Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = UV exclusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 636 KiB  
Article
Molecular Epidemiology of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Guizhou Angus Calves: Dominance of Angus Cattle-Adapted Genotypes and Zoonotic Potential of E. bieneusi
by Peixi Qin, Zhuolin Tao, Kaizhi Shi, Jiaxian Zhao, Bingyan Huang, Hui Liu, Chunqun Wang, Jigang Yin, Guan Zhu, Simone M. Cacciò and Min Hu
Microorganisms 2025, 13(8), 1735; https://doi.org/10.3390/microorganisms13081735 - 25 Jul 2025
Viewed by 284
Abstract
Limited molecular data exist on zoonotic parasites Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Angus calves from Guizhou, China. This study constitutes the first molecular epidemiological survey of these pathogens in this region. 817 fecal samples from Angus calves across 7 [...] Read more.
Limited molecular data exist on zoonotic parasites Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Angus calves from Guizhou, China. This study constitutes the first molecular epidemiological survey of these pathogens in this region. 817 fecal samples from Angus calves across 7 intensive beef farms (Bijie City). Nested PCR methods targeting SSU rRNA (Cryptosporidium spp.), gp60 (Cryptosporidium bovis subtyping), bg/gdh/tpi (G. duodenalis), and ITS (E. bieneusi) coupled with DNA sequencing were employed. DNA sequences were analyzed against the NCBI. database. Statistical differences were assessed via a generalized linear mixed-effects model. Cryptosporidium spp. prevalence 23.5% (192/817; 95% CI 28.1–34.6%), with C. bovis predominating 89.6% (172/192; 95% CI 84.4–93.5%) and six subtypes (XXVIa-XXVIf). Highest infection in 4–8-week-olds 29.9% (143/479; 95% CI 25.8–34.1%) (p < 0.01). G. duodenalis: 31.3% (256/817; 95% CI 28.1–34.6%) positive, overwhelmingly assemblage E 97.6% (6/256; 95% CI 0.9–5.0%), zoonotic assemblage A was marginal 0.7% (6/817; 95% CI 0.3–1.6%). Farm-level variation exceeded 10-fold (e.g., Gantang: 55.0% (55/100; 95% CI 44.7–65.0%) vs. Tieshi: 4.9% (5/102; 95% CI 1.6–11.1%). E. bieneusi: prevalence 19.7% (161/817; 95% CI 17.0–22.6%), exclusively zoonotic genotypes BEB4: 49.7% (80/161; 95% CI 41.7–57.7%); I: 40.4% (65/161; 95% CI 32.7–48.4%). Strong diarrhea association (p < 0.01) and site-specific patterns (e.g., Guanyindong: 39.2%). While Giardia exhibited the highest prevalence (31.3%) with minimal zoonotic risk, Enterocytozoon—despite lower prevalence (19.7%)—posed the greatest public health threat due to exclusive circulation of human-pathogenic genotypes (BEB4/I) and significant diarrhea association, highlighting divergent control priorities for these enteric parasites in Guizhou calves. Management/Public health impact: Dominant zoonotic E. bieneusi genotypes (BEB4/I) necessitate: 1. Targeted treatment of 4–8-week-old Angus calves. 2. Manure biofermentation (≥55 °C, 3 days), and 3. UV-disinfection (≥1 mJ/cm2) for karst water to disrupt transmission in this high-humidity region. Full article
Show Figures

Figure 1

13 pages, 1527 KiB  
Article
Ethnic-Specific and UV-Independent Mutational Signatures of Basal Cell Carcinoma in Koreans
by Ye-Ah Kim, Seokho Myung, Yueun Choi, Junghyun Kim, Yoonsung Lee, Kiwon Lee, Bark-Lynn Lew, Man S. Kim and Soon-Hyo Kwon
Int. J. Mol. Sci. 2025, 26(14), 6941; https://doi.org/10.3390/ijms26146941 - 19 Jul 2025
Viewed by 300
Abstract
Basal cell carcinoma (BCC), the most common skin cancer, is primarily driven by Hedgehog (Hh) and TP53 pathway alterations. Although additional pathways were implicated, the mutational landscape in Asian populations, particularly Koreans, remains underexplored. We performed whole-exome sequencing of BCC tumor tissues from [...] Read more.
Basal cell carcinoma (BCC), the most common skin cancer, is primarily driven by Hedgehog (Hh) and TP53 pathway alterations. Although additional pathways were implicated, the mutational landscape in Asian populations, particularly Koreans, remains underexplored. We performed whole-exome sequencing of BCC tumor tissues from Korean patients and analyzed mutations in 11 established BCC driver genes (PTCH1, SMO, GLI1, TP53, CSMD1/2, NOTCH1/2, ITIH2, DPP10, and STEAP4). Mutational profiles were compared with Caucasian cohort profiles to identify ethnicity-specific variants. Ultraviolet (UV)-exposed and non-UV-exposed tumor sites were compared; genes unique to non-UV-exposed tumors were further analyzed with protein–protein interaction analysis. BCCs in Koreans exhibited distinct features, including fewer truncating and more intronic variants compared to Caucasians. Korean-specific mutations in SMO, PTCH1, TP53, and NOTCH2 overlapped with oncogenic gain-of-function/loss-of-function (GOF/LOF) variants annotated in OncoKB, with some occurring at hotspot sites. BCCs in non-exposed areas showed recurrent mutations in CSMD1, PTCH1, and NOTCH1, suggesting a UV-independent mechanism. Novel mutations in TAS1R2 and ADCY10 were exclusive to non-exposed BCCs, with protein–protein interaction analysis linking them to TP53 and NOTCH2. We found unique ethnic-specific and UV-independent mutational profiles of BCCs in Koreans. TAS1R2 and ADCY10 may contribute to tumorigenesis of BCC in non-exposed areas, supporting the need for population-specific precision oncology. Full article
(This article belongs to the Special Issue Skin Cancer: From Molecular Pathophysiology to Novel Treatment)
Show Figures

Figure 1

14 pages, 3096 KiB  
Article
Photoelectrochemical CO2 Reduction Measurements of a BiOI Coating Deposited onto a Non-Conductive Glass Support as a Platform for Environmental Remediation
by J. Manuel Mora-Hernandez and A. Hernández-Ramírez
Processes 2025, 13(7), 2292; https://doi.org/10.3390/pr13072292 - 18 Jul 2025
Viewed by 482
Abstract
Aiming to contribute to environmental remediation strategies, this work proposes a novel fabrication of photoelectrocatalytic electrodes containing a BiOI coating deposited onto non-conductive glass (NCG) for CO2 conversion applications. When BiOI electrodes are not deposited onto fluorine-doped tin oxide (FTO) or indium [...] Read more.
Aiming to contribute to environmental remediation strategies, this work proposes a novel fabrication of photoelectrocatalytic electrodes containing a BiOI coating deposited onto non-conductive glass (NCG) for CO2 conversion applications. When BiOI electrodes are not deposited onto fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) conductive supports, the electrochemical measurements enable the registration of the (photo)electrochemical response for bare BiOI, thereby excluding remnant signals from the conductive supports and reporting an exclusive and proper photoelectrocatalytic BiOI response. A systematic procedure was carried out to improve the physicochemical properties of BiOI through a simple variation in the amount of reagents employed in a solvothermal synthesis, thus increasing the crystallite size and surface area of the resulting material (BiOI-X3-20wt.%). The tailored BiOI coating on a non-conductive support showed activity in performing CO2 photoelectroreduction under UV–Vis irradiation in aqueous media. Finally, the BiOI-X3-20wt.% sample was evaluated for photocatalytic CO2 conversion in gaseous media, producing CO as the primary reaction product. This study confirms that BiOI is a suitable and easily synthesized material, with potential applications for CO2 capture and conversion when employed as a photoactive coating for environmental remediation. Full article
(This article belongs to the Special Issue Advanced Application of Photoelectrocatalysis for Energy Conversion)
Show Figures

