Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Ultimaker

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 12112 KiB  
Article
Protocol for Converting DICOM Files to STL Models Using 3D Slicer and Ultimaker Cura
by Malena Pérez-Sevilla, Fernando Rivas-Navazo, Pedro Latorre-Carmona and Darío Fernández-Zoppino
J. Pers. Med. 2025, 15(3), 118; https://doi.org/10.3390/jpm15030118 - 19 Mar 2025
Viewed by 1643
Abstract
Background/Objectives: 3D printing has become an invaluable tool in medicine, enabling the creation of precise anatomical models for surgical planning and medical education. This study presents a comprehensive protocol for converting DICOM files into three-dimensional models and their subsequent transformation into GCODE [...] Read more.
Background/Objectives: 3D printing has become an invaluable tool in medicine, enabling the creation of precise anatomical models for surgical planning and medical education. This study presents a comprehensive protocol for converting DICOM files into three-dimensional models and their subsequent transformation into GCODE files ready for 3D printing. Methods: We employed the open-source software “3D Slicer” for the initial conversion of the DICOM files, capitalising on its robust capabilities in segmentation and medical image processing. An optimised workflow was developed for the precise and efficient conversion of medical images into STL models, ensuring high fidelity in anatomical structures. The protocol was validated through three case studies, achieving elevated structural fidelity based on deviation analysis between the STL models and the original DICOM data. Furthermore, the segmentation process preserved morphological accuracy within a narrow deviation range, ensuring the reliable replication of anatomical features for medical applications. Our protocol provides an effective and accessible approach to generating 3D anatomical models with enhanced accuracy and reproducibility. In later stages, we utilised the “Ultimaker Cura” software to generate customised GCODE files tailored to the specifications of the 3D printer. Results: Our protocol offers an effective, accessible, and more accurate solution for creating 3D anatomical models from DICOM images. Furthermore, the versatility of this approach allows for its adaptation to various 3D printers and materials, expanding its utility in the medical and scientific community. Conclusions: This study presents a robust and reproducible approach for converting medical data into physical three-dimensional objects, paving the way for a wide range of applications in personalised medicine and advanced clinical practice. The selection of sample datasets from the 3D Slicer repository ensures standardisation and reproducibility, allowing for independent validation of the proposed workflow without ethical or logistical constraints related to patient data access. However, we acknowledge that future work could expand upon this by incorporating real patient datasets and benchmarking the protocol against alternative segmentation methods and software packages to further assess performance across different clinical scenarios. Essentially, this protocol can be particularly characterised by its commitment to open-source software and low-cost solutions, making advanced 3D modelling accessible to a wider audience. By leveraging open-access tools such as “3D Slicer” and “Ultimaker Cura”, we democratise the creation of anatomical models, ensuring that institutions with limited resources can also benefit from this technology, promoting innovation and inclusivity in medical sciences and education. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

18 pages, 3875 KiB  
Article
Processing Parameter Setting Procedure for a Commercial Bowden Tube FDM Printer
by Pablo Sebastián Aguirre, Fernando Veiga, Mikel Irijalba, Eneko Villabona and Pedro J. Rivero
J. Manuf. Mater. Process. 2024, 8(6), 236; https://doi.org/10.3390/jmmp8060236 - 22 Oct 2024
Cited by 2 | Viewed by 1400
Abstract
Additive manufacturing (AM), especially fused deposition modeling (FDM), has experienced great development and diffusion during recent years. However, it still faces some limitations, such as poor dimensional accuracy or surface defects, the improvement of which motivates the elaboration of the present work. Contrary [...] Read more.
Additive manufacturing (AM), especially fused deposition modeling (FDM), has experienced great development and diffusion during recent years. However, it still faces some limitations, such as poor dimensional accuracy or surface defects, the improvement of which motivates the elaboration of the present work. Contrary to an approach based on the optimization of parameters to obtain a single invariant value, the main objective of this study is the design of a procedure that anyone can follow to generate a printing profile for their specific FDM printer, environment, and imposed constraints through the adjustment of some selected parameters in the popular slicing software UltiMaker Cura. The resulting procedure consists of four ad hoc designed specimens and their analysis algorithms, all connected by a general workflow that ensures the correct execution of the procedure. Its applicability and effectiveness have been proved in a case study where a printing profile was developed for the real manufacturing project of a custom 3D object in polylactic acid (PLA), obtaining an improvement of 50% in tolerances and proving that the proposed parameter setting procedure represents a reduction in the setting time and material consumption versus conventional trial and error methodologies. Full article
Show Figures

