Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,819)

Search Parameters:
Keywords = UV-Vis absorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2805 KB  
Article
Facile Synthesis of Mg-MOF-74 Thin Films for Enhanced CO2 Detection
by Yujing Zhang, Evan J. Haning, Hao Sun, Tzer-Rurng Su, Alan X. Wang, Ki-Joong Kim, Paul R. Ohodnicki and Chih-Hung Chang
Nanomaterials 2025, 15(20), 1541; https://doi.org/10.3390/nano15201541 (registering DOI) - 10 Oct 2025
Abstract
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to [...] Read more.
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to its remarkable CO2 uptake capacity among MOFs and other commonly used CO2 absorbents. Mg-MOF-74 thin films are currently fabricated by immersing selected substrates in precursor solutions, followed by a traditional solvothermal synthesis process. Herein, we introduce a rapid, easy, and cost-effective synthesis protocol to fabricate MOF thin films in an additive manner. In this work, the controllable synthesis of Mg-MOF-74 thin films directly on optical supports is reported for the first time. Dense, continuous, and uniform Mg-MOF-74 thin films are successfully fabricated on bare glass slides, with an average growth rate of up to 85.3 nm min−1. The structural and optical properties of the resulting Mg-MOF-74 thin films are characterized using X-ray diffraction, atomic force microscopy, scanning electron microscopy, UV-Vis-NIR spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR). The CO2 adsorption performance of the resulting Mg-MOF-74 thin films is studied using FTIR for the first time, which demonstrates that, as per the length of the light path for gas absorption, 1 nm Mg-MOF-74 thin film could provide 400.9 ± 18.0 nm absorption length for CO2, which is achieved via the extraordinary CO2 adsorption by Mg-MOF-74. The synthesis protocol enables the rapid synthesis of MOF thin films, highlighting Mg-MOF-74 in more CO2-related applications, such as enhanced CO2 adsorption and MOF-enhanced infrared gas sensing. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

22 pages, 3370 KB  
Article
Preparation and Characterization of Chemically Cross-Linked Xanthan/Poly(Vinylalcohol) Hydrogel Films Containing Cerium Oxide Nanoparticles for Potential Application in Removal of Methylene Blue and Crystal Violet Dyes
by Nicusor Fifere, Maria Marinela Lazar, Irina Elena Raschip, Anton Airinei, Cristian-Dragos Varganici and Maria Valentina Dinu
Gels 2025, 11(10), 809; https://doi.org/10.3390/gels11100809 (registering DOI) - 9 Oct 2025
Abstract
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer [...] Read more.
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer network was confirmed by attenuated total reflectance–Fourier transform infrared (ATR-FTIR), thermal analysis, and swelling behavior. Morphological features were evaluated by atomic force microscopy (AFM), scanning electron microscopy (SEM), while optical properties were investigated by UV–Vis spectroscopy. Undoped films displayed high transparency (~80% transmittance at 400 nm), with thermal cross-linking determined only slight yellowing and negligible changes in absorption edge (300 ± 2 nm). In contrast, CeO2NPs incorporation increased reflectance and introduced a new absorption threshold around 400 ± 2 nm, indicating nanoparticle–matrix interactions that modify optical behavior. Sorption studies with Methylene Blue (MB) and Crystal Violet (CV) dyes highlighted the influence of nanoparticle content and cross-linking on functional performance, with thermally treated samples showing the highest efficiency (~97–98% MB and 71–83% CV removal). Overall, the results demonstrate how structural tailoring and cross-linking control the characteristics of Xn/PVA/CeO2 nanocomposites, providing insight into their design as multifunctional hydrogel materials for environmental applications. Full article
Show Figures