Graphical abstract

16 pages, 1584 KiB  
Article
Cytotoxic Activity of Essential Oils from Middle Eastern Medicinal Plants on Malignant Keratinocytes
by Rima Othman, Vanessa Moarbes, Muriel Tahtouh Zaatar, Diane Antonios, Rabih Roufayel, Marc Beyrouthy, Ziad Fajloun, Jean-Marc Sabatier and Marc Karam
Molecules 2025, 30(13), 2844; https://doi.org/10.3390/molecules30132844 - 3 Jul 2025
Viewed by 881
Abstract
Skin cancer, including melanoma and non-melanoma cancers (basal and squamous cell carcinomas), is the most common type of cancer. UV radiation, family history, and genetic predisposition are the main risk factors. Although surgical excision is the standard treatment, essential oils are attracting growing [...] Read more.
Skin cancer, including melanoma and non-melanoma cancers (basal and squamous cell carcinomas), is the most common type of cancer. UV radiation, family history, and genetic predisposition are the main risk factors. Although surgical excision is the standard treatment, essential oils are attracting growing interest for their anti-cancer effects. This study tested the effects of Juniperus excelsa M. Bieb. (Cupressaceae), Lavandula vera DC. (Lamiaceae), and Salvia fruticosa (Mill). (Lamiaceae) essential oils extracted from Middle Eastern medicinal plants on HaCaT (normal), A5 (benign), and II4 (low-grade malignant) keratinocytes. Essential oils were extracted from Juniperus excelsa, Lavandula vera, and Salvia libanotica using steam distillation and then were chemically analyzed. The oils were sterilized, dissolved in DMSO, and prepared at concentrations of 0.75, 0.5, and 0.25 mg/mL. Human keratinocyte (HaCaT), benign (A5), and malignant (II4) cell lines were cultured in DMEM and treated with the essential oils for 24 or 48 h. Cell viability was assessed using the Trypan Blue Exclusion Test, while cell proliferation was evaluated using the MTT assay. Statistical analysis was performed using ANOVA with appropriate post hoc tests, considering p < 0.05 as significant. The results show that J. excelsa is cytotoxic but lacks selectivity, limiting its efficacy. In contrast, L. vera and S. fruticosa preferentially target malignant cells, particularly at low concentrations, while sparing normal cells. These oils have dose-dependent anticancer effects, with L. vera efficacy increasing as the concentration increases. In conclusion, L. vera and S. fruticosa are promising candidates for the treatment of skin cancer, although further in vivo studies are required. Full article
(This article belongs to the Special Issue Advances in Plant-Sourced Natural Compounds as Anticancer Agents)
Show Figures

Figure 1

13 pages, 3506 KiB  
Article
Development of an HPTLC-MS Method for the Differentiation of Celosiae Semen: Celosia argentea Versus C. cristata
by Kyu Won Kim, Geonha Park, Sejin Ku and Young Pyo Jang
Molecules 2025, 30(13), 2786; https://doi.org/10.3390/molecules30132786 - 28 Jun 2025
Viewed by 288
Abstract
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, [...] Read more.
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, is not officially listed. The morphological and chemical similarities between the two pose challenges for accurate identification. This study presents an integrative method combining digital image analysis and high-performance thin-layer chromatography coupled with mass spectrometry (HPTLC-MS) to differentiate CAS from CCS. Digital microscopy and ImageJ analysis showed that CCS has a projection area over twice that of CAS. Chemically, an optimized HPTLC method using ethyl acetate, methanol, water, and formic acid revealed distinct fingerprint patterns under UV 366 nm and white light. Notably, celosin F was exclusively detected in CAS, while celosin H, J, and K were characteristic of CCS. ESI-TOF-MS analysis confirmed these markers, resolving an overlap in RF values. Repeatability tests showed total SDs of sucrose for intra-day, inter-day, and inter-analysis precision were 0.006, 0.004, and 0.005, respectively, confirming method reliability. This combined approach offers a rapid, reliable, and practical tool for distinguishing these two medicinal seeds, supporting enhanced quality control and regulatory standardization in pharmaceutical applications. Full article
Show Figures

