Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = UV imprinting process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2824 KB  
Article
Development of Metal-Enhanced Fluorescence Nanorods on Micro Post Arrays for Portable Detection of Human Semen Biomarkers
by Seongmin Lee, Won Il Heo, Kui Young Park, Seong Jun Seo, Xun Lu and Seok-min Kim
Micromachines 2025, 16(12), 1378; https://doi.org/10.3390/mi16121378 - 2 Dec 2025
Viewed by 418
Abstract
Rapid and reliable on-site identification of body fluids is essential in forensic and field diagnostic applications. Commercial kits provide only single results and often suffer from cross-reactivity, while conventional microarrays offer multiplex capability but lack sufficient fluorescence intensity for field-deployable systems. In this [...] Read more.
Rapid and reliable on-site identification of body fluids is essential in forensic and field diagnostic applications. Commercial kits provide only single results and often suffer from cross-reactivity, while conventional microarrays offer multiplex capability but lack sufficient fluorescence intensity for field-deployable systems. In this study, we present a highly sensitive nanorods on micro post array (NMPA) substrate and a smartphone-based portable detection system. The NMPA substrate integrates metal nanorods with UV-imprinted micro post structures to produce metal-enhanced fluorescence and improved signal localization. When evaluated using a microarray scanner, the substrate achieved high sensitivity, detecting semen diluted up to 1/100,000. The portable smartphone system further demonstrated simultaneous detection of three semen biomarkers (PSA, ACPP, and Semenogelin-1) at a 1/1000 dilution, matching the detection limit of commercial kits. Specificity tests using blood, saliva, urine, vaginal fluid, and environmental contaminants showed no false-positive responses. These results highlight the potential of the NMPA system as a portable diagnostic technology capable of rapid (<15 min), multiplex, and highly sensitive detection in field environments. Future work will focus on quantitative calibration, substrate stability assessment, and expansion toward multi biomarker panels for broader forensic and clinical applications. Full article
(This article belongs to the Section B4: Point-of-Care Devices)
Show Figures

Figure 1

23 pages, 3243 KB  
Entry
Nanoimprint—Mo(o)re than Lithography
by Helmut Schift
Encyclopedia 2025, 5(4), 197; https://doi.org/10.3390/encyclopedia5040197 - 21 Nov 2025
Viewed by 3041
Definition
Nanoimprint lithography (NIL) is a high-resolution parallel patterning method based on molding. It has proven resolution down to the nanometer range and can be scaled up for large areas and high throughput. Its main characteristic is that the surface pattern of a mold [...] Read more.
Nanoimprint lithography (NIL) is a high-resolution parallel patterning method based on molding. It has proven resolution down to the nanometer range and can be scaled up for large areas and high throughput. Its main characteristic is that the surface pattern of a mold is imprinted on a material that is displaced locally by using the difference in hardness of the mold and the moldable material, thus replicating its surface topography. This can be achieved by shaping a thermoplastic film by heating and cooling (T-NIL) or a photosensitive resin followed by a curing process for hardening (UV-NIL). In lithography, the local thickness contrast of the thin molded film can be used as a masking layer to transfer the pattern onto the underlying substrate. Therefore, NIL will be an alternative in fields in which electron-beam lithography and photolithography do not provide sufficient resolution at reasonable throughput. Direct imprint enables applications where a modified functional surface is needed without pattern transfer. NIL is currently used for high-volume manufacturing in different applications, like patterned sapphire substrates, wire grid polarizers, photonic devices, lightguides for AR/VR devices, metalenses, and biosensors for DNA analysis, and is being tested for semiconductor integrated circuit chips. Full article
(This article belongs to the Collection Encyclopedia of Engineering)
Show Figures

Graphical abstract

16 pages, 20415 KB  
Article
Flow-Line-Reducing Tetrahedral Metal Effect Pigments for Injection Molding: A Yield-Rate-Improved Particle Manufacturing Method Based on Soft UVImprint Lithography
by Nils Maximilian Demski, Holger Seidlitz, Felix Kuke, Oliver Niklas Dorn, Janina Zoglauer, Tobias Hückstaedt, Paul Hans Kamm, Francisco García-Moreno, Noah Kremp, Christian Dreyer and Dirk Oberschmidt
Polymers 2025, 17(19), 2708; https://doi.org/10.3390/polym17192708 - 8 Oct 2025
Viewed by 861
Abstract
This publication presents an improved manufacturing method for tetrahedral metal effect pigment particles that demonstrates reduced flowlines in injection-molded polymer components compared with conventional platelet-shaped pigment particles. The previously published cold forming process for tetrahedral particles, made entirely from aluminum, faced manufacturing challenges, [...] Read more.
This publication presents an improved manufacturing method for tetrahedral metal effect pigment particles that demonstrates reduced flowlines in injection-molded polymer components compared with conventional platelet-shaped pigment particles. The previously published cold forming process for tetrahedral particles, made entirely from aluminum, faced manufacturing challenges, resulting in a high reject rate due to particle adhesion to the micro-structured mold roller. In contrast, this study introduces a new manufacturing method for tetrahedral particles, now consisting of metallized UV-cured thermoset polymer. These particles, dispersed in amorphous matrix thermoplastics, have shown to maintain their shape during the injection molding process. The manufacturing technique for these novel particles is based on UV imprint lithography, omitting the reject rates compared with the previously presented cold rolling process of tetrahedral full aluminum particles. Thus, the novel manufacturing technique for tetrahedral pigment particles shows increased potential for automation through roll-to-roll manufacturing in the future. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 2094 KB  
Article
Laser-Assisted Visible-Light Polymerization for Rapid Synthesis of Molecularly Imprinted Polymers
by Wissal Mrabet, Abdelhafid Karrat and Aziz Amine
Biosensors 2025, 15(8), 529; https://doi.org/10.3390/bios15080529 - 13 Aug 2025
Viewed by 1296
Abstract
The demand for rapid, energy-efficient, and low-toxicity methods for synthesizing molecularly imprinted polymers (MIPs) is increasing, particularly for applications in environmental monitoring and green chemistry. In this context, the present work focuses on the development of a novel laser-assisted method for MIP synthesis, [...] Read more.
The demand for rapid, energy-efficient, and low-toxicity methods for synthesizing molecularly imprinted polymers (MIPs) is increasing, particularly for applications in environmental monitoring and green chemistry. In this context, the present work focuses on the development of a novel laser-assisted method for MIP synthesis, employing a visible laser (450 nm) and erythrosine B as a green photoinitiator. This visible-light approach enables fast and spatially controlled polymerization while avoiding the drawbacks of conventional methods (thermal heating, UV synthesis), such as the use of toxic initiators like AIBN and the need for UV shielding. MIPs were synthesized for bisphenol A and sulfamethoxazole, two emerging contaminants of significant environmental concern. The synthesis process was optimized for rapidity and scalability, and the resulting MIPs were integrated into a paper-based analytical device (MIP-PAD) for smartphone-assisted, on-site detection. The developed sensors exhibited excellent analytical performance, with recovery rates of 98.6% in tap water and 90.2% in river water and relative standard deviations (RSDs) below 1.88%. This study demonstrated a green, efficient, and highly controllable laser-assisted polymerization technique, offering a promising alternative to conventional MIP synthesis methods. Full article
Show Figures

Graphical abstract

21 pages, 2081 KB  
Article
Translation of COVID-19 Serology Test on Foil-Based Lateral Flow Chips: A Journey from Injection Molding to Scalable Roll-to-Roll Nanoimprint Lithography
by Pakapreud Khumwan, Stephan Ruttloff, Johannes Götz, Dieter Nees, Conor O’Sullivan, Alvaro Conde, Mirko Lohse, Christian Wolf, Nastasia Okulova, Janine Brommert, Richard Benauer, Ingo Katzmayr, Nikolaus Ladenhauf, Wilfried Weigel, Maciej Skolimowski, Max Sonnleitner, Martin Smolka, Anja Haase, Barbara Stadlober and Jan Hesse
Biosensors 2025, 15(4), 229; https://doi.org/10.3390/bios15040229 - 4 Apr 2025
Viewed by 1423
Abstract
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions [...] Read more.
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions of devices has already been extensively demonstrated. Nevertheless, the assay option in an LFT format is largely restricted to qualitative detection of the target antigens. In this research, we surveyed the potential of UV nanoimprint lithography (UV-NIL) and extrusion coating (EC) for the high-throughput production of disposable capillary-driven, foil-based tests that allow multistep assays to be implemented for quantitative readout to address the inherent lack of on-demand fluid control and sensitivity of paper-based devices. Both manufacturing technologies operate on the principle of imprinting that enables high-volume, continuous structuring of microfluidic patterns in a roll-to-roll (R2R) production scheme. To demonstrate the feasibility of R2R-fabricated foil chips in a point-of-care biosensing application, we adapted a commercial chemiluminescence multiplex test for COVID-19 antibody detection originally developed for a capillary-driven microfluidic chip manufactured with injection molding (IM). In an effort to build a complete ecosystem for the R2R manufacturing of foil chips, we also recruited additional processes to streamline chip production: R2R biofunctionalization and R2R lamination. Compared to conventional fabrication techniques for microfluidic devices, the R2R techniques highlighted in this work offer unparalleled advantages concerning improved scalability, dexterity of seamless handling, and significant cost reduction. Our preliminary evaluation indicated that the foil chips exhibited comparable performance characteristics to the original IM-fabricated devices. This early success in assay translation highlights the promise of implementing biochemical assays on R2R-manufactured foil chips. Most importantly, it underscores the potential utilization of UV-NIL and EC as an alternative to conventional technologies for the future development in vitro diagnostics (IVD) in response to emerging point-of-care testing demands. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Graphical abstract

23 pages, 909 KB  
Article
Extending the QMM Framework to the Strong and Weak Interactions
by Florian Neukart, Eike Marx and Valerii Vinokur
Entropy 2025, 27(2), 153; https://doi.org/10.3390/e27020153 - 2 Feb 2025
Cited by 5 | Viewed by 2832
Abstract
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell [...] Read more.
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell possesses a finite-dimensional Hilbert space that acts as a local memory, or quantum imprint, for matter and gauge field configurations. We focus on embedding non-Abelian SU(3)c (quantum chromodynamics) and SU(2)L × U(1)Y (electroweak interactions) into QMM by constructing gauge-invariant imprint operators for quarks, gluons, electroweak bosons, and the Higgs mechanism. This unified approach naturally enforces unitarity by allowing black hole horizons, or any high-curvature region, to store and later retrieve quantum information about color and electroweak charges, thereby preserving subtle non-thermal correlations in evaporation processes. Moreover, the discretized nature of QMM imposes a Planck-scale cutoff, potentially taming UV divergences and modifying running couplings at trans-Planckian energies. We outline major challenges, such as the precise formulation of non-Abelian imprint operators and the integration of QMM with loop quantum gravity, as well as possible observational strategies—ranging from rare decay channels to primordial black hole evaporation spectra—that could provide indirect probes of this discrete, memory-based view of quantum gravity and the Standard Model. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
Show Figures

Figure 1

12 pages, 11718 KB  
Article
UV Nanoimprint Lithography—Impact of Coating Techniques on Pattern Quality
by Johanna Rimböck, Patrick Schuster, Lisa Vsetecka and Christine Thanner
Nanomanufacturing 2024, 4(1), 69-80; https://doi.org/10.3390/nanomanufacturing4010005 - 14 Mar 2024
Cited by 6 | Viewed by 3674
Abstract
In this work, three different coating techniques are compared and their applicability for ultraviolet nanoimprint lithography (UV-NIL) is investigated. As UV-NIL is considered a suitable volume manufacturing production solution for various emerging applications, it is mandatory to consider environmental aspects such as operational [...] Read more.
In this work, three different coating techniques are compared and their applicability for ultraviolet nanoimprint lithography (UV-NIL) is investigated. As UV-NIL is considered a suitable volume manufacturing production solution for various emerging applications, it is mandatory to consider environmental aspects such as operational energy use and material consumption as well as waste management. In this paper, spin coating, spray coating, and inkjet coating are used to coat both a high refractive index resin (n = 1.9) and a filler-free resin (n = 1.5), respectively. Variable Angle Spectroscopy Ellipsometry (VASE) was used to analyze the influence of different process parameters on the resin thickness as well as to compare the refractive index achieved from each coating technology. Finally, the applicability of the different coating methods for UV-NIL was investigated by imprinting the resin layers with different test structures. For the final imprints, the resolution, the surface roughness, and the pattern fidelity over 25 imprints was assessed using AFM. Finally, a comparison of the resin consumption and the process time was performed for each coating method. Full article
(This article belongs to the Special Issue Nanoimprinting and Sustainability)
Show Figures

Figure 1

8 pages, 3307 KB  
Communication
Polymer Dispersed Liquid Crystal Imprinted by Microlens Array for Enhanced Outcoupling Efficiency of Organic Light Emitting Diode
by Seongmin Lim, Hyeon-Sik Ahn, Eun-Jeong Jang, So-Young Boo, Akpeko Gasonoo, Jin-Seog Gwag, Jae-Hyun Lee and Yoonseuk Choi
Molecules 2024, 29(1), 73; https://doi.org/10.3390/molecules29010073 - 22 Dec 2023
Cited by 3 | Viewed by 2737
Abstract
In this paper, we demonstrate the use of polymer dispersed liquid crystal (PDLC) imprinted with a microlens array (MLA) via solution process to improve the outcoupling efficiency of organic light emitting diodes (OLEDs). The PDLC, well known for its scattering effect, is an [...] Read more.
In this paper, we demonstrate the use of polymer dispersed liquid crystal (PDLC) imprinted with a microlens array (MLA) via solution process to improve the outcoupling efficiency of organic light emitting diodes (OLEDs). The PDLC, well known for its scattering effect, is an excellent technology for improving the outcoupling efficiency of OLEDs. Additionally, we introduce a simple spin-coating process to fabricate PDLC which is adaptable for future solution-processed OLEDs. The MLA-imprinted PDLC applied OLED shows an enhancement factor of 1.22 in outcoupling efficiency which is a 37.5% increase compared to the existing PDLC techniques without changing the electrical properties of the OLED. Through this approach, we can expect the roll-to-roll based extremely flexible OLED, and with further research on pattering PDLC by various templates, higher outcoupling efficiency is achievable through a simple UV irradiation process. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications)
Show Figures

Figure 1

11 pages, 2303 KB  
Article
Fenpicoxamid-Imprinted Surface Plasmon Resonance (SPR) Sensor Based on Sulfur-Doped Graphitic Carbon Nitride and Its Application to Rice Samples
by Şule Yıldırım Akıcı, Bahar Bankoğlu Yola, Betül Karslıoğlu, İlknur Polat, Necip Atar and Mehmet Lütfi Yola
Micromachines 2024, 15(1), 6; https://doi.org/10.3390/mi15010006 - 19 Dec 2023
Cited by 20 | Viewed by 2018
Abstract
This research attempt involved the development and utilization of a newly designed surface plasmon resonance (SPR) sensor which incorporated sulfur-doped graphitic carbon nitride (S-g-C3N4) as the molecular imprinting material. The primary objective was to employ this sensor for the [...] Read more.
This research attempt involved the development and utilization of a newly designed surface plasmon resonance (SPR) sensor which incorporated sulfur-doped graphitic carbon nitride (S-g-C3N4) as the molecular imprinting material. The primary objective was to employ this sensor for the quantitative analysis of Fenpicoxamid (FEN) in rice samples. The synthesis of S-g-C3N4 with excellent purity was achieved using the thermal poly-condensation approach, which adheres to the principles of green chemistry. Afterwards, UV polymerization was utilized to fabricate a surface plasmon resonance (SPR) chip imprinted with FEN, employing S-g-C3N4 as the substrate material. This process involved the inclusion of N,N′-azobisisobutyronitrile (AIBN) as the initiator, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methacryloylamidoglutamic acid (MAGA) as the monomer, and FEN as the analyte. After successful structural analysis investigations on a surface plasmon resonance (SPR) chip utilizing S-g-C3N4, which was imprinted with FEN, a comprehensive investigation was conducted using spectroscopic, microscopic, and electrochemical techniques. Subsequently, the kinetic analysis applications, namely the determination of the limit of quantification (LOQ) and the limit of detection (LOD), were carried out. For analytical results, the linearity of the FEN-imprinted SPR chip based on S-g-C3N4 was determined as 1.0–10.0 ng L−1 FEN, and LOQ and LOD values were obtained as 1.0 ng L−1 and 0.30 ng L−1, respectively. Finally, the prepared SPR sensor’s high selectivity, repeatability, reproducibility, and stability will ensure safe food consumption worldwide. Full article
(This article belongs to the Special Issue Flexible and Hybrid Flexible Organic Chemical and Biosensor Systems)
Show Figures

Figure 1

13 pages, 2786 KB  
Article
Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures
by Maximilian Rothammer and Cordt Zollfrank
Polymers 2024, 16(1), 9; https://doi.org/10.3390/polym16010009 - 19 Dec 2023
Cited by 5 | Viewed by 3558
Abstract
Replacing petroleum-based polymers with biopolymers such as polysaccharides is essential for protecting our environment by saving fossil resources. A research field that can benefit from the application of more sustainable and renewable materials is photochemistry. Therefore, cellulose-based photoresists that could be photocrosslinked via [...] Read more.
Replacing petroleum-based polymers with biopolymers such as polysaccharides is essential for protecting our environment by saving fossil resources. A research field that can benefit from the application of more sustainable and renewable materials is photochemistry. Therefore, cellulose-based photoresists that could be photocrosslinked via UV irradiation (λ = 254 nm and λ = 365 nm) were developed. These biogenic polymers enable the manufacturing of sustainable coatings, even with imprinted microstructures, and cellulose-based bulk materials. Thus, herein, cellulose was functionalized with organic compounds containing carbon double bonds to introduce photocrosslinkable side groups directly onto the cellulose backbone. Therefore, unsaturated anhydrides such as methacrylic acid anhydride and unsaturated and polyunsaturated carboxylic acids such as linoleic acid were utilized. Additionally, these cellulose derivatives were modified with acetate or tosylate groups to generate cellulose-based polymers, which are soluble in organic solvents, making them suitable for multiple processing methods, such as casting, printing and coating. The photocurable resist was basically composed of the UV-crosslinkable biopolymer, an appropriate solvent and, if necessary, a photoinitiator. Moreover, these bio-based photoresists were UV-crosslinkable in the liquid and solid states after the removal of the solvent. Further, the manufactured cellulose-based architectures, even the bulk structures, could be entirely regenerated into pure cellulose devices via a sodium methoxide treatment. Full article
Show Figures

Graphical abstract

16 pages, 3210 KB  
Article
A Novel Molecularly Imprinted Sensor Based on CuO Nanoparticles with Peroxidase-like Activity for the Selective Determination of Astragaloside-IV
by Guo-Ying Chen, Ling-Xiao Chen, Jin Gao, Chengyu Chen, Jianli Guan, Zhiming Cao, Yuanjia Hu and Feng-Qing Yang
Biosensors 2023, 13(11), 959; https://doi.org/10.3390/bios13110959 - 28 Oct 2023
Cited by 3 | Viewed by 2417
Abstract
In this work, dopamine (DA) was polymerized on the surface of CuO nanoparticles (CuO NPs) to form a molecularly imprinted polymer (MIP@PDA/CuO NPs) for the colorimetric detection of astragaloside-IV (AS-IV). The synthesis process of MIP is simple and easy to operate, without adding [...] Read more.
In this work, dopamine (DA) was polymerized on the surface of CuO nanoparticles (CuO NPs) to form a molecularly imprinted polymer (MIP@PDA/CuO NPs) for the colorimetric detection of astragaloside-IV (AS-IV). The synthesis process of MIP is simple and easy to operate, without adding other monomers or initiators. CuO NPs has high peroxidase (POD)-like activity that can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate oxidized TMB (OxTMB) in the presence of H2O2, having a maximum ultraviolet-visible (UV-Vis) absorption peak at 652 nm. The AS-IV can specifically bind to the surface imprinted cavities and prevent the entry of TMB and H2O2, which will lead to the inhibition of the catalytic reaction. Therefore, a new approach based on the POD-like activity of MIP@PDA/CuO NPs for AS-IV detection was developed with a linear range from 0.000341 to 1.024 mg/mL. The LOD and LOQ are 0.000991 and 0.000341 mg/mL, respectively. The developed method can accurately determine AS-IV in Huangqi Granules and different batches of Ganweikang Tablets, which are similar to the results measured by HPLC-ELSD and meet the requirements of Chinese Pharmacopoeia (2020 edition) for the amount of AS-IV in Huangqi Granules. The combination of MIP with CuO NPs not only endows the detection of AS-IV with high selectivity and reliability, but also expands the application of nanozymes in the detection of small-molecule compounds that have weak UV absorption, and do not have reducibility or oxidation properties. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers for Chemical Sensing)
Show Figures

Figure 1

14 pages, 2031 KB  
Article
Synthesis, Characterization, and Evaluation of a Novel Molecularly Imprinted Polymer (MIP) for Selective Quantification of Curcumin in Real Food Sample by UV-Vis Spectrophotometry
by Sergio Espinoza-Torres, Rosario López, Maria D. P. T. Sotomayor, Juan C. Tuesta, Gino Picasso and Sabir Khan
Polymers 2023, 15(16), 3332; https://doi.org/10.3390/polym15163332 - 8 Aug 2023
Cited by 30 | Viewed by 4374
Abstract
Curcumin is the main colorant of the curcuma longa plant, a food with many benefits for human health. This work aims to synthesize a novel molecularly imprinted polymer (MIP) for the selective detection of curcumin in real samples obtained from the local market [...] Read more.
Curcumin is the main colorant of the curcuma longa plant, a food with many benefits for human health. This work aims to synthesize a novel molecularly imprinted polymer (MIP) for the selective detection of curcumin in real samples obtained from the local market of Peru. MIPs were synthesized via bulk polymerization using curcumin, acrylamide, ethylene glycol dimethacrylate, ABCV, and acetonitrile. FTIR spectra showed equal spectra for MIP and NIP. N2 physisorption analysis presented a higher value BET surface for the MIP (28.5 m2 g−1) compared to the NIP (18.5 m2 g−1). The adsorption capacity of the MIP was evaluated using UV-vis spectrophotometry in the band around 430 nm. The adsorption kinetics found were of pseudo-second-order and a Qe value of 16.2 mg g−1. Furthermore, the adsorption process resembles the Freundlich adsorption model with a heterogeneity factor of less than 1 (0.61) and Kf greater for MIP (1.97). The selectivity test indicated that MIP is more selective for curcumin (Q = 13.20 mg g−1) than against interferents (Q = 2.19 mg g−1). The specific selectivity factor (S) obtained for the interferents was greater than 1 which indicates a good selectivity. Finally, the application of MIP in real samples using UV-vis spectrophotometry yielded a recovery value greater than 70%. Full article
(This article belongs to the Special Issue Developments of Molecularly Imprinted Polymers)
Show Figures

Figure 1

15 pages, 3609 KB  
Article
Increasing the Stability of Isolated and Dense High-Aspect-Ratio Nanopillars Fabricated Using UV-Nanoimprint Lithography
by Michael J. Haslinger, Oliver S. Maier, Markus Pribyl, Philipp Taus, Sonja Kopp, Heinz D. Wanzenboeck, Kurt Hingerl, Michael M. Muehlberger and Elena Guillén
Nanomaterials 2023, 13(9), 1556; https://doi.org/10.3390/nano13091556 - 5 May 2023
Cited by 10 | Viewed by 3926
Abstract
Structural anti-reflective coating and bactericidal surfaces, as well as many other effects, rely on high-aspect-ratio (HAR) micro- and nanostructures, and thus, are of great interest for a wide range of applications. To date, there is no widespread fabrication of dense or isolated HAR [...] Read more.
Structural anti-reflective coating and bactericidal surfaces, as well as many other effects, rely on high-aspect-ratio (HAR) micro- and nanostructures, and thus, are of great interest for a wide range of applications. To date, there is no widespread fabrication of dense or isolated HAR nanopillars based on UV nanoimprint lithography (UV-NIL). In addition, little research on fabricating isolated HAR nanopillars via UV-NIL exists. In this work, we investigated the mastering and replication of HAR nanopillars with the smallest possible diameters for dense and isolated arrangements. For this purpose, a UV-based nanoimprint lithography process was developed. Stability investigations with capillary forces were performed and compared with simulations. Finally, strategies were developed in order to increase the stability of imprinted nanopillars or to convert them into nanoelectrodes. We present UV-NIL replication of pillars with aspect ratios reaching up to 15 with tip diameters down to 35 nm for the first time. We show that the stability could be increased by a factor of 58 when coating them with a 20 nm gold layer and by a factor of 164 when adding an additional 20 nm thick layer of SiN. The coating of the imprints significantly improved the stability of the nanopillars, thus making them interesting for a wide range of applications. Full article
(This article belongs to the Special Issue Advance in Nanoimprint Technology)
Show Figures

Figure 1

16 pages, 3793 KB  
Article
Simple and Fast Pesticide Nanosensors: Example of Surface Plasmon Resonance Coumaphos Nanosensor
by Beste Oymen, Mitra Jalilzadeh, Fatma Yılmaz, Süleyman Aşır, Deniz Türkmen and Adil Denizli
Micromachines 2023, 14(4), 707; https://doi.org/10.3390/mi14040707 - 23 Mar 2023
Cited by 8 | Viewed by 2594
Abstract
Here, a molecular imprinting technique was employed to create an SPR-based nanosensor for the selective and sensitive detection of organophosphate-based coumaphos, a toxic insecticide/veterinary drug often used. To achieve this, UV polymerization was used to create polymeric nanofilms using N-methacryloyl-l-cysteine [...] Read more.
Here, a molecular imprinting technique was employed to create an SPR-based nanosensor for the selective and sensitive detection of organophosphate-based coumaphos, a toxic insecticide/veterinary drug often used. To achieve this, UV polymerization was used to create polymeric nanofilms using N-methacryloyl-l-cysteine methyl ester, ethylene glycol dimethacrylate, and 2-hydroxyethyl methacrylate, which are functional monomers, cross-linkers, and hydrophilicity enabling agents, respectively. Several methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) analyses, were used to characterize the nanofilms. Using coumaphos-imprinted SPR (CIP-SPR) and non-imprinted SPR (NIP-SPR) nanosensor chips, the kinetic evaluations of coumaphos sensing were investigated. The created CIP-SPR nanosensor demonstrated high selectivity to the coumaphos molecule compared to similar competitor molecules, including diazinon, pirimiphos-methyl, pyridaphenthion, phosalone, N-2,4(dimethylphenyl) formamide, 2,4-dimethylaniline, dimethoate, and phosmet. Additionally, there is a magnificent linear relationship for the concentration range of 0.1–250 ppb, with a low limit of detection (LOD) and limit of quantification (LOQ) of 0.001 and 0.003 ppb, respectively, and a high imprinting factor (I.F.4.4) for coumaphos. The Langmuir adsorption model is the best appropriate thermodynamic approach for the nanosensor. Intraday trials were performed three times with five repetitions to statistically evaluate the CIP-SPR nanosensor’s reusability. Reusability investigations for the two weeks of interday analyses also indicated the three-dimensional stability of the CIP-SPR nanosensor. The remarkable reusability and reproducibility of the procedure are indicated by an RSD% result of less than 1.5. Therefore, it has been determined that the generated CIP-SPR nanosensors are highly selective, rapidly responsive, simple to use, reusable, and sensitive for coumaphos detection in an aqueous solution. An amino acid, which was used to detect coumaphos, included a CIP-SPR nanosensor manufactured without complicated coupling methods and labelling processes. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) studies was performed for the validation studies of the SPR. Full article
(This article belongs to the Special Issue Plasmonic Sensors and Their Applications)
Show Figures

Figure 1

14 pages, 4096 KB  
Article
Optical Fiber Grating-Prism Fabrication by Imprint Patterning of Ionic-Liquid-Based Resist
by Natalia Turek, Piotr Pala, Andrea Szpecht, Adrian Zając, Teresa Sembratowicz, Tadeusz Martynkien, Marcin Śmiglak and Katarzyna Komorowska
Int. J. Mol. Sci. 2023, 24(2), 1370; https://doi.org/10.3390/ijms24021370 - 10 Jan 2023
Cited by 4 | Viewed by 2552
Abstract
We present a method of microstructure fabrication on the tip of the optical fiber using a UV soft-imprint process of polymerizable ionic liquid-based optical resist. Ionic liquid with two UV-sensitive vinylbenzyl groups in the structure was diluted in non-hazardous propylene glycol (PG) to [...] Read more.
We present a method of microstructure fabrication on the tip of the optical fiber using a UV soft-imprint process of polymerizable ionic liquid-based optical resist. Ionic liquid with two UV-sensitive vinylbenzyl groups in the structure was diluted in non-hazardous propylene glycol (PG) to obtain liquid material for imprinting. No additional organic solvent was required. The impact of propylene glycol amount and exposure dose on optical and mechanical properties was investigated. The final procedure of the UV imprint on the optical fiber tip was developed, including the mold preparation, setup building, UV exposure and post-laser cure. As the IL-containing vinylbenzyl groups can also be polymerized by the radical rearrangement of double bonds through thermal heating, the influence of the addition of 1–2% BHT polymerization inhibitor was verified. As a result, we present the fabricated diffraction gratings and the optical fiber spectrometer component—grism (grating-prism), which allows obtaining a dispersion spectrum at the output of an optical in line with the optical fiber long axis, as the main component in an optical fiber spectrometer. The process is very simple due to the fact that its optimization already starts in the process of molecule design, which is part of the trend of sustainable technologies. The final material can be designed by the tailoring of the anion and/or cation molecule, which in turn can lead to a more efficient fabrication procedure and additional functionalities of the final structure. Full article
(This article belongs to the Special Issue Advanced Research in Green Chemistry)
Show Figures

Figure 1

Back to TopTop