Figure 1

28 pages, 8209 KB  
Article
Photocatalytic Enhancement of Anatase Supported on Mesoporous Modified Silica for the Removal of Carbamazepine
by Guillermo Cruz-Quesada, Beatriz Rosales-Reina, Inmaculada Velo-Gala, María del Pilar Fernández-Poyatos, Miguel A. Álvarez, Cristian García-Ruiz, María Victoria López-Ramón and Julián J. Garrido
Nanomaterials 2025, 15(19), 1533; https://doi.org/10.3390/nano15191533 - 8 Oct 2025
Abstract
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 [...] Read more.
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 presents two main drawbacks: its limited absorption of the visible spectrum; and its relatively low specific surface area and pore volume. Regarding the latter, several works in the literature have addressed the issue by developing new synthesis approaches in which anatase is dispersed and supported on the surface of porous materials. In the present work, two series of materials have been prepared where anatase has been supported on mesoporous silica (MSTiR%) in situ through a hydrothermal synthesis approach, where, in addition to using tetraethoxysilane (TEOS) as a silicon precursor, three organotriethoxysilanes [RTEOS, where R = methyl (M), propyl (P) or phenyl (Ph)] were used at a RTEOS:TEOS molar percentage of 10 and 30%. The materials were thoroughly characterized by several techniques to determine their morphological, textural, chemical, and UV-vis light absorption properties and then the most promising materials were used as photocatalysts in the photodegradation of the emerging contaminant and antiepileptic carbamazepine (CBZ) under UV irradiation. The materials synthesized using 10% molar percentage of RTEOS (MSTiR10) were able to almost completely degrade (~95%), 1 mg L−1 of CBZ after 1 h of irradiation using a 275 nm LED and 0.5 g L−1 of catalyst dose. Therefore, this new synthesis approach has proven useful to develop photoactive TiO2 composites with enhanced textural properties. Full article
Show Figures

Figure 1

18 pages, 5271 KB  
Article
Enhancement of Photocatalytic and Anticancer Properties in Y2O3 Nanocomposites Embedded in Reduced Graphene Oxide and Carbon Nanotubes
by ZabnAllah M. Alaizeri, Syed Mansoor Ali and Hisham A. Alhadlaq
Catalysts 2025, 15(10), 960; https://doi.org/10.3390/catal15100960 - 6 Oct 2025
Viewed by 293
Abstract
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) [...] Read more.
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) nanoparticles (NPs) into reduced graphene oxide (RGO) and carbon nanotubes (CNTs) to enhance their photocatalytic and anticancer properties. Pure Y2O3NPs, Y2O3/RGO NCs, and Y2O3/CNTs NCs were characterized using different analytical techniques, such as XRD, SEM, EDX with Elemental Mapping, FTIR, UV-Vis, PL, and DLS to investigate their improved structural, surface morphological, chemical bonding, optical, and surface charge properties. XRD data confirmed the successful integration of Y2O3into RGO and CNTs, with minor changes in crystallite sizes. SEM images with EDX analysis revealed that Y2O3NPs were uniformly distributed on RGO and CNTs, reducing aggregation. Chemical bonding and interactions between Y2O3and carbon materials were investigated using Fourier Transform Infrared (FTIR) analysis. UV and PL results suggest that the optical studies showed a shift in absorption peaks upon integration with RGO and CNTs. This indicates enhanced light absorption and modifications to the band gap between (3.79–4.40 eV) for the obtained samples. In the photocatalytic experiment, the degradation efficiency of bromophenol blue (BPB) dye for Y2O3RGO NCs was up to 87.3%, outperforming pure Y2O3NPs (45.83%) and Y2O3/CNTs NCs (66.78%) after 120 min of UV irradiation. Additionally, the MTT assay demonstrated that Y2O3/RGO NCs exhibited the highest anticancer activity against MG-63 bone cancer cells with an IC50 value of 45.7 µg/mL compared to Y2O3CNTs NCs and pure Y2O3NPs. This work highlights that Y2O3/RGO NCs could be used in significant applications, including environmental remediation and in vivo cancer therapy studies. Full article
Show Figures