Figure 1

22 pages, 3175 KiB  
Article
Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts
by Yibin Bu, Kasper Wenderich, Nathália Tavares Costa, Kees-Jan C. J. Weststrate, Annemarie Huijser and Guido Mul
Molecules 2025, 30(12), 2577; https://doi.org/10.3390/molecules30122577 - 13 Jun 2025
Viewed by 895
Abstract
Ru/TiO2 catalysts are well known for their high activity in the hydrogenation of CO2 to CH4 (the Sabatier reaction). This activity is commonly attributed to strong metal–support interactions (SMSIs), associated with reducible oxide layers partly covering the Ru-metal particles. Moreover, [...] Read more.
Ru/TiO2 catalysts are well known for their high activity in the hydrogenation of CO2 to CH4 (the Sabatier reaction). This activity is commonly attributed to strong metal–support interactions (SMSIs), associated with reducible oxide layers partly covering the Ru-metal particles. Moreover, isothermal rates of formation of CH4 can be significantly enhanced by the exposure of Ru/TiO2 to light of UV/visible wavelengths, even at relatively low intensities. In this study, we confirm the significant enhancement in the rate of formation of methane in the conversion of CO2, e.g., at 200 °C from ~1.2 mol gRu−1·h−1 to ~1.8 mol gRu−1·h−1 by UV/Vis illumination of a hydrogen-treated Ru/TiOx catalyst. The activation energy does not change upon illumination—the rate enhancement coincides with a temperature increase of approximately 10 °C in steady state (flow) conditions. In-situ DRIFT experiments, performed in batch mode, demonstrate that the Ru–CO absorption frequency is shifted and the intensity reduced by combined UV/Vis illumination in the temperature range of 200–350 °C, which is more significant than can be explained by temperature enhancement alone. Moreover, exposing the catalyst to either UV (predominantly exciting TiO2) or visible illumination (exclusively exciting Ru) at small intensities leads to very similar effects on Ru–CO IR intensities, formed in situ by exposure to CO2. This further confirms that the temperature increase is likely not the only explanation for the enhancement in the reaction rates. Rather, as corroborated by photophysical studies reported in the literature, we propose that illumination induces changes in the electron density of Ru partly covered by a thin layer of TiOx, lowering the CO coverage, and thus enhancing the methane formation rate upon illumination. Full article
(This article belongs to the Special Issue Metallic Nanoclusters and Their Interaction with Light)
Show Figures

Graphical abstract

19 pages, 3199 KiB  
Article
Quantitative Analysis of Isoflavones from Fabaceae Species and Their Chemopreventive Potential on Breast Cancer Cells
by Wojciech Paździora, Karolina Grabowska, Paweł Zagrodzki, Paweł Paśko, Ewelina Prochownik, Irma Podolak and Agnieszka Galanty
Molecules 2025, 30(11), 2379; https://doi.org/10.3390/molecules30112379 - 29 May 2025
Viewed by 555
Abstract
The Fabaceae family is known for the presence of isoflavones—phytoestrogens with potential chemopreventive effects against hormone-dependent cancers. This study aimed to optimize isoflavones extraction using a fractional factorial design and to quantitatively and qualitatively analyze 32 Fabaceae species native to Polish flora by [...] Read more.
The Fabaceae family is known for the presence of isoflavones—phytoestrogens with potential chemopreventive effects against hormone-dependent cancers. This study aimed to optimize isoflavones extraction using a fractional factorial design and to quantitatively and qualitatively analyze 32 Fabaceae species native to Polish flora by HPLC-UV-VIS to indicate new, rich plant sources of isoflavones. The optimal extraction method was a 60 min reflux with 50% methanol and a plant material-to-solvent ratio of 1:125. The highest isoflavone levels were found in Trifolium medium (26.70 mg/g d.m.), Genista tinctoria (19.65 mg/g d.m.), and Trifolium pratense (12.56 mg/g d.m.). The obtained extracts were further evaluated for cytotoxic and antiproliferative activity against MCF7 and MDA-MB-231 human breast cancer cells. Genista tinctoria showed the highest cytotoxicity against MCF7, while Cytisus scoparius and Ononis arvensis were most effective against MDA-MB-231 at a dose of 500 µg/mL. The extracts were also characterized by varied, potent antioxidant properties, important in chemoprevention. A strong correlation was observed between isoflavone content and cytotoxic and antiproliferative activity exclusively in the estrogen receptor-positive MCF7 cell line. Importantly, the tested extracts demonstrated no toxic effects on normal human liver (HepG2), thyroid (Nthy-ori 3-1), or breast (MCF10A) cells, indicating a favorable safety profile. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Figure 1

17 pages, 2721 KiB  
Article
Biophysical Characterization of Shrimp Hemocyanins: Stability and Emerging Biotechnological Applications
by Lierge Ramos, Claudemir O. Souza, Ísis Sebastião, Giovana Bertini, Francisco Adriano de Oliveira Carvalho, Regildo Márcio Gonçalves da Silva, Edson Miguel Vilanculo, Julianne Soares Pereira and Patrícia Soares Santiago
Biomolecules 2025, 15(5), 675; https://doi.org/10.3390/biom15050675 - 6 May 2025
Viewed by 609
Abstract
Hemocyanins are oxygen-transporting proteins found in crustaceans and other arthropods, playing key roles in immune defense and metabolic regulation. Due to their stability and bioactive properties, Hcs have gained increasing interest in biotechnological and biomedical applications. However, detailed biophysical characterization is crucial to [...] Read more.
Hemocyanins are oxygen-transporting proteins found in crustaceans and other arthropods, playing key roles in immune defense and metabolic regulation. Due to their stability and bioactive properties, Hcs have gained increasing interest in biotechnological and biomedical applications. However, detailed biophysical characterization is crucial to understanding their functional potential. In this study, the hemocyanin was extracted and purified from Macrobrachium acanthurus (HcMac) using ultracentrifugation and size-exclusion chromatography. The molecular mass of HcMac was determined by SDS-PAGE electrophoresis, MALDI-TOF mass spectrometry, and analytical ultracentrifugation. Spectroscopic analyses, including UV-Vis absorption, fluorescence emission, and light scattering intensity, were used to assess the structural stability of the compound under various pH conditions. HcMac was identified as a hexameric protein (~450 kDa) composed of monomeric subunits of 75 and 76 kDa. The protein maintained its oligomeric stability and oxygen-binding affinity in the pH range of 5.0–7.4. However, extreme pH conditions (below 4.4 and above 7.5) induced structural alterations, leading to dissociation and conformational changes, as evidenced by fluorescence emission and UV-Vis spectra. The isoelectric point was determined to be between pH 4.3 and 5.3, consistent with other crustacean HCs. These findings reinforce the structural robustness of HcMac and suggest its potential for biotechnological applications. The high stability of HcMac under physiological pH conditions indicates its suitability for biomedical research, including immunomodulatory and antimicrobial applications. Future studies integrating bioinformatics, proteomics, and immunological assays will be essential to explore the therapeutic potential of HcMac. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

19 pages, 3254 KiB  
Article
YOLO-PEL: The Efficient and Lightweight Vehicle Detection Method Based on YOLO Algorithm
by Zhi Wang, Kaiyu Zhang, Fei Wu and Hongxiang Lv
Sensors 2025, 25(7), 1959; https://doi.org/10.3390/s25071959 - 21 Mar 2025
Cited by 2 | Viewed by 1066
Abstract
YOLOv8-PEL shows outstanding performance in detection accuracy, computational efficiency, and generalization capability, making it suitable for real-time and resource-constrained applications. This study aims to address the challenges of vehicle detection in scenarios with fixed camera angles, where precision is often compromised for the [...] Read more.
YOLOv8-PEL shows outstanding performance in detection accuracy, computational efficiency, and generalization capability, making it suitable for real-time and resource-constrained applications. This study aims to address the challenges of vehicle detection in scenarios with fixed camera angles, where precision is often compromised for the sake of cost control and real-time performance, by leveraging the enhanced YOLOv8-PEL model. We have refined the YOLOv8n model by introducing the innovative C2F-PPA module within the feature fusion segment, bolstering the adaptability and integration of features across varying scales. Furthermore, we have proposed ELA-FPN, which further refines the model’s multi-scale feature fusion and generalization capabilities. The model also incorporates the Wise-IoUv3 loss function to mitigate the deleterious gradients caused by extreme examples in vehicle detection samples, resulting in more precise detection outcomes. We employed the COCO-Vehicle dataset and the VisDrone2019 dataset for our training, with the former being a subset of the COCO dataset that exclusively contains images and labels of cars, buses, and trucks. Experimental results demonstrate that the YOLOv8-PEL model achieved a mAP@0.5 of 66.9% on the COCO-Vehicle dataset, showcasing excellent efficiency with only 2.23 M parameters, 7.0 GFLOPs, a mere 4.5 MB model size, and 176.8 FPS—an increase from the original YOLOv8n’s inference speed of 165.7 FPS. Despite a marginal 0.2% decrease in accuracy compared to the original YOLOv8n, the parameters, GFLOPs, and model size were reduced by 25%, 13%, and 25%, respectively. The YOLOv8-PEL model excels in detection precision, computational efficiency, and generalizability, making it well-suited for real-time and resource-constrained application scenarios. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

17 pages, 2821 KiB  
Article
Poly(oligoethylene glycol methylether methacrylate-co-methyl methacrylate) Aggregates as Nanocarriers for Curcumin and Quercetin
by Michaila Akathi Pantelaiou, Dimitrios Vagenas and Stergios Pispas
Polymers 2025, 17(5), 635; https://doi.org/10.3390/polym17050635 - 27 Feb 2025
Cited by 1 | Viewed by 1261
Abstract
Amphiphilic statistical copolymers can be utilized for the formulation of nanocarriers for the drug delivery of insoluble substances. Oligoethylene glycol methylether methacrylate and methyl methacrylate are two biocompatible monomers that can be used for biological applications. In this work, the synthesis of linear [...] Read more.
Amphiphilic statistical copolymers can be utilized for the formulation of nanocarriers for the drug delivery of insoluble substances. Oligoethylene glycol methylether methacrylate and methyl methacrylate are two biocompatible monomers that can be used for biological applications. In this work, the synthesis of linear poly(oligoethylene glycol methylether methacrylate-co-methyl methacrylate), P(OEGMA-co-MMA), and statistical copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization is reported. P(OEGMA-co-MMA) copolymers with different comonomer compositions were synthesized and characterized by size exclusion chromatography (SEC), 1H-NMR, and ATR-FTIR spectroscopy. Self-assembly studies were carried out by the dissolution of polymers in water and via the co-solvent protocol. For the characterization of the formed nanoaggregates, DLS, zeta potential, and fluorescence spectroscopy (FS) experiments were performed. Such measurements delineate the association of copolymers into aggregates with structural characteristics dependent on copolymer composition. In order to investigate the drug encapsulation properties of the formed nanoparticles, curcumin and quercetin were loaded into them. The co-solvent protocol was followed for the encapsulation of varying concentrations of the two drugs. Nanocarrier formulation properties were confirmed by DLS while UV–Vis and FS experiments revealed the encapsulation loading and the optical properties of the drug-loaded nanosystems in each case. The maximum encapsulation efficiency was found to be 54% for curcumin and 49% for quercetin. For all nanocarriers, preliminary qualitive biocompatibility studies were conducted by the addition of FBS medium in the copolymer aqueous solutions which resulted in no significant interactions between copolymer aggregates and serum proteins. Novel nanocarriers of curcumin and quercetin were fabricated as a first step for the utilization of these statistical copolymer nanosystems in nanomedicine. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery Applications)
Show Figures

Figure 1

14 pages, 504 KiB  
Article
Enhancing Photoprotection and Mitigating Ex Vivo Stratum Corneum Oxidative Stress: A Multifunctional Strategy Combining Rosmarinic Acid with UVB Filters
by Pedro Ivo de Souza Macedo, Claudinéia Aparecida Sales de Oliveira Pinto, Camila Faustino Hiraishi, Gabriela de Argollo Marques, Cassiano Carlos Escudeiro, Fabiana Vieira Lima Solino Pessoa, João Gregório, Catarina Rosado, Maria Valéria Robles Velasco and André Rolim Baby
Antioxidants 2025, 14(3), 274; https://doi.org/10.3390/antiox14030274 - 26 Feb 2025
Viewed by 987
Abstract
Exposure to ultraviolet (UV) radiation is a major contributor to skin injury, including sunburn, photoaging, and augmented risk of skin cancer, primarily through the generation of reactive oxygen species (ROS) that induce oxidative stress. Rosmarinic acid (RA), a natural phenolic compound with antioxidant [...] Read more.
Exposure to ultraviolet (UV) radiation is a major contributor to skin injury, including sunburn, photoaging, and augmented risk of skin cancer, primarily through the generation of reactive oxygen species (ROS) that induce oxidative stress. Rosmarinic acid (RA), a natural phenolic compound with antioxidant and several other biological properties, has shown promise in mitigating such damage when incorporated into sunscreens. We evaluated RA’s possible interactions and potential to enhance the efficacy of three worldwide known UVB filters—ethylhexyl methoxycinnamate (EHMC), octocrylene (OCT), and ethylhexyl salicylate (EHS). The performance of sunscreens with and without RA (0.1% w/w) was analyzed through in vitro and in vivo photoprotective assessments. The HPLC-TBARS-EVSC (high-performance liquid chromatography—thiobarbituric acid reactive substances—ex vivo stratum corneum) protocol, which quantified oxidative stress reduction in the human stratum corneum, was also used. The in vitro photoprotective assays showed that RA had distinct levels of interactions with the UVB filters. When associated with EHMC, RA exclusively acted in the UVB range (SPF-enhancing effect). Remarkably, for EHS, RA contributed to a higher efficacy profile in the total UV spectrum. OCT-RA was the sample that reached the highest critical wavelength value parallelly to OCT, boosting the in vivo SPF by more than 157% in comparison to OCT. However, its in vitro SPF performance was not affected by the RA addition, being comparable to OCT, EHS, and EHS-RA. Furthermore, the HPLC-TBARS-EVSC protocol highlighted RA’s ability to reduce lipid peroxidation, with OCT-RA exhibiting the most notable protective effect. These findings underscore RA’s potential as a multifunctional additive in sunscreen systems, enhancing both photoprotection and oxidative stress mitigation. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 2080 KiB  
Article
Multi-Responsive Amphiphilic Hyperbranched Poly[(2-dimethyl aminoethyl methacrylate)-co-(benzyl methacrylate)]copolymers: Self-Assembly and Curcumin Encapsulation in Aqueous Media
by Foteini Ginosati, Dimitrios Vagenas, Angelica Maria Gerardos and Stergios Pispas
Materials 2025, 18(3), 513; https://doi.org/10.3390/ma18030513 - 23 Jan 2025
Cited by 2 | Viewed by 915
Abstract
In this study, we report the synthesis of amphiphilic hyperbranched poly[(2-dimethylaminoethyl methacrylate)-co-(benzyl methacrylate)] statistical copolymers with two different stoichiometric compositions using the reversible addition–fragmentation chain transfer polymerization (RAFT) technique. The selection of monomers was made to incorporate a pH and thermoresponsive polyelectrolyte (DMAEMA) [...] Read more.
In this study, we report the synthesis of amphiphilic hyperbranched poly[(2-dimethylaminoethyl methacrylate)-co-(benzyl methacrylate)] statistical copolymers with two different stoichiometric compositions using the reversible addition–fragmentation chain transfer polymerization (RAFT) technique. The selection of monomers was made to incorporate a pH and thermoresponsive polyelectrolyte (DMAEMA) component and a hydrophobic component (BzMA) to achieve amphiphilicity and study the effects of architecture and environmental factors on the behavior of the novel branched copolymers. Molecular characterization was performed through size exclusion chromatography (SEC) and spectroscopic characterization techniques (1H-NMR and FT-IR). The self-assembly behavior of the hyperbranched copolymers in aqueous media, in response to variations in pH, temperature, and ionic strength, was studied using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and fluorescence spectroscopy (FS). Finally, the efficacy of the two novel copolymers to encapsulate curcumin (CUR), a hydrophobic, polyphenolic drug with proven anti-inflammatory and fluorescence properties, was established. Its encapsulation was evaluated through DLS, UV–Vis, and fluorescence measurements, investigating the change of hydrodynamic radius of the produced mixed copolymer–CUR nanoparticles in each case and their fluorescence emission properties. Full article
(This article belongs to the Special Issue Applied Stimuli-Responsive Polymer Based Materials)
Show Figures

Figure 1

18 pages, 4146 KiB  
Article
Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation
by Lili Yu, Xintong Ma, Mingran Dai, Yue Chang, Nan Wang, Jian Zhang, Min Zhang, Na Yao, Abdul Wakeel Umar and Xiuming Liu
Molecules 2025, 30(2), 254; https://doi.org/10.3390/molecules30020254 - 10 Jan 2025
Cited by 1 | Viewed by 1039
Abstract
Safflower (Carthamus tinctorius L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet [...] Read more.
Safflower (Carthamus tinctorius L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored. Here, we report the comprehensive identification and characterization of 26 safflower TCP genes (CtTCPs), categorized into Class I (PROLIFERATING CELL FACTOR, PCF) and Class II (CINCINNATA and TEOSINTE BRANCHED1/CYCLOIDEA, CIN and CYC/TB1) subfamilies. Comparative phylogenetics, conserved motif, and gene structure analyses revealed a high degree of evolutionary conservation and functional divergence within the gene family. Promoter analyses uncovered light-, hormone-, and stress-responsive cis-elements, underscoring their regulatory potential. Functional insights from qRT-PCR analyses demonstrated dynamic CtTCP expression under abiotic stresses, including abscisic acid (ABA), Methyl Jasmonate (MeJA), Cold, and ultraviolet radiation b (UV-B) treatments. Notably, ABA stress triggered a significant increase in flavonoid accumulation, correlated with the upregulation of key flavonoid biosynthesis genes and select CtTCPs. These findings illuminate the complex regulatory networks underlying safflower’s abiotic stress responses and secondary metabolism, offering a molecular framework to enhance crop resilience and metabolic engineering for sustainable agriculture Full article
Show Figures

Figure 1

16 pages, 4180 KiB  
Article
Timing and Nature of Gemstone Tsavorite from Kenya: Constraints from In Situ U-Pb LA-ICP-MS Dating
by Shiqi Wang, Nai Wang, Siyi Zhao and Sen Wang
Minerals 2025, 15(1), 46; https://doi.org/10.3390/min15010046 - 1 Jan 2025
Cited by 1 | Viewed by 913 | Correction
Abstract
Gem-quality green vanadium grossular (var. tsavorite) is exclusively hosted in the Neoproterozoic Metamorphic Mozambique Belt (NMMB). The geochronology of tsavorite is limited until now, and the accurate crystallization age of the tsavorite in Kenya has remained unknown. Based on conventional gemological analyzing, by [...] Read more.
Gem-quality green vanadium grossular (var. tsavorite) is exclusively hosted in the Neoproterozoic Metamorphic Mozambique Belt (NMMB). The geochronology of tsavorite is limited until now, and the accurate crystallization age of the tsavorite in Kenya has remained unknown. Based on conventional gemological analyzing, by means of modern testing methods such as gemological analysis, UV-visible spectroscopy, Infrared spectroscopy, Raman spectroscopy, Electron probe, the spectral characteristics and chemical composition of tsavorite were determined, aiming to investigate the coloring elements of green garnets and trace the origin of tsavorite samples. The UV-Vis-NIR spectra and chemical composition analysis results show that vanadium and chromium are the main coloring elements in green tsavorite from Kenya. Combining the values of the δ18O (14.11‰) with the V/Cr ratio (around 4.4) of the tsavorite samples, the accuracy of the sample source has been identified. U–Pb dating of tsavorite from Kenya provides a concordant U-Pb age of 626.3 ± 4.6 Ma, in agreement with the weighted mean 206Pb /238U age of 625.9 ± 4.7 Ma (MSWD = 0.36), which indicated that Kenyan tsavorites were generated during the East African orogeny. Application of in situ laser U-Pb geochronology on gem-quality tsavorite to determine the mineralization time of Neoproterozoic Metamorphic Mozambique Belt of Kenya, which is the first step in characterizing the in situ dating analysis of gemstone tsavorite in Kenya mineral deposits Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

12 pages, 3607 KiB  
Perspective
Regeneration, Regengrow and Tissue Repair in Animals: Evolution Indicates That No Regeneration Occurs in Terrestrial Environments but Only Recovery Healing
by Lorenzo Alibardi
J. Dev. Biol. 2025, 13(1), 2; https://doi.org/10.3390/jdb13010002 - 30 Dec 2024
Viewed by 2230
Abstract
The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process [...] Read more.
The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable “recovery healing” of tissues, regengrow or scarring. This loss of regeneration likely derives from the change in genomes during land adaptation, which included the elimination of larval stages and intense metamorphosis. The terrestrial conditions are incompatible with the formation of embryonic organs that are necessary for broad regeneration. In fact, no embryonic organ can survive desiccation, intense UV or ROS exposition on land, and rapid reparative processes without embryonic patterning, such as recovery healing and scarring, have replaced broad regeneration in terrestrial species. The loss of regeneration in land animals likely depends on the alteration of developmental gene pathways sustaining regeneration that occurred in progenitor marine animals. Terrestrial larval stages, like those present in insects among arthropods, only metamorphose using small body regions indicated as imaginal disks, a terrestrial adaptation, not from a large restructuring process like in aquatic-related animals. These invertebrates can reform body appendages only during molting, a process indicated as regengrow, not regeneration. Most amniotes only repair injuries through scarring or a variable recovery healing, occasionally through regengrow, the contemporaneous healing in conjunction with somatic growth, forming sometimes new heteromorphic organs. Full article
Show Figures

Figure 1

Back to TopTop