Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,560)

Search Parameters:
Keywords = US Traffic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1777 KiB  
Review
Recycled Concrete Aggregate in Asphalt Mixtures: A Review
by Juan Gabriel Bastidas-Martínez, Hugo Alexander Rondón-Quintana and Luis Ángel Moreno-Anselmi
Recycling 2025, 10(4), 155; https://doi.org/10.3390/recycling10040155 (registering DOI) - 2 Aug 2025
Abstract
Effective management and handling of construction and demolition waste (CDW) can yield significant technical and environmental benefits for road pavement construction. This article aims to provide a comprehensive and up-to-date chronological review of studies on the mechanical performance of asphalt mixtures—primarily hot mix [...] Read more.
Effective management and handling of construction and demolition waste (CDW) can yield significant technical and environmental benefits for road pavement construction. This article aims to provide a comprehensive and up-to-date chronological review of studies on the mechanical performance of asphalt mixtures—primarily hot mix asphalt (HMA)—incorporating recycled concrete aggregate (RCA). Since the main limitation of RCA is the presence of residual adhered mortar, the review also includes studies that applied various surface treatments (mechanical, chemical, and thermal, among others) to enhance mixture performance. The article summarizes the experimental procedures used and highlights the key findings and conclusions of the reviewed research. Although the results are varied and sometimes contradictory—mainly due to the source variability and heterogeneity of RCA—the use of these materials is technically viable. Moreover, their application can provide environmental, social, and economic advantages, particularly in the construction of low-traffic roadways. Finally, the article identifies research gaps and offers recommendations for future researches. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
32 pages, 2702 KiB  
Article
Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective
by Leian Zhang, Junwu Wang, Miaomiao Zhang and Jingyi Guo
Buildings 2025, 15(15), 2732; https://doi.org/10.3390/buildings15152732 (registering DOI) - 2 Aug 2025
Abstract
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and [...] Read more.
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and systematically evaluate the safety vulnerability of subway station construction. This paper takes the Chengdu subway project as an example, and establishes a metro station construction safety vulnerability evaluation index system based on the driving forces–pressures–state–impacts–responses (DPSIR) theory with 5 first-level indexes and 23 second-level indexes, and adopts the fuzzy hierarchical analysis method (FAHP) to calculate the subjective weights, and the improved Harris Hawks optimization–projection pursuit method (HHO-PPM) to determine the objective weights, combined with game theory to calculate the comprehensive weights of the indicators, and finally uses the improved cloud model of Bayesian feedback to determine the vulnerability level of subway station construction safety. The study found that the combined empowerment–improvement cloud model assessment method is reliable, and the case study verifies that the vulnerability level of the project is “very low risk”, and the investigations of safety hazards and the pressure of surrounding traffic are the key influencing factors, allowing for the proposal of more scientific and effective management strategies for the construction of subway stations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 (registering DOI) - 2 Aug 2025
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 (registering DOI) - 1 Aug 2025
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
27 pages, 24664 KiB  
Article
Evaluating the Siphon Effect on Airport Cluster Resilience Using Accessibility and a Benchmark System for Sustainable Development
by Xinglong Wang, Weiqi Lin, Hao Yin and Fang Sun
Sustainability 2025, 17(15), 7013; https://doi.org/10.3390/su17157013 (registering DOI) - 1 Aug 2025
Abstract
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which [...] Read more.
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which affects the overall resilience of the entire airport cluster. To address this issue, this study proposes a siphon index, expands the range of ground transportation options for passengers, and establishes a zero-siphon model to assess the impact of siphoning on the resiliency of airport clusters. Using this framework, four major airport clusters in China were selected as research subjects, with regional aviation accessibility serving as a measure of resilience. The results showed that among the four airport clusters, the siphon effect is most pronounced in the Guangzhou region. To explore the implications of this effect further, three airport disruption scenarios were simulated to assess the resilience of the Pearl River Delta airport cluster. The results indicated that the intensity and timing of disruptive events significantly affect airport cluster resilience, with hub airports being particularly sensitive. This study analyzes the risks associated with excessive route concentration, providing policymakers with critical insights to enhance the sustainability, equity, and resilience of airport clusters. The proposed strategies facilitate coordinated infrastructure development, optimized air–ground intermodal connectivity, and risk mitigation. These measures contribute to building more sustainable and adaptive aviation networks in rapidly urbanizing regions. Full article
14 pages, 3219 KiB  
Article
Research on the Branch Road Traffic Flow Estimation and Main Road Traffic Flow Monitoring Optimization Problem
by Bingxian Wang and Sunxiang Zhu
Computation 2025, 13(8), 183; https://doi.org/10.3390/computation13080183 (registering DOI) - 1 Aug 2025
Abstract
Main roads are usually equipped with traffic flow monitoring devices in the road network to record the traffic flow data of the main roads in real time. Three complex scenarios, i.e., Y-junctions, multi-lane merging, and signalized intersections, are considered in this paper by [...] Read more.
Main roads are usually equipped with traffic flow monitoring devices in the road network to record the traffic flow data of the main roads in real time. Three complex scenarios, i.e., Y-junctions, multi-lane merging, and signalized intersections, are considered in this paper by developing a novel modeling system that leverages only historical main-road data to reconstruct branch-road volumes and identify pivotal time points where instantaneous observations enable robust inference of period-aggregate traffic volumes. Four mathematical models (I–IV) are built using the data given in appendix, with performance quantified via error metrics (RMSE, MAE, MAPE) and stability indices (perturbation sensitivity index, structure similarity score). Finally, the significant traffic flow change points are further identified by the PELT algorithm. Full article
Show Figures

Figure 1

11 pages, 3192 KiB  
Data Descriptor
Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
by Jailene Marlen Jaramillo-Perez, Bárbara A. Macías-Hernández, Edgar Tello-Leal and René Ventura-Houle
Data 2025, 10(8), 125; https://doi.org/10.3390/data10080125 (registering DOI) - 1 Aug 2025
Abstract
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research [...] Read more.
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research contains records with measurements of the air pollutants ozone (O3) and carbon monoxide (CO), as well as meteorological parameters such as temperature (T), relative humidity (RH), and barometric pressure (BP). This dataset was collected using a set of low-cost sensors over a four-month study period (March to June) in 2024. The monitoring of air pollutants and meteorological parameters was conducted in a city with high industrial activity, heavy traffic, and close proximity to a petrochemical refinery plant. The data were subjected to a series of statistical analyses for visualization using plots that allow for the identification of their behavior. Finally, the dataset can be utilized for air quality studies, public health research, and the development of prediction models based on mathematical approaches or artificial intelligence algorithms. Full article
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

15 pages, 2879 KiB  
Article
Study on the Eye Movement Transfer Characteristics of Drivers Under Different Road Conditions
by Zhenxiang Hao, Jianping Hu, Xiaohui Sun, Jin Ran, Yuhang Zheng, Binhe Yang and Junyao Tang
Appl. Sci. 2025, 15(15), 8559; https://doi.org/10.3390/app15158559 (registering DOI) - 1 Aug 2025
Abstract
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, [...] Read more.
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, and downhill, were selected, and the eye movement data of 23 drivers in different driving stages were collected by aSee Glasses eye-tracking device to analyze the visual gaze characteristics of the drivers and their transfer patterns in each road section. Using Markov chain theory, the probability of staying at each gaze point and the transfer probability distribution between gaze points were investigated. The results of the study showed that drivers’ visual behaviors in different road sections showed significant differences: drivers in the turning section had the largest percentage of fixation on the near front, with a fixation duration and frequency of 29.99% and 28.80%, respectively; the straight ahead section, on the other hand, mainly focused on the right side of the road, with 31.57% of fixation duration and 19.45% of frequency of fixation; on the uphill section, drivers’ fixation duration on the left and right roads was more balanced, with 24.36% of fixation duration on the left side of the road and 25.51% on the right side of the road; drivers on the downhill section looked more frequently at the distance ahead, with a total fixation frequency of 23.20%, while paying higher attention to the right side of the road environment, with a fixation duration of 27.09%. In terms of visual fixation, the fixation shift in the turning road section was mainly concentrated between the near and distant parts of the road ahead and frequently turned to the left and right sides; the straight road section mainly showed a shift between the distant parts of the road ahead and the dashboard; the uphill road section was concentrated on the shift between the near parts of the road ahead and the two sides of the road, while the downhill road section mainly occurred between the distant parts of the road ahead and the rearview mirror. Although drivers’ fixations on the front of the road were most concentrated under the four road sections, with an overall fixation stability probability exceeding 67%, there were significant differences in fixation smoothness between different road sections. Through this study, this paper not only reveals the laws of drivers’ visual behavior under different driving environments but also provides theoretical support for behavior-based traffic safety improvement strategies. Full article
Show Figures

Figure 1

19 pages, 950 KiB  
Article
How the Adoption of EVs in Developing Countries Can Be Effective: Indonesia’s Case
by Ida Nyoman Basmantra, Ngurah Keshawa Satya Santiarsa, Regina Dinanti Widodo and Caren Angellina Mimaki
World Electr. Veh. J. 2025, 16(8), 428; https://doi.org/10.3390/wevj16080428 (registering DOI) - 1 Aug 2025
Abstract
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in [...] Read more.
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in Indonesia. Using a nationwide survey (n = 986) and partial-least-squares structural-equation modeling, we test how environmental awareness, consumer expectancy, threat appraisal, and coping appraisal shape adoption both directly and through green brand image (GBI), while perceived policy incentives moderate the GBI–adoption link. The model accounts for 54% of the variance in adoption intention. These findings highlight that combining public awareness campaigns, compelling green brand messaging, and carefully calibrated policy incentives is essential for accelerating Indonesia’s transition to cleaner transport. Full article
Show Figures

Figure 1

30 pages, 4409 KiB  
Article
Accident Impact Prediction Based on a Deep Convolutional and Recurrent Neural Network Model
by Pouyan Sajadi, Mahya Qorbani, Sobhan Moosavi and Erfan Hassannayebi
Urban Sci. 2025, 9(8), 299; https://doi.org/10.3390/urbansci9080299 (registering DOI) - 1 Aug 2025
Abstract
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role [...] Read more.
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role in preventing adverse outcomes and enhancing overall safety. However, existing accident predictive models encounter two main challenges: first, a reliance on either costly or non-real-time data, and second, the absence of a comprehensive metric to measure post-accident impact accurately. To address these limitations, this study proposes a deep neural network model known as the cascade model. It leverages readily available real-world data from Los Angeles County to predict post-accident impacts. The model consists of two components: Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN). The LSTM model captures temporal patterns, while the CNN extracts patterns from the sparse accident dataset. Furthermore, an external traffic congestion dataset is incorporated to derive a new feature called the “accident impact” factor, which quantifies the influence of an accident on surrounding traffic flow. Extensive experiments were conducted to demonstrate the effectiveness of the proposed hybrid machine learning method in predicting the post-accident impact compared to state-of-the-art baselines. The results reveal a higher precision in predicting minimal impacts (i.e., cases with no reported accidents) and a higher recall in predicting more significant impacts (i.e., cases with reported accidents). Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Synthetic Data Generation for Machine Learning-Based Hazard Prediction in Area-Based Speed Control Systems
by Mariusz Rychlicki and Zbigniew Kasprzyk
Appl. Sci. 2025, 15(15), 8531; https://doi.org/10.3390/app15158531 (registering DOI) - 31 Jul 2025
Abstract
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a [...] Read more.
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a continuous vehicle speed monitoring system to minimize the risk of traffic accidents caused by speeding. The SUMO traffic simulator was used to model driver behavior in the analyzed area and within a given road network. Data from OpenStreetMap and field measurements from over a dozen speed detectors were integrated. Preliminary tests were carried out to record vehicle speeds. Based on these data, several simulation scenarios were run and compared to real-world observations using average speed, the percentage of speed limit violations, root mean square error (RMSE), and percentage compliance. A new metric, the Combined Speed Accuracy Score (CSAS), has been introduced to assess the consistency of simulation results with real-world data. For this study, a basic hazard prediction model was developed using LoRaWAN sensor network data and environmental contextual variables, including time, weather, location, and accident history. The research results in a method for evaluating and selecting the simulation scenario that best represents reality and drivers’ propensities to exceed speed limits. The results and findings demonstrate that it is possible to produce synthetic data with a level of agreement exceeding 90% with real data. Thus, it was shown that it is possible to generate synthetic data for machine learning in hazard prediction for area-based speed control systems using traffic simulators. Full article
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

Back to TopTop