Figure 1

18 pages, 4685 KB  
Article
Hydrothermal Versus Physical Mixing: Superior Photocatalytic Activity of TiO2/WO3 Nanocomposites for Water Treatment Applications
by Mabrouka Ghiloufi, Tobias Schnabel, Christian Springer, Simon Mehling, Axel Wolfram, Fathi Touati and Salah Kouass
Environments 2025, 12(10), 359; https://doi.org/10.3390/environments12100359 - 5 Oct 2025
Viewed by 283
Abstract
The photocatalytic efficiency of TiO2 was significantly enhanced by coupling with WO3 to form a TiO2/WO3 heterostructure, designed to operate effectively under UV-LED irradiation. The nanocomposites were synthesized via a hydrothermal route, and their activity was evaluated through [...] Read more.
The photocatalytic efficiency of TiO2 was significantly enhanced by coupling with WO3 to form a TiO2/WO3 heterostructure, designed to operate effectively under UV-LED irradiation. The nanocomposites were synthesized via a hydrothermal route, and their activity was evaluated through the degradation of the pharmaceutical pollutant venlafaxine. Contaminants are rarely addressed in photocatalytic studies. Unlike a simple physical mixture of commercial TiO2 and WO3 powders, the hydrothermally synthesized TiO2/WO3 photocatalyst exhibited superior efficiency, attributable to its nanoscale dimensions achieved via the hydrothermal route, which promoted improved charge carrier separation, enhanced surface homogeneity, and the formation of an effective heterojunction interface. An optimization study varying the WO3 content (5, 10, 20, and 30 wt.%) within the TiO2 revealed that the 10 wt.% WO3 composition achieved the highest performance, with ~52% venlafaxine degradation within 60 min. SEM, TEM, FTIR, Raman spectroscopy, XRD, and UV-Vis DRS revealed the successful incorporation of WO3 into the TiO2 matrix, confirming phase purity and composition-dependent structural evolution of the nanocomposite, and evidencing extended light absorption and superior charge-transfer properties. Importantly, the optimized photocatalyst thin film retained excellent stability and reusability, maintaining high degradation efficiency over three consecutive cycles with negligible activity loss, which avoids slurry separation. These findings establish hydrothermally synthesized TiO2/10%WO3 thin film heterostructures as effective and sustainable photocatalytic platforms for the removal of pharmaceutical pollutants in wastewater under UV-LED irradiation. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

13 pages, 1421 KB  
Article
Structural Insights into Ni(II), Cu(II), and Zn(II) Coordination Complexes of Arylazoformamide and Arylazothioformamide Ligands
by Laxmi Tiwari, Jake Nelson and Kristopher V. Waynant
Crystals 2025, 15(10), 869; https://doi.org/10.3390/cryst15100869 - 4 Oct 2025
Viewed by 237
Abstract
Understanding how redox-active ligands coordinate to metal centers of different oxidation states is essential for applications ranging from metal remediation and recycling to drug discovery. In this study, coordination complexes of nickel(II), copper(II), and zinc(II) chloride salts were synthesized by mixing the salts [...] Read more.
Understanding how redox-active ligands coordinate to metal centers of different oxidation states is essential for applications ranging from metal remediation and recycling to drug discovery. In this study, coordination complexes of nickel(II), copper(II), and zinc(II) chloride salts were synthesized by mixing the salts with either arylazoformamide (AAF) or arylazothioformamide (ATF) ligands in toluene or methanol. The AAF and ATF ligands coordinate through their 1,3-heterodienes, N=N–C=O and N=N–C=S, respectively, and, due to their known strong binding, the piperidine and pyrrolidine formamide units were selected, as was the electron-donating methoxy group on the aryl ring. A total of 12 complexes were obtained, representing potential chelation events from ligand-driven oxidation of zerovalent metals and/or coordination of oxidized metal salts. The X-ray crystallography revealed a range of coordination patterns. Notably, the Cu(II)Cl2 complexes, in the presence of ATF, produce [ATF-CuCl]2 dimers, supporting a potential reduction event at the copper, while other metals with ATF and all metals with AAF remain in the 2+ oxidation state. Hirshfeld analysis was performed on all complexes, and it was found that most interactions across the complexes were dominated by H…H, followed by Cl…H/H…Cl, with metals showing very little to no interaction with other atoms. Spectroscopic techniques such as UV–VIS absorption, NMR (when diamagnetic), and FTIR, in addition to electrochemical studies support the metal–ligand coordination. Full article
Show Figures