Figure 1

15 pages, 5973 KiB  
Article
Investigating Digital Forensic Artifacts Generated from 3D Printing Slicing Software: Windows and Linux Analysis
by Laura Garland, Ashar Neyaz, Cihan Varol and Narasimha K. Shashidhar
Electronics 2024, 13(14), 2864; https://doi.org/10.3390/electronics13142864 - 20 Jul 2024
Cited by 1 | Viewed by 1542
Abstract
Although Three-dimensional (3D) printers have legitimate applications in various fields, they also present opportunities for misuse by criminals who can infringe upon intellectual property rights, manufacture counterfeit medical products, or create unregulated and untraceable firearms. The rise of affordable 3D printers for general [...] Read more.
Although Three-dimensional (3D) printers have legitimate applications in various fields, they also present opportunities for misuse by criminals who can infringe upon intellectual property rights, manufacture counterfeit medical products, or create unregulated and untraceable firearms. The rise of affordable 3D printers for general consumers has exacerbated these concerns, making it increasingly vital for digital forensics investigators to identify and analyze vital artifacts associated with 3D printing. In our study, we focus on the identification and analysis of digital forensic artifacts related to 3D printing stored in both Linux and Windows operating systems. We create five distinct scenarios and gather data, including random-access memory (RAM), configuration data, generated files, residual data, and network data, to identify when 3D printing occurs on a device. Furthermore, we utilize the 3D printing slicing software Ultimaker Cura version 5.7 and RepetierHost version 2.3.2 to complete our experiments. Additionally, we anticipate that criminals commonly engage in anti-forensics and recover valuable evidence after uninstalling the software and deleting all other evidence. Our analysis reveals that each data type we collect provides vital evidence relating to 3D printing forensics. Full article
Show Figures

Figure 1

15 pages, 5069 KiB  
Article
Clinical Workflow Algorithm for Preoperative Planning, Reduction and Stabilization of Complex Acetabular Fractures with the Support of Three-Dimensional Technologies
by Arpad Solyom, Flaviu Moldovan, Liviu Moldovan, Gabriela Strnad and Pal Fodor
J. Clin. Med. 2024, 13(13), 3891; https://doi.org/10.3390/jcm13133891 - 2 Jul 2024
Cited by 7 | Viewed by 1473
Abstract
Background: Treatment of pelvic injuries poses serious problems for surgeons due to the difficulties of the associated injuries. The objective of this research is to create a clinical workflow that integrates three-dimensional technologies in preoperative planning and performing surgery for the reduction and [...] Read more.
Background: Treatment of pelvic injuries poses serious problems for surgeons due to the difficulties of the associated injuries. The objective of this research is to create a clinical workflow that integrates three-dimensional technologies in preoperative planning and performing surgery for the reduction and stabilization of associated acetabular fractures. Methods: The research methodology consisted of integrating the stages of virtual preoperative planning, physical preoperative planning, and performing the surgical intervention in a newly developed clinical workflow. The proposed model was validated in practice in a pilot surgical intervention. Results: On a complex pelvic injury case of a patient with an associated both-column acetabular fracture (AO/OTA-62C1g), we presented the results obtained in the six stages of the clinical workflow: acquisition of three-dimensional (3D) images, creation of the virtual model of the pelvis, creation of the physical model of the pelvis, preoperative physical simulation, orthopedic surgery, and imaging validation of the intervention. The life-size 3D model was fabricated based on computed tomography imagistics. To create the virtual model, the images were imported into Invesalius (version 3.1.1, CTI, Brazil), after which they were processed with MeshLab (version 2023.12, ISTI—CNR, Italy) and FreeCAD (version 0.21.2, LGPL, FSF, Boston, MA, USA). The physical model was printed in 21 h and 37 min using Ultimaker Cura software (version 5.7.2), on an Ultimaker 2+ printing machine through a Fused Deposition Modeling process. Using the physical model, osteosynthesis plate dimensions and fixation screw trajectories were tested to reduce the risk of neurovascular injury, after which they were adjusted and resterilized, which enhanced preoperative decision-making. Conclusions: The life-size physical model improved anatomical appreciation and preoperative planning, enabling accurate surgical simulation. The tools created demonstrated remarkable accuracy and cost-effectiveness that support the advancement and efficiency of clinical practice. Full article
(This article belongs to the Special Issue Clinical Perspectives in Trauma and Orthopedic Surgery)
Show Figures

Figure 1

17 pages, 6006 KiB  
Article
Thermo-Mechanical Behavior and Strain Rate Sensitivity of 3D-Printed Polylactic Acid (PLA) below Glass Transition Temperature (Tg)
by Vukašin Slavković, Blaž Hanželič, Vasja Plesec, Strahinja Milenković and Gregor Harih
Polymers 2024, 16(11), 1526; https://doi.org/10.3390/polym16111526 - 29 May 2024
Cited by 9 | Viewed by 3794
Abstract
This study investigated the thermomechanical behavior of 4D-printed polylactic acid (PLA), focusing on its response to varying temperatures and strain rates in a wide range below the glass transition temperature (Tg). The material was characterized using tension, compression, and dynamic mechanical [...] Read more.
This study investigated the thermomechanical behavior of 4D-printed polylactic acid (PLA), focusing on its response to varying temperatures and strain rates in a wide range below the glass transition temperature (Tg). The material was characterized using tension, compression, and dynamic mechanical thermal analysis (DMTA), confirming PLA’s strong dependency on strain rate and temperature. The glass transition temperature of 4D-printed PLA was determined to be 65 °C using a thermal analysis (DMTA). The elastic modulus changed from 1045.7 MPa in the glassy phase to 1.2 MPa in the rubber phase, showing the great shape memory potential of 4D-printed PLA. The filament tension tests revealed that the material’s yield stress strongly depended on the strain rate at room temperature, with values ranging from 56 MPa to 43 MPA as the strain rate decreased. Using a commercial FDM Ultimaker printer, cylindrical compression samples were 3D-printed and then characterized under thermo-mechanical conditions. Thermo-mechanical compression tests were conducted at strain rates ranging from 0.0001 s−1 to 0.1 s−1 and at temperatures below the glass transition temperature (Tg) at 25, 37, and 50 °C. The conducted experimental tests showed that the material had distinct yield stress, strain softening, and strain hardening at very large deformations. Clear strain rate dependence was observed, particularly at quasi-static rates, with the temperature and strain rate significantly influencing PLA’s mechanical properties, including yield stress. Yield stress values varied from 110 MPa at room temperature with a strain rate of 0.1 s−1 to 42 MPa at 50 °C with a strain rate of 0.0001 s−1. This study also included thermo-mechanical adiabatic tests, which revealed that higher strain rates of 0.01 s−1 and 0.1 s−1 led to self-heating due to non-dissipated generated heat. This internal heating caused additional softening at higher strain rates and lower stress values. Thermal imaging revealed temperature increases of 15 °C and 18 °C for strain rates of 0.01 s−1 and 0.1 s−1, respectively. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing)
Show Figures

Figure 1

28 pages, 2185 KiB  
Article
A Systematic Method for Assessing the Machine Performance of Material Extrusion Printers
by Laurent Spitaels, Endika Nieto Fuentes, Edouard Rivière-Lorphèvre, Pedro-José Arrazola and François Ducobu
J. Manuf. Mater. Process. 2024, 8(1), 36; https://doi.org/10.3390/jmmp8010036 - 9 Feb 2024
Cited by 6 | Viewed by 2404
Abstract
The performance assessment of additive manufacturing (AM) printers is still a challenge since no dedicated standard exists. This paper proposes a systematic method for evaluating the dimensional and geometrical performance of such machines using the concept of machine performance. The method was applied [...] Read more.
The performance assessment of additive manufacturing (AM) printers is still a challenge since no dedicated standard exists. This paper proposes a systematic method for evaluating the dimensional and geometrical performance of such machines using the concept of machine performance. The method was applied to an Ultimaker 2+ printer producing parts with polylactic acid (PLA). The X and Y axes of the printer were the most performant and led to narrower potential and real tolerance intervals than the Z axis. The proposed systematic framework can be used to assess the performance of any material extrusion printer and its achievable tolerance intervals. Full article
Show Figures

Figure 1

14 pages, 3321 KiB  
Article
EcoPrintAnalyzer: Assessing Sustainability in Material Extrusion Additive Manufacturing for Informed Decision-Making
by Beatrice Aruanno
Sustainability 2024, 16(2), 615; https://doi.org/10.3390/su16020615 - 10 Jan 2024
Cited by 2 | Viewed by 1732
Abstract
Sustainability is fundamental in the field of additive manufacturing (AM) for improving eco-consciousness and driving evolution toward environmentally responsible production methods. Compared to traditional manufacturing processes, AM technologies can be more resource-efficient and offer innovative solutions for creating eco-friendly processes and products. Nevertheless, [...] Read more.
Sustainability is fundamental in the field of additive manufacturing (AM) for improving eco-consciousness and driving evolution toward environmentally responsible production methods. Compared to traditional manufacturing processes, AM technologies can be more resource-efficient and offer innovative solutions for creating eco-friendly processes and products. Nevertheless, there is significant potential for improvement in additive manufacturing sustainability. The key factors driving this improvement include design optimization and increased awareness. Designers and engineers can create designs that optimize material efficiency and reduce support structures. Raising awareness and educating stakeholders about the environmental benefits of AM can promote responsible choices throughout the industrial process. The development of a tool to assess the environmental impact of AM processes could be a significant contribution to advancing sustainability in the AM field. The EcoPrintAnalyzer, introduced as a complementary plugin for UltiMaker Cura, offers data on the equivalent carbon dioxide footprint and energy consumption in material extrusion additive manufacturing. This tool facilitates informed decision-making regarding materials, designs, and settings, enabling users to optimize their AM processes for reduced waste and enhanced energy efficiency. Beyond aiding decision-making, the EcoPrintAnalyzer fosters environmental consciousness and encourages the adoption of sustainable practices within the AM ecosystem. The efficacy of the tool is demonstrated through the 3DBenchy model case study, showcasing its intuitive interface and seamless integration within the AM process workflow for immediate and comparative environmental impact assessments across different process configurations. Full article
Show Figures

Graphical abstract

17 pages, 2398 KiB  
Article
Investigation and Prediction of Tensile, Flexural, and Compressive Properties of Tough PLA Material Using Definitive Screening Design
by Abdulsalam A. Al-Tamimi, Adi Pandžić and Edin Kadrić
Polymers 2023, 15(20), 4169; https://doi.org/10.3390/polym15204169 - 20 Oct 2023
Cited by 12 | Viewed by 2635
Abstract
The material extrusion fused deposition modeling (FDM) technique has become a widely used technique that enables the production of complex parts for various applications. To overcome limitations of PLA material such as low impact toughness, commercially available materials such as UltiMaker Tough PLA [...] Read more.
The material extrusion fused deposition modeling (FDM) technique has become a widely used technique that enables the production of complex parts for various applications. To overcome limitations of PLA material such as low impact toughness, commercially available materials such as UltiMaker Tough PLA were produced to improve the parent PLA material that can be widely applied in many engineering applications. In this study, 3D-printed parts (test specimens) considering six different printing parameters (i.e., layer height, wall thickness, infill density, build plate temperature, printing speed, and printing temperature) are experimentally investigated to understand their impact on the mechanical properties of Tough PLA material. Three different standardized tests of tensile, flexural, and compressive properties were conducted to determine the maximum force and Young’s modulus. These six properties were used as responses in a design of experiment, definitive screening design (DSD), to build six regression models. Analysis of variance (ANOVA) is performed to evaluate the effects of each of the six printing parameters on Tough PLA mechanical properties. It is shown that all regression models are statistically significant (p<0.05) with high values of adjusted and predicted R2. Conducted confirmation tests resulted in low relative errors between experimental and predicted data, indicating that the developed models are adequately accurate and reliable for the prediction of tensile, flexural, and compressive properties of Tough PLA material. Full article
(This article belongs to the Special Issue Mechanical and Physical Properties of 3D Printed Polymer Materials)
Show Figures

Graphical abstract

11 pages, 2680 KiB  
Article
Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures
by Mahmoud Moradi, Mojtaba Karamimoghadam, Saleh Meiabadi, Shafqat Rasool, Giuseppe Casalino, Mahmoud Shamsborhan, Pranav Kattungal Sebastian, Arun Poulose, Abijith Shaiju and Mohammad Rezayat
Machines 2023, 11(8), 844; https://doi.org/10.3390/machines11080844 - 19 Aug 2023
Cited by 8 | Viewed by 2254
Abstract
Polyvinyl Alcohol (PVA) is frequently applied as a support material in 3D printing, especially in the crafting of intricate designs and projecting elements. It functions as a water-soluble filament, often paired with materials like ABS or PLA. PVA serves as a momentary scaffold, [...] Read more.
Polyvinyl Alcohol (PVA) is frequently applied as a support material in 3D printing, especially in the crafting of intricate designs and projecting elements. It functions as a water-soluble filament, often paired with materials like ABS or PLA. PVA serves as a momentary scaffold, supporting the jutting segments of a 3D model throughout the printing process. Subsequent to printing, the primary component can be effortlessly isolated by dissolving the PVA support using water. PVA, being a pliable and eco-friendly polymer, is susceptible to moisture. Its aqueous solubility renders it a prime selection for bolstering 3D print structures. In this investigation, equivalent-sized samples were 3D printed utilizing an Ultimaker 3D printer to assess the potency of PVA-generated specimens. Tensile examinations were executed on each sample employing a testing apparatus. The durability of the specimens was notably impacted by the input parameters, specifically the stratum width and stratum thickness. Strength dwindled as stratum width increased, whereas it rose with augmented stratum thickness. A few specimens with heightened stratum width and compromised quality displayed subpar performance during the tensile assessment. The findings unveiled a peak tensile strength of 17.515 MPa and a maximum load of 1600 N. Attaining an optimal degree of material utilization led to a decrease in filament consumption by 8.87 g, all the while upholding a MTS (maximum tensile strength) of 10.078 MPa. Full article
(This article belongs to the Special Issue Recent Advances in Smart Design and Manufacturing Technology)
Show Figures

Figure 1

19 pages, 5396 KiB  
Article
Impact Performance of 3D Printed Spatially Varying Elastomeric Lattices
by Charles M. Dwyer, Jose G. Carrillo, Jose Angel Diosdado De la Peña, Carolyn Carradero Santiago, Eric MacDonald, Jerry Rhinehart, Reed M. Williams, Mark Burhop, Bharat Yelamanchi and Pedro Cortes
Polymers 2023, 15(5), 1178; https://doi.org/10.3390/polym15051178 - 26 Feb 2023
Cited by 13 | Viewed by 4154
Abstract
Additive manufacturing is catalyzing a new class of volumetrically varying lattice structures in which the dynamic mechanical response can be tailored for a specific application. Simultaneously, a diversity of materials is now available as feedstock including elastomers, which provide high viscoelasticity and increased [...] Read more.
Additive manufacturing is catalyzing a new class of volumetrically varying lattice structures in which the dynamic mechanical response can be tailored for a specific application. Simultaneously, a diversity of materials is now available as feedstock including elastomers, which provide high viscoelasticity and increased durability. The combined benefits of complex lattices coupled with elastomers is particularly appealing for anatomy-specific wearable applications such as in athletic or safety equipment. In this study, Siemens’ DARPA TRADES-funded design and geometry-generation software, Mithril, was leveraged to design vertically-graded and uniform lattices, the configurations of which offer varying degrees of stiffness. The designed lattices were fabricated in two elastomers using different additive manufacturing processes: (a) vat photopolymerization (with compliant SIL30 elastomer from Carbon) and (b) thermoplastic material extrusion (with Ultimaker™ TPU filament providing increased stiffness). Both materials provided unique benefits with the SIL30 material offering compliance suitable for lower energy impacts and the Ultimaker™ TPU offering improved protection against higher impact energies. Moreover, a hybrid lattice combination of both materials was evaluated and demonstrated the simultaneous benefits of each, with good performance across a wider range of impact energies. This study explores the design, material, and process space for manufacturing a new class of comfortable, energy-absorbing protective equipment to protect athletes, consumers, soldiers, first responders, and packaged goods. Full article
(This article belongs to the Special Issue Advanced Materials in 3D Printing Technology)
Show Figures

Figure 1

11 pages, 6818 KiB  
Article
Experimental Set-Up of the Production Process and Mechanical Characterization of Metal Foams Manufactured by Lost-PLA Technique with Different Cell Morphology
by Girolamo Costanza, Angelo Del Ferraro and Maria Elisa Tata
Metals 2022, 12(8), 1385; https://doi.org/10.3390/met12081385 - 20 Aug 2022
Cited by 6 | Viewed by 2422
Abstract
A flexible and versatile method for manufacturing open-cell metal foams, called lost-PLA, is presented in this work. With a double extruder 3D printer (FDM, Ultimaker S3, Utrecht, The Netherlands), it is possible to make polymer-based samples of the lost model. Through CAD modeling, [...] Read more.
A flexible and versatile method for manufacturing open-cell metal foams, called lost-PLA, is presented in this work. With a double extruder 3D printer (FDM, Ultimaker S3, Utrecht, The Netherlands), it is possible to make polymer-based samples of the lost model. Through CAD modeling, different geometries were replicated so as to get black PLA samples. This method combines the advantages of rapid prototyping with the possibility of manufacturing Al-alloy specimens with low time to market. The production process is articulated in many steps: PLA foams are inserted into an ultra-resistant plaster mix, after which the polymer is thermally degraded. The next step consists of the gravity casting of the EN-6082 alloy in the plaster form, obtaining metal foams that are interesting from a technological point of view as well as with respect to their mechanical properties. These foam prototypes can find application in the automotive, civil and aeronautical fields due to their high surface/weight ratio, making them optimal for heat exchange and for the ability to absorb energy during compression. The main aspects on which we focus are the set-up of the process parameters and the characterization of the mechanical properties of the manufactured samples. The main production steps are examined at first. After that, the results obtained for mechanical performance during static compression tests with different geometry porosities are compared and discussed. The foam with truncated octahedron cells was found to show the highest absorbed energy/relative density ratio. Full article
Show Figures

Figure 1

14 pages, 6837 KiB  
Article
Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs
by Isad Saric, Enis Muratovic, Adil Muminovic, Adis J. Muminovic, Mirsad Colic, Muamer Delic, Nedim Pervan and Elmedin Mesic
Appl. Sci. 2022, 12(1), 353; https://doi.org/10.3390/app12010353 - 30 Dec 2021
Cited by 1 | Viewed by 2967
Abstract
This paper presents the development and implementation of integrated intelligent CAD (computer aided design) system for design, analysis and prototyping of the compression and torsion springs. The article shows a structure of the developed system named Springs IICAD (integrated intelligent computer aided design). [...] Read more.
This paper presents the development and implementation of integrated intelligent CAD (computer aided design) system for design, analysis and prototyping of the compression and torsion springs. The article shows a structure of the developed system named Springs IICAD (integrated intelligent computer aided design). The system bounds synthesis and analysis design phases by means of the utilization of parametric 3D (three-dimensional) modeling, FEM (finite element method) analysis and prototyping. The development of the module for spring calculation and system integration was performed in the C# (C Sharp) programming language. Three-dimensional geometric modeling and structural analysis were performed in the CATIA (computer aided three-dimensional interactive application) software, while prototyping is performed with the Ultimaker 3.0 3D printer with support of Cura software. The developed Springs IICAD system interlinks computation module with the basic parametric models in such a way that spring calculation, shaping, FEM analysis and prototype preparation are performed instantly. Full article
Show Figures

Figure 1

16 pages, 2009 KiB  
Article
Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction
by Constanze Kuhlmann, Jana C. Blum, Thilo L. Schenck, Riccardo E. Giunta and Paul Severin Wiggenhauser
Int. J. Mol. Sci. 2021, 22(21), 11667; https://doi.org/10.3390/ijms222111667 - 28 Oct 2021
Cited by 10 | Viewed by 4041
Abstract
The use of alloplastic materials instead of autologous cartilage grafts offers a new perspective in craniofacial reconstructive surgery. Particularly for regenerative approaches, customized implants enable the surgeon to restore the cartilaginous framework of the ear without donor site morbidity. However, high development and [...] Read more.
The use of alloplastic materials instead of autologous cartilage grafts offers a new perspective in craniofacial reconstructive surgery. Particularly for regenerative approaches, customized implants enable the surgeon to restore the cartilaginous framework of the ear without donor site morbidity. However, high development and production costs of commercially available implants impede clinical translation. For this reason, the usability of a low-cost 3D printer (Ultimaker 2+) as an inhouse-production tool for cheap surgical implants was investigated. The open software architecture of the 3D printer was modified in order to enable printing of biocompatible and biologically degradable polycaprolactone (PCL). Firstly, the printing accuracy and limitations of a PCL implant were compared to reference materials acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Then the self-made PCL-scaffold was seeded with adipose-tissue derived stem cells (ASCs), and biocompatibility was compared to a commercially available PCL-scaffold using a cell viability staining (FDA/PI) and a dsDNA quantification assay (PicoGreen). Secondly, porous and solid patient-customized ear constructs were manufactured from mirrored CT-imagining data using a computer-assisted design (CAD) and computer-assisted manufacturing (CAM) approach to evaluate printing accuracy and reproducibility. The results show that printing of a porous PCL scaffolds was possible, with an accuracy equivalent to the reference materials at an edge length of 10 mm and a pore size of 0.67 mm. Cell viability, adhesion, and proliferation of the ASCs were equivalent on self-made and the commercially available PCL-scaffolds. Patient-customized ear constructs could be produced well in solid form and with limited accuracy in porous form from all three thermoplastic materials. Printing dimensions and quality of the modified low-cost 3D printer are sufficient for selected tissue engineering applications, and the manufacturing of personalized ear models for surgical simulation at manufacturing costs of EUR 0.04 per cell culture scaffold and EUR 0.90 (0.56) per solid (porous) ear construct made from PCL. Therefore, in-house production of PCL-based tissue engineering scaffolds and surgical implants should be further investigated to facilitate the use of new materials and 3D printing in daily clinical routine. Full article
(This article belongs to the Special Issue 3D Printing and Biomaterials for Biological and Medical Application)
Show Figures

Figure 1

14 pages, 2269 KiB  
Technical Note
Creation of Anatomically Correct and Optimized for 3D Printing Human Bones Models
by Edgars Edelmers, Dzintra Kazoka and Mara Pilmane
Appl. Syst. Innov. 2021, 4(3), 67; https://doi.org/10.3390/asi4030067 - 13 Sep 2021
Cited by 17 | Viewed by 5434
Abstract
Educational institutions in several countries state that the education sector should be modernized to ensure a contemporary, individualized, and more open learning process by introducing and developing advance digital solutions and learning tools. Visualization along with 3D printing have already found their implementation [...] Read more.
Educational institutions in several countries state that the education sector should be modernized to ensure a contemporary, individualized, and more open learning process by introducing and developing advance digital solutions and learning tools. Visualization along with 3D printing have already found their implementation in different medical fields in Pauls Stradiņš Clinical University Hospital, and Rīga Stradiņš University, where models are being used for prosthetic manufacturing, surgery planning, simulation of procedures, and student education. The study aimed to develop a detailed methodology for the creation of anatomically correct and optimized models for 3D printing from radiological data using only free and widely available software. In this study, only free and cross-platform software from widely available internet sources has been used—“Meshmixer”, “3D Slicer”, and “Meshlab”. For 3D printing, the Ultimaker 5S 3D printer along with PLA material was used. In its turn, radiological data have been obtained from the “New Mexico Decedent Image Database”. In total, 28 models have been optimized and printed. The developed methodology can be used to create new models from scratch, which can be used will find implementation in different medical and scientific fields—simulation processes, anthropology, 3D printing, bioprinting, and education. Full article
Show Figures

Figure 1

26 pages, 10628 KiB  
Article
Influence of Infill Pattern on Mechanical Behavior of Polymeric and Composites Specimens Manufactured Using Fused Filament Fabrication Technology
by María Jesús Martín, Juan Antonio Auñón and Francisco Martín
Polymers 2021, 13(17), 2934; https://doi.org/10.3390/polym13172934 - 31 Aug 2021
Cited by 29 | Viewed by 3510
Abstract
This paper presents the results of a comparative evaluation of the tensile strength behaviors of parts obtained by additive manufacturing using fused filament fabrication (FFF) technology. The study investigated the influences of the deposition printing parameters for both polymers and fiber-reinforced polymers. Polymeric [...] Read more.
This paper presents the results of a comparative evaluation of the tensile strength behaviors of parts obtained by additive manufacturing using fused filament fabrication (FFF) technology. The study investigated the influences of the deposition printing parameters for both polymers and fiber-reinforced polymers. Polymeric materials that are widely used in FFF were selected, including acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and nylon. Carbon and glass continuous fibers were used to reinforce the nylon matrix in composite materials. The study utilized two manufacturing methods. Polymers were manufactured using an Ultimaker 2 Extended+ device and the fiber-reinforced polymer specimens were obtained using a Markforged Mark Two printer. The entire set of specimens was eventually subjected to destructive monoaxial tensile tests to measure their responses. The main goal of this study was to estimate the effect of the different infill patterns applied (zig-zag, concentric, and four different orientations lines) on the mechanical properties of pure thermoplastic materials and reinforced polymers. Results show a spectacular increase in the tensile stress at break, which for polymers reaches an average value of 27.53 MPa compared to 94.51 MPa in the case of composites (increase of 70.87%). A similar increase occurs in the case of tensile stress at yield with values of 31.87 MPa and 105.98 MPa, respectively, which represents an increase of 69.93%. The influence of the infill of the fiber is decisive, reaching, in the 0-0 arrangement, mean values of 220.18 MPa for tensile stress at break and 198.26 MPa for tensile stress at yield. Full article
Show Figures

Graphical abstract

Back to TopTop