Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Modification of the Cellulose Derivatives
2.2. Manufacturing of Cellulose-Based Architectures via Photocrosslinking and Subsequent Regeneration into Pure Cellulose
3. Conclusions
4. Experimental Section
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wassmann, P. Arctic marine ecosystems in an era of rapid climate change. Prog. Oceanogr. 2011, 90, 1–17. [Google Scholar] [CrossRef]
- Wells, M.L.; Karlson, B.; Wulff, A.; Kudela, R.; Trick, C.; Asnaghi, V.; Berdalet, E.; Cochlan, W.; Davidson, K.; De Rijcke, M.; et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 2020, 91, 101632. [Google Scholar] [CrossRef] [PubMed]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Roode-Gutzmer, Q.I.; Kaiser, D.; Bertau, M. Renewable methanol synthesis. ChemBioEng Rev. 2019, 6, 209–236. [Google Scholar] [CrossRef]
- Rothammer, B.; Neusser, K.; Marian, M.; Bartz, M.; Krauß, S.; Böhm, T.; Thiele, S.; Benoit, M.; Detsch, R.; Wartzack, S. Amorphous carbon coatings for total knee replacements—Part i: Deposition, Cytocompatibility, chemical and mechanical properties. Polymers 2021, 13, 1952. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Rothammer, M.; Zollfrank, C.; Busch, K.; von Freymann, G. Tailored disorder in photonics: Learning from nature. Adv. Opt. Mater. 2021, 9, 2100787. [Google Scholar] [CrossRef]
- Reimer, M.; Eckel, F.; Rothammer, M.; Van Opdenbosch, D.; Zollfrank, C. Manufacturing of cellulose-based nano- and submicronparticles via different precipitation methods. Cellulose 2023, 30, 8861–8881. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Wang, W.; Lu, J.; Li, Y.; Bai, T.; Chen, J.; Zhu, Z.; Wang, D. Preparation of boron-containing chitosan derivative and its application as intumescent flame retardant for epoxy resin. Cellulose 2023, 30, 4663–4681. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Rothammer, M.; Strobel, P.; Zollfrank, C.; Urmann, C. Biocompatible coatings based on photo-crosslinkable cellulose derivatives. Int. J. Biol. Macromol. 2023, 250, 126063. [Google Scholar] [CrossRef] [PubMed]
- Rothammer, M.; Heep, M.C.; von Freymann, G.; Zollfrank, C. Enabling direct laser writing of cellulose-based submicron architectures. Cellulose 2018, 25, 6031–6039. [Google Scholar] [CrossRef]
- Meiers, D.T.; Rothammer, M.; Maier, M.; Zollfrank, C.; von Freymann, G. Utilizing the Sensitization Effect for Direct Laser Writing in a Novel Photoresist Based on the Chitin Monomer N-acetyl-D-glucosamine. Adv. Eng. Mater. 2023, 25, 2201688. [Google Scholar] [CrossRef]
- Rothammer, M.; Meiers, D.T.; Maier, M.; Von Freymann, G.; Zollfrank, C. Initiator-free photo-cross-linkable cellulose-based resists for fabricating submicron patterns via direct laser writing. JOSA B 2023, 40, 849–855. [Google Scholar] [CrossRef]
- Nobbs, J.D.; Zainal, N.Z.; Tan, J.; Drent, E.; Stubbs, L.P.; Li, C.; Lim, S.C.; Kumbang, D.G.; van Meurs, M. Bio–based Pentenoic Acids as Intermediates to Higher Value-Added Mono-and Dicarboxylic Acids. ChemistrySelect 2016, 1, 539–544. [Google Scholar] [CrossRef]
- Parodi, A.; Jorea, A.; Fagnoni, M.; Ravelli, D.; Samorì, C.; Torri, C.; Galletti, P. Bio-based crotonic acid from polyhydroxybutyrate: Synthesis and photocatalyzed hydroacylation. Green Chem. 2021, 23, 3420–3427. [Google Scholar] [CrossRef]
- Kindler, A.; Zelder, O. Biotechnological and Chemical Production of Monomers from Renewable Raw Materials. In Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Marian, M.; Zambrano, D.F.; Rothammer, B.; Waltenberger, V.; Boidi, G.; Krapf, A.; Benoit, M.; Stampfl, J.; Rosenkranz, A.; Gachot, C.; et al. Combining multi-scale surface texturing and DLC coatings for improved tribological performance of 3D printed polymers. Surf. Coat. Technol. 2023, 466, 129682. [Google Scholar] [CrossRef]
- Schroeter, J.; Felix, F. Melting cellulose. Cellulose 2005, 12, 159–165. [Google Scholar] [CrossRef]
- Ganster, J.; Fink, H.P. Cellulose and cellulose acetate. In Bio-Based Plastics: Materials and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 35–62. [Google Scholar]
- Rees, A.; Powell, L.C.; Chinga-Carrasco, G.; Gethin, D.T.; Syverud, K.; Hill, K.E.; Thomas, D.W. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res. Int. 2015, 2015, 925757. [Google Scholar] [CrossRef]
- Pattinson, S.W.; Hart, A.J. Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Adv. Mater. Technol. 2017, 2, 1600084. [Google Scholar] [CrossRef]
- Melilli, G.; Carmagnola, I.; Tonda-Turo, C.; Pirri, F.; Ciardelli, G.; Sangermano, M.; Hakkarainen, M.; Chiappone, A. DLP 3D printing meets lignocellulosic biopolymers: Carboxymethyl cellulose inks for 3D biocompatible hydrogels. Polymers 2020, 12, 1655. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.C.; Lei, I.M.; van de Kerkhof, G.T.; Parker, R.M.; Richards, K.D.; Evans, R.C.; Huang, Y.Y.S.; Vignolini, S. 3D printing of liquid crystalline hydroxypropyl cellulose—Toward tunable and sustainable volumetric photonic structures. Adv. Funct. Mater. 2022, 32, 2108566. [Google Scholar] [CrossRef]
- Rozicka, A.; Niemistö, J.; Keiski, R.L.; Kujawski, W. Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures. J. Membr. Sci. 2014, 453, 108–118. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001, 26, 1689–1762. [Google Scholar] [CrossRef]
- Tischer, T.; Goldmann, A.S.; Linkert, K.; Trouillet, V.; Börner, H.G.; Barner-Kowollik, C. Modular ligation of thioamide functional peptides onto solid cellulose substrates. Adv. Funct. Mater. 2012, 22, 3853–3864. [Google Scholar] [CrossRef]
- Schmidt, S.; Liebert, T.; Heinze, T. Synthesis of soluble cellulose tosylates in an eco-friendly medium. Green Chem. 2014, 16, 1941–1946. [Google Scholar] [CrossRef]
- Barud, H.S.; Júnior, A.M.d.A.; Santos, D.B.; de Assunção, R.M.; Meireles, C.S.; Cerqueira, D.A.; Filho, G.R.; Ribeiro, C.A.; Messaddeq, Y.; Ribeiro, S.J. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim. Acta 2008, 471, 61–69. [Google Scholar] [CrossRef]
- El-Sayed, N.S.; Abd El-Aziz, M.E.; Kamel, S.; Turky, G. Synthesis and characterization of polyaniline/tosylcellulose stearate composites as promising semiconducting materials. Synth. Met. 2018, 236, 44–53. [Google Scholar] [CrossRef]
- Takacs, E.; Wojnarovits, L.; Földváry, C.; Borsa, J.; Sajó, I. Radiation activation of cotton-cellulose prior to alkali treatment. Res. Chem. Intermed. 2001, 27, 837–845. [Google Scholar] [CrossRef]
- Liu, C.; Baumann, H. New 6-butylamino-6-deoxycellulose and 6-deoxy-6-pyridiniumcellulose derivatives with highest regioselectivity and completeness of reaction. Carbohydr. Res. 2005, 340, 2229–2235. [Google Scholar] [CrossRef] [PubMed]
- Cabassi, F.; Casu, B.; Perlin, A.S. Infrared absorption and Raman scattering of sulfate groups of heparin and related glycosaminoglycans in aqueous solution. Carbohydr. Res. 1978, 63, 1–11. [Google Scholar] [CrossRef]
- Rahn, K.; Diamantoglou, M.; Klemm, D.; Berghmans, H.; Heinze, T. Homogeneous synthesis of cellulose p-toluenesulfonates in N, N-dimethylacetamide/LiCl solvent system. Die Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1996, 238, 143–163. [Google Scholar] [CrossRef]
- Freeman, D.; Hamble, A.N. Spectra of sulphonyl derivatives. IV. Sulphonic esters. Aust. J. Chem. 1957, 10, 239–249. [Google Scholar] [CrossRef]
- Träskman, B.; Tammela, V. The preparation and properties of vinyl cellulose. J. Appl. Polym. Sci. 1986, 31, 2043–2054. [Google Scholar] [CrossRef]
- Valentin, H.E.; Berger, P.A.; Gruys, K.J.; Rodrigues, M.F.d.A.; Steinbüchel, A.; Tran, M.; Asrar, J. Biosynthesis and characterization of poly (3-hydroxy-4-pentenoic acid). Macromolecules 1999, 32, 7389–7395. [Google Scholar] [CrossRef]
- Sherazi, S.T.H.; Arain, S.; Mahesar, S.A.; Bhanger, M.I.; Khaskheli, A.R. Erucic acid evaluation in rapeseed and canola oil by Fourier transform-infrared spectroscopy. Eur. J. Lipid Sci. Technol. 2013, 115, 535–540. [Google Scholar] [CrossRef]
- Kono, H. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy. Carbohydr. Res. 2013, 375, 136–144. [Google Scholar] [CrossRef]
- Kono, H.; Hashimoto, H.; Shimizu, Y. NMR characterization of cellulose acetate: Chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr. Polym. 2015, 118, 91–100. [Google Scholar] [CrossRef]
- Kok, W.M.; Mainal, A.; Chuah, C.H.; Cheng, S.F. Content of erucic acid in edible oils and mustard by quantitative 13C NMR. Eur. J. Lipid Sci. Technol. 2018, 120, 1700230. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, M.; Yang, Z.; Liu, X. Ultralong-chain ionic liquid surfactants derived from natural erucic acid. ACS Sustain. Chem. Eng. 2022, 10, 2545–2555. [Google Scholar] [CrossRef]
- Kunusa, W.R.; Isa, I.; Laliyo, L.A.; Iyabu, H. FTIR, XRD and SEM analysis of microcrystalline cellulose (MCC) fibers from corncorbs in alkaline treatment. In Proceedings of the 2nd International Conference on Statistics, Mathematics, Teaching, and Research, Makassar, Indonesia, 9–10 October 2017; IOP Publishing: Bristol, UK, 2018; Volume 1028, p. 012199. [Google Scholar]
- Kim, J.J.; Lee, J.; Yang, S.P.; Kim, H.G.; Kweon, H.S.; Yoo, S.; Jeong, K.H. Biologically inspired organic light-emitting diodes. Nano Lett. 2016, 16, 2994–3000. [Google Scholar] [CrossRef] [PubMed]
- Zyla, G.; Kovalev, A.; Heisterkamp, S.; Esen, C.; Gurevich, E.L.; Gorb, S.; Ostendorf, A. Biomimetic structural coloration with tunable degree of angle-independence generated by two-photon polymerization. Opt. Mater. Express 2019, 9, 2630–2639. [Google Scholar] [CrossRef]
Sample | Assignment (ppm) | |||||||
---|---|---|---|---|---|---|---|---|
C=O (Meth-acrylic) | C=C (Aromatic) | C=C (Meth-acrylic) | C1–C5 (Backbone) | C6 (Tosylated) | C6 (Non-Tosylated) | CH3 (TS) | CH3 (Meth-acrylic) | |
TSC | – | 145.5 132.8 130.8 128.3 | – | 102.6–72.3 | 69.2 | 61.0 | 21.7 | – |
MATSC | 166.5 | 145.5 132.9 130.7 128.1 | 135.9 126.2 | 100.0–72.4 | – | 61.5 | 21.6 | 17.9 |
Sample | Assignment (ppm) | ||||||
---|---|---|---|---|---|---|---|
C=O (Acetate) | C=O (Olefinic) | C=C (Olefinic) | C1–C6 (Backbone) | CH2 (Olefinic) | CH3 (Acetate) | CH3 (Olefinic) | |
CDA | 170.1 169.3 | – | – | 100.4–62.3 | – | 20.0 19.8 | – |
PECA | 170.1 169.3 | 172.1 | 137.0 115.4 | 100.4–62.3 | 33.1 | 20.0 19.8 | – |
ERCA | 170.1 169.2 | 172.7 | 129.8 | 100.4–62.3 | 33.6–22.5 | 20.0 19.8 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothammer, M.; Zollfrank, C. Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures. Polymers 2024, 16, 9. https://doi.org/10.3390/polym16010009
Rothammer M, Zollfrank C. Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures. Polymers. 2024; 16(1):9. https://doi.org/10.3390/polym16010009
Chicago/Turabian StyleRothammer, Maximilian, and Cordt Zollfrank. 2024. "Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures" Polymers 16, no. 1: 9. https://doi.org/10.3390/polym16010009
APA StyleRothammer, M., & Zollfrank, C. (2024). Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures. Polymers, 16(1), 9. https://doi.org/10.3390/polym16010009