Figure 1

15 pages, 17766 KB  
Article
Mechanochemical Approach to a Monocationic Asymmetric Monomethine Cyanine Dye for Nucleic Acid Analysis and Visualization
by Diana Cheshmedzhieva, Nadezhda Bozova, Sonia Ilieva, Christo Novakov and Aleksey Vasilev
Molecules 2025, 30(19), 3966; https://doi.org/10.3390/molecules30193966 - 2 Oct 2025
Viewed by 174
Abstract
Using an environmentally friendly approach, we successfully synthesized an asymmetric monomethine cyanine dye, 7-chloro-1-ethyl-4-((3-ethylbenzo[d]thiazol-2(3H)-ylidene)methyl) quinolin-1-ium iodide, named CHLoris (CHL), via a modified Knoevenagel-type condensation. The reaction was carried out mechanochemically in an ethanol–water medium using 1-ethyl-2-methylbenzothiazolium iodide and 4,7-dichloro-1-ethylquinolin-1-ium iodide in the presence [...] Read more.
Using an environmentally friendly approach, we successfully synthesized an asymmetric monomethine cyanine dye, 7-chloro-1-ethyl-4-((3-ethylbenzo[d]thiazol-2(3H)-ylidene)methyl) quinolin-1-ium iodide, named CHLoris (CHL), via a modified Knoevenagel-type condensation. The reaction was carried out mechanochemically in an ethanol–water medium using 1-ethyl-2-methylbenzothiazolium iodide and 4,7-dichloro-1-ethylquinolin-1-ium iodide in the presence of sodium carbonate as a base and catalytic amounts of Hünig’s base. The UV/VIS absorption spectra of CHL in both the buffer solution and ethanol revealed the formation of aggregates in aqueous media. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations were employed to support the experimental findings further and provide insights into the self-association behavior of CHL in an aqueous solution. The photophysical properties of the dye were examined in the presence of DNA and RNA, and its performance was compared to that of the commercial dye Thiazole Orange (TO) under identical conditions. The results show that CHL is more sensitive towards RNA. Full article
Show Figures

Figure 1

20 pages, 7958 KB  
Article
Copper-Mediated Homocoupling of N-propargylcytisine—Synthesis and Spectral Characterization of Novel Cytisine-Based Diyne Dimer
by Anna K. Przybył, Adam Huczyński and Ewa Krystkowiak
Molecules 2025, 30(19), 3955; https://doi.org/10.3390/molecules30193955 - 1 Oct 2025
Viewed by 326
Abstract
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the [...] Read more.
Cytisine, a naturally occurring alkaloid and partial agonist of nicotinic acetylcholine receptors (nAChRs), has long been used as a smoking cessation aid and serves as the pharmacophore for varenicline. Recent research has expanded its therapeutic scope to neurodegenerative and neurological disorders, motivating the development of new cytisine derivatives. Among these, N-propargylcytisine combines the biological activity of the parent compound with the synthetic versatility of the terminal alkyne group. Herein, we report the synthesis and characterization of N-propargylcytisine, and its symmetrical dimer linked through 1,3-diyne moiety obtained via a copper-mediated Glaser–Hay oxidative coupling. The products were analyzed by NMR, FT-IR, and mass spectrometry, confirming the introduction of the propargyl moiety and the formation of the diyne bridge. Solvatochromic study of both compounds were performed using UV-VIS absorption spectroscopy in solvents of varying polarity, including protic solvents capable of hydrogen bonding. The 1,3-diyne motif, commonly found in bioactive natural products, endows the resulting dimer with potential for further derivatization and biological evaluation. This study demonstrates the utility of the Glaser–Hay reaction in the functionalization of alkaloid scaffolds and highlights the prospects of N-propargylcytisine derivatives in drug discovery targeting the central nervous system. Full article
(This article belongs to the Special Issue Organic Synthesis of Nitrogen-Containing Molecules)
Show Figures

Figure 1

27 pages, 2749 KB  
Article
Biogenic TiO2–ZnO Nanocoatings: A Sustainable Strategy for Visible-Light Self-Sterilizing Surfaces in Healthcare
by Ali Jabbar Abd Al-Hussain Alkawaz, Maryam Sabah Naser and Ali Jalil Obaid
Micro 2025, 5(4), 45; https://doi.org/10.3390/micro5040045 - 30 Sep 2025
Viewed by 258
Abstract
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining [...] Read more.
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining TiO2 with ZnO and employing green synthesis methods may overcome these limitations. Methodology: Biogenic TiO2 and ZnO nanoparticles were synthesized using Bacillus subtilis under mild aqueous conditions. The nanoparticles were characterized by SEM, XRD, UV-Vis, and FTIR, confirming nanoscale size, crystalline phases, and organic capping. A multilayer TiO2/ZnO coating was fabricated on glass substrates through layer-by-layer deposition. Antibacterial activity was tested against S. aureus and E. coli using disk diffusion, direct contact assays, ROS quantification (FOX assay), and scavenger experiments. Statistical significance was evaluated using ANOVA. Results: The TiO2/ZnO multilayer exhibited superior antibacterial activity under visible light, with inhibition zones of ~15 mm (S. aureus) and ~12 mm (E. coli), significantly outperforming single-component coatings. Direct contact assays confirmed strong bactericidal effects, while scavenger tests verified ROS-mediated mechanisms. FOX assays detected elevated H2O2 generation, correlating with antibacterial performance. Discussion: Synergistic effects of band-gap narrowing, Zn2+ release, and ROS generation enhanced visible-light photocatalysis. The multilayer structure improved light absorption and charge separation, providing higher antimicrobial efficacy than individual oxides. Conclusion: Biogenic TiO2/ZnO multilayers represent a sustainable, visible-light-activated antimicrobial strategy with strong potential for reducing nosocomial infections on hospital surfaces and surgical instruments. Future studies should assess long-term durability and clinical safety. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Figure 1

11 pages, 5768 KB  
Article
Highly Efficient Solar Steam Generation by W18O49@PVA Gels
by Jiefeng Yan, Zhenxing Fang, Jinxing Hu, Yangming Sun, Xinyi Huang, Guannan Zhou, Lu Li, Rui Wang and Yan Chen
Gels 2025, 11(10), 783; https://doi.org/10.3390/gels11100783 - 30 Sep 2025
Viewed by 191
Abstract
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large [...] Read more.
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large amount of oxygen vacancies supports its performance in photothermal conversion. The synthesized tungsten oxides were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible absorption spectroscopy (UV-Vis). The composite gel was fabricated by the insertion of oxygen-deficient tungsten oxide into PVA-based gel, which was cross-linked by glutaraldehyde. The PVA-based gel ensures a matched water supply speed with that of the evaporation rate due to its hydrophilic nature. The result of the solar steam generation shows that the W18O49-PVA gel (steam generation rate 2.65 kg m−2 h−1) was faster than that of the pure PVA gel. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

15 pages, 2671 KB  
Article
Mechanisms of Thermal Color Change in Brown Elbaite–Fluorelbaite Tourmaline: Insights from Trace Elements and Spectral Signatures
by Kun Li and Suwei Yue
Minerals 2025, 15(10), 1032; https://doi.org/10.3390/min15101032 - 29 Sep 2025
Viewed by 217
Abstract
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma [...] Read more.
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible (UV-Vis) spectroscopy was employed. Chemical analysis confirmed the samples as intermediate members of the elbaite–fluorelbaite series, with an average formula of X(Na0.660.26 Ca0.08) Σ1.00Y(Li1.29Al1.10Mn0.31 Fe2+0.15Ti0.01Zn0.01) Σ2.87 ZAl6T[Si6O18] (BO3)3V(OH)3.00W(OH0.51F0.49) Σ1.00, enriched in Mn (17,346–20,669 μg/g) and Fe (8396–10,750 μg/g). Heat treatment enhanced transparency and induced strong pleochroism (yellowish green parallel c-axis, brown perpendicular c-axis). UV-Vis spectroscopy identified the brown color origin in the parallel c-axis direction: absorption bands at 730 nm (Fe2+ dd transition, 5T2g5Eg), 540 nm (Fe2+→Fe3+ intervalence charge transfer, IVCT), and 415 nm (Fe2+→Ti4+ IVCT + possible Mn2+ contribution). Post-treatment, the 540 nm band vanished, creating a green transmission window and causing the color shift parallel the c-axis. The spectra perpendicular to the c-axis remained largely unchanged. The disappearance of the 540 nm band, attributed to the reduction of Fe3+ to Fe2+ eliminating the Fe2+–Fe3+ pair interaction required for IVCT, is the primary color change mechanism. The parallel c-axis section of the samples shows brown and yellow-green dichroism after heat treatment. A decrease in the IR intensity at 4170 cm−1 indicates a reduced Fe3+ concentration. The weakening or disappearance of the 4721 cm−1 absorption band of the infrared spectrum and the near-infrared 976 nm absorption band of the ultraviolet–visible spectrum provides diagnostic indicators for identifying heat treatment in similar brown elbaite–fluorelbaite. Full article
Show Figures

Figure 1

8 pages, 707 KB  
Proceeding Paper
Study of the Kapton-H Fundamental Absorption Edge and Tailing Behaviour
by Gianfranco Carotenuto
Eng. Proc. 2025, 105(1), 7; https://doi.org/10.3390/engproc2025105007 - 28 Sep 2025
Viewed by 210
Abstract
Kapton-H type is an optical plastic with a UV-Vis-NIR spectrum characterized by abrupt absorbance change at a wavelength of ca. 550 nm. Such sharp optical discontinuity, known as the fundamental absorption edge, has been investigated using the Tauc plot method, and a band [...] Read more.
Kapton-H type is an optical plastic with a UV-Vis-NIR spectrum characterized by abrupt absorbance change at a wavelength of ca. 550 nm. Such sharp optical discontinuity, known as the fundamental absorption edge, has been investigated using the Tauc plot method, and a band gap energy (Eg) of (2.22 ± 0.05) eV for an indirect allowed electron transition model has been found. The Cody plot has also been applied, and a slightly lower band gap energy value (i.e., Eg = 2.33 ± 0.05 eV) has been found. The Urbach rule applied to the spectrum tail has provided an Urbach energy value (EU) of ca. (185 ± 2) meV, which is quite a high value that is fully compatible with the highly disordered structure of this sterically rigid semi-crystalline polymer. The cut-on wavelength (550 nm), visible transparency (T% of ca. 80), and other relevant optical characteristics of the Kapton-H type have been also evaluated and compared with corresponding values of polyetherimide. Full article
Show Figures

Figure 1

23 pages, 5279 KB  
Article
Green Synthesis of Zinc Oxide Nanoparticles: Physicochemical Characterization, Photocatalytic Performance, and Evaluation of Their Impact on Seed Germination Parameters in Crops
by Hanan F. Al-Harbi, Manal A. Awad, Khalid M. O. Ortashi, Latifah A. AL-Humaid, Abdullah A. Ibrahim and Asma A. Al-Huqail
Catalysts 2025, 15(10), 924; https://doi.org/10.3390/catal15100924 - 28 Sep 2025
Viewed by 655
Abstract
This study reports on green-synthesized zinc oxide nanoparticles (ZnONPs), focusing on their physicochemical characterization, photocatalytic properties, and agricultural applications. Dynamic light scattering (DLS) analysis revealed a mean hydrodynamic diameter of 337.3 nm and a polydispersity index (PDI) of 0.400, indicating moderate polydispersity and [...] Read more.
This study reports on green-synthesized zinc oxide nanoparticles (ZnONPs), focusing on their physicochemical characterization, photocatalytic properties, and agricultural applications. Dynamic light scattering (DLS) analysis revealed a mean hydrodynamic diameter of 337.3 nm and a polydispersity index (PDI) of 0.400, indicating moderate polydispersity and nanoparticle aggregation, typical of biologically synthesized systems. High-resolution transmission electron microscopy (HR-TEM) showed predominantly spherical particles with an average diameter of ~28 nm, exhibiting slight agglomeration. Energy-dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of zinc and oxygen, while X-ray diffraction (XRD) analysis identified a hexagonal wurtzite crystal structure with a dominant (002) plane and an average crystallite size of ~29 nm. Photoluminescence (PL) spectroscopy displayed a distinct near-band-edge emission at ~462 nm and a broad blue–green emission band (430–600 nm) with relatively low intensity. The ultraviolet–visible spectroscopy (UV–Vis) absorption spectrum of the synthesized ZnONPs exhibited a strong absorption peak at 372 nm, and the optical band gap was calculated as 2.67 eV using the Tauc method. Fourier-transform infrared spectroscopy (FTIR) analysis revealed both similarities and distinct differences to the pigeon extract, confirming the successful formation of nanoparticles. A prominent absorption band observed at 455 cm−1 was assigned to Zn–O stretching vibrations. X-ray photoelectron spectroscopy (XPS) analysis showed that raw pigeon droppings contained no Zn signals, while their extract provided organic biomolecules for reduction and stabilization, and it confirmed Zn2+ species and Zn–O bonding in the synthesized ZnONPs. Photocatalytic degradation assays demonstrated the efficient removal of pollutants from sewage water, leading to significant reductions in total dissolved solids (TDS), chemical oxygen demand (COD), and total suspended solids (TSS). These results are consistent with reported values for ZnO-based photocatalytic systems, which achieve biochemical oxygen demand (BOD) levels below 2 mg/L and COD values around 11.8 mg/L. Subsequent reuse of treated water for irrigation yielded promising agronomic outcomes. Wheat and barley seeds exhibited 100% germination rates with ZnO NP-treated water, which were markedly higher than those obtained using chlorine-treated effluent (65–68%) and even the control (89–91%). After 21 days, root and shoot lengths under ZnO NP irrigation exceeded those of the control group by 30–50%, indicating enhanced seedling vigor. These findings demonstrate that biosynthesized ZnONPs represent a sustainable and multifunctional solution for wastewater remediation and agricultural enhancement, positioning them as a promising candidate for integration into green technologies that support sustainable urban development. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

14 pages, 10266 KB  
Article
Color Mechanism of Blue Myanmar Jadeite Jade: The Role of Trace Elements and Mineralogical Characteristics
by Shangzhan Dai, Yu Zhang, Guanghai Shi and Taafee Long
Crystals 2025, 15(10), 843; https://doi.org/10.3390/cryst15100843 - 27 Sep 2025
Viewed by 315
Abstract
Myanmar blue jadeite jade is a rare and highly prized gemstone, yet its coloration and formative mechanisms remain poorly understood. In this study, petrographic analysis, ultraviolet–visible (UV–Vis) spectroscopy, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were performed [...] Read more.
Myanmar blue jadeite jade is a rare and highly prized gemstone, yet its coloration and formative mechanisms remain poorly understood. In this study, petrographic analysis, ultraviolet–visible (UV–Vis) spectroscopy, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were performed on a sample of Myanmar blue jadeite with small white blocks to investigate its mineral composition, trace element distribution, and coloration mechanisms. Most of the sample was found to be blue, with surrounding white areas occurring in small ball-shaped blocks. The main mineral component in both the blue and white domains was jadeite. Although both areas underwent recrystallization, their textures differed significantly. The blue areas retained primary structural features within a medium- to fine-grained texture, reflecting relatively weaker recrystallization. The white areas, however, were recrystallized into a micro-grained texture, reflecting relatively stronger recrystallization, with the superimposed effects of external stress producing a fragmented appearance. The blue jadeite had relatively higher contents of Ti, Fe, Ca, and Mg, while the white jadeite contained compositions close to those of near-end-member jadeite. It was noted that, while white jadeite may have a high Ti content, its Fe content is low. UV–Vis spectra showed a broad absorption band at 610 nm associated with Fe2+-Ti4+ charge transfer and a gradually increasing absorption band starting at 480 nm related to V4+. Combining the chemical composition and the characteristics of the UV–Vis spectra, we infer that the blue coloration of jadeite is attributed to Fe2+-Ti4+ charge transfer; i.e., the presence of both Ti and Fe in blue jadeite plays a key role in its color formation. V4+ exhibited no significant linear correlation with the development of blue coloration. Prominent oscillatory zoning was observed in the jadeite, transitioning from NaAlSi2O6-dominant cores to Ca-Mg-Fe-Ti-enriched rims, reflecting the trend of fluid evolution during blue jadeite crystallization. Petrographic analysis indicated that the formation of the Myanmar blue jadeite occurred in two or three stages, with the blue regions forming earlier than the white regions. The blue jadeite also underwent significant recrystallization. Our findings contribute to the understanding of the formation of blue jadeite and the diversity of colors in jadeite jade. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

18 pages, 2374 KB  
Article
Fluorescent Dihomooxacalix[4]arenes for the Detection of Nitroaromatic Compounds in Solution and in the Vapour Phase: Structural and Supramolecular Insights
by Beatriz V. Gil, Alexandre S. Miranda, Paula M. Marcos, José R. Ascenso, Tiago Palmeira, Mário N. Berberan-Santos, Rachel Schurhammer, Neal Hickey, Siddharth Joshi and Silvano Geremia
Molecules 2025, 30(19), 3901; https://doi.org/10.3390/molecules30193901 - 27 Sep 2025
Viewed by 304
Abstract
Two fluorescent ureido-dihomooxacalix[4]arene derivatives containing naphthyl residues at the lower rim (1 and 2) were studied for the detection of nitroaromatic compounds (NACs) in solution and in vapour phases. Their affinity in solution was determined by UV-Vis absorption, fluorescence and NMR [...] Read more.
Two fluorescent ureido-dihomooxacalix[4]arene derivatives containing naphthyl residues at the lower rim (1 and 2) were studied for the detection of nitroaromatic compounds (NACs) in solution and in vapour phases. Their affinity in solution was determined by UV-Vis absorption, fluorescence and NMR spectroscopy. For NAC vapour sensing, calixarenes were dispersed in a polytetrafluoroethylene (PTFE) matrix. Four new solvated crystals of dihomooxacalix[4]arene 2 were obtained and the solvent’s influence on its structural characteristics was investigated. The solvent-dependent structural variations observed in the crystal structures highlight the intrinsic flexibility of the calixarene framework. Such conformational adaptability, evident in the disruption and reorganization of hydrogen bonding and π–π interactions, is directly relevant to nitroaromatic sensing, where a rapid and reversible host response is crucial for effective detection. Theoretical calculations were also performed to provide further insights on the binding process. The corrected Stern–Volmer constants (KSV) obtained showed that both receptors present selectivity for TNP and follow the same quenching order (TNP > NT > NB > DNT > TNT > DNB). Factors other than electron density distribution should dominate the quenching extent and therefore the values of the SV constants, which will be greatly overestimated if no correction to the inner filter effect is applied. Detection of NB and NT and vapours by both calixarenes produced a complete, very fast (2 to 5 s), and reversible quenching, indicating the potential use of this porous PTFE–calixarene matrix for the sensing of volatile NACs. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop