benefit analyses, and environmental ramifications of these techniques, while elucidating the microstructural and physicochemical disparities between recycled and natural aggregates. Furthermore, it identifies pivotal research gaps and prospective avenues for future inquiry, underscoring the imperative for collaborative endeavors aimed at developing cost-effective and environmentally benign enhancement techniques that adhere to the stringent standards of contemporary construction practices, thereby addressing the intertwined challenges of waste management and resource scarcity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop