Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = UNS S32101 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 45465 KiB  
Article
Interfacial Stability of Additively Manufactured Alloy 625–GRCop-42 Bimetallic Structures
by Ariel Rieffer and Andrew Wessman
J. Manuf. Mater. Process. 2025, 9(2), 34; https://doi.org/10.3390/jmmp9020034 - 24 Jan 2025
Viewed by 1160
Abstract
This study examines the diffusion behavior, thermal stability, and mechanical properties of the bimetallic interface between additively manufactured copper alloy GRCop-42 and nickel alloy 625 (UNS N06625) following elevated temperature exposure at service-relevant conditions for high-temperature superalloys. The copper alloy was additively manufactured [...] Read more.
This study examines the diffusion behavior, thermal stability, and mechanical properties of the bimetallic interface between additively manufactured copper alloy GRCop-42 and nickel alloy 625 (UNS N06625) following elevated temperature exposure at service-relevant conditions for high-temperature superalloys. The copper alloy was additively manufactured using laser powder bed fusion. The nickel alloy was subsequently deposited directly onto the copper alloy using powder-based directed energy deposition. The samples were held at a temperature of 816 °C (1500° F) for varying exposure times between 50 and 500 h. Significant material loss (averaging ~430 μm at 50 h and ~1830 μm at 500 h) due to oxidation was noted in the copper alloy. The bondline interface was examined using optical microscopy as well as electron microprobe analysis. Composition maps from the electron microprobe showed the formation of oxides in the copper alloy and Laves phase in the nickel alloy at thermal exposure times of 200 h or more. By analyzing diffusion across the bondline, this study demonstrates the ability of machine learning-based diffusion models to predict diffusion coefficients of copper into alloy 625 (2.38×1012 cm2/s) and of nickel into GRCop-42 (1.90×1012 cm2/s) and the ability of commercially available diffusion code (Pandat) to provide reasonably accurate diffusion profiles for this system. Tensile and fatigue tests were performed in the as-built and 200 h thermal exposure conditions. The thermally exposed samples exhibited an average 18.6% reduction in yield strength compared to the as-built samples. Full article
(This article belongs to the Special Issue Smart Manufacturing in the Era of Industry 4.0)
Show Figures

Figure 1

16 pages, 5953 KiB  
Article
Microstructural and Electrochemical Analysis of the Physically Simulated Heat-Affected Zone of Super-Duplex Stainless Steel UNS S32750
by Francisco Magalhães dos Santos, Leonardo Oliveira Passos da Silva, Ygor Tadeu Bispo dos Santos, Bruna Callegari, Tiago Nunes Lima and Rodrigo Santiago Coelho
Metals 2025, 15(1), 2; https://doi.org/10.3390/met15010002 - 24 Dec 2024
Viewed by 1106
Abstract
Super-duplex stainless steels (SDSSs) were introduced in the oil and gas industry due to their high resistance to pitting corrosion, promoted by the high content of alloying elements. The welding process can cause an unbalanced ferrite/austenite microstructure and, consequently, the possibility of deleterious [...] Read more.
Super-duplex stainless steels (SDSSs) were introduced in the oil and gas industry due to their high resistance to pitting corrosion, promoted by the high content of alloying elements. The welding process can cause an unbalanced ferrite/austenite microstructure and, consequently, the possibility of deleterious phases, increasing the risk of failure. The aim of this work is to investigate the behavior of the heat-affected zone (HAZ) of SDSS UNS S32750 steel produced with different thermal inputs simulated in a Gleeble® welding simulator and correlate these findings with its corrosion properties. The pitting resistance was investigated by electrochemical techniques in sodium chloride solution, and the critical pitting temperature (CPT) was calculated for each evaluated microstructure. The material as received presents 46.19 vol% ferrite and a high corrosion resistance, with a CPT of 71.54 °C. HAZ-simulated cycles resulted in similar ferrite percentages, between 54.09 vol% and 57.25 vol%. A relationship was found between heat input, ferrite content, and CPT: increasing the heat input results in greater ferrite content and lowers the CPT, which may favor the pitting corrosion process. Therefore, it is concluded that the ferrite content directly influences the pitting behavior of the material. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

15 pages, 4622 KiB  
Article
High-Temperature Deformation Behaviour of UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy
by Vasile Dănuț Cojocaru, Nicolae Șerban, Elisabeta Mirela Cojocaru and Nicoleta Zărnescu-Ivan
Materials 2024, 17(21), 5151; https://doi.org/10.3390/ma17215151 - 23 Oct 2024
Viewed by 1324
Abstract
In this study, the high-temperature deformation behaviour of the UNS S32750 Super Duplex Stainless Steel (SDSS) alloy was investigated by means of deformability and microstructure evolution in the (1050–1200) °C temperature (T) range. The deformability of the UNS S32750 SDSS alloy was investigated [...] Read more.
In this study, the high-temperature deformation behaviour of the UNS S32750 Super Duplex Stainless Steel (SDSS) alloy was investigated by means of deformability and microstructure evolution in the (1050–1200) °C temperature (T) range. The deformability of the UNS S32750 SDSS alloy was investigated by the up-setting method using a gravity-drop hammer, with the following deformation energy/impact energy (E): 545.2 J, 1021.5 J, 1480.6 J, and 1905.3 J. Data referring to deformation resistance (σc) and mechanical work (A) as a function of deformation temperature (T) and deformation energy/impact energy (E) were obtained and analysed. It was shown that increasing the deformation temperature leads to an increase in the obtained deformation degree (degree of reduction in height). By analysing the rate of increase in the deformation degree as a function of the applied impact energy, it was shown that the rate of increase in the deformation degree rises with the increase in the applied impact energy. Also, it was observed that the evolution of the deformation resistance (σc) as a function of temperature (T) shows a decreasing tendency while increasing the deformation temperature for all impact energies and that the evolution of the mechanical work (A) as a function of temperature (T) shows a decreasing tendency while increasing the deformation temperature for all impact energies. The microstructure evolution of the UNS S32750 SDSS alloy was investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy-Electron Backscatter Diffraction (SEM-EBSD) techniques. It was observed that, in all cases, the microstructure shows intensely deformed grains, strongly elongated in the rolling direction in both ferrite (δ) and austenite (γ) intensely deformed grains. The intensity of grain deformation is increasing with the increase in the applied deformation degree. Also, it was observed that increasing the deformation temperature leads to a strong increase in the weight fraction of the dynamically recrystallised (DRX) ferrite (δ) grains. Full article
Show Figures

Figure 1

20 pages, 30530 KiB  
Article
Effect of Powder Reuse on Powder Characteristics and Properties of DED Laser Beam Metal Additive Manufacturing Process with Stellite® 21 and UNS S32750
by Juan Carlos Pereira, Uxue Irastorza, Ane Solana, Carlos Soriano, David García, José Exequiel Ruiz and Aitzol Lamikiz
Metals 2024, 14(9), 1031; https://doi.org/10.3390/met14091031 - 10 Sep 2024
Cited by 2 | Viewed by 2048
Abstract
In this work, the influence of powder reuse up to three times on directed energy deposition (DED) with laser processing has been studied. The work was carried out on two different gas atomized powders: a cobalt-based alloy type Stellite® 21, and a [...] Read more.
In this work, the influence of powder reuse up to three times on directed energy deposition (DED) with laser processing has been studied. The work was carried out on two different gas atomized powders: a cobalt-based alloy type Stellite® 21, and a super duplex stainless steel type UNS S32750. One of the main findings is the influence of oxygen content of the reused powder particles on the final quality and densification of the deposited material and the powder catch efficiency of the laser deposition process. There is a direct relationship between a higher surface oxidation of the particles and the presence of oxygen content in the particles and in the as-built materials, as well as oxides, balance of phases (in the case of the super duplex alloy), pores and defects at the micro level in the laser-deposited material, as well as a decrease in the amount of material that actually melts, reducing powder catch efficiency (more than 12% in the worst case scenario) and the initial bead geometry (height and width) that was obtained for the same process parameters when the virgin powder was used (without oxidation and with original morphology of the powder particles). This causes some melting faults, oxides and formation of undesired oxide compounds in the microstructure, and un-balance of phases particularly in the super duplex stainless steel material, reducing the amount of ferrite from 50.1% to 37.4%, affecting in turn material soundness and its mechanical properties, particularly the hardness. However, the Stellite® 21 alloy type can be reused up to three times, while the super duplex can be reused only once without any major influence of the particles’ surface oxidation on the deposited material quality and hardness. Full article
Show Figures

Graphical abstract

17 pages, 15715 KiB  
Article
The Formation of a Low-Carbon Steel/Ni-Cr-W Alloy Bimetallic Material via Liquid–Solid Compound Casting with a Laser Assisted Solid Surface
by Serhii Salii, Leonid Golovko, Oleksii Kaglyak, Oleksandr Kapustynskyi and Nikolaj Višniakov
Machines 2024, 12(8), 522; https://doi.org/10.3390/machines12080522 - 31 Jul 2024
Cited by 1 | Viewed by 1426
Abstract
The aim of this study was to develop a new manufacturing process for bimetallic materials by combining laser treatment with traditional casting methods. This process involves laser-treating nickel alloy-grade UNS 6230 plates to create a regular macro-relief on their surface. These treated plates [...] Read more.
The aim of this study was to develop a new manufacturing process for bimetallic materials by combining laser treatment with traditional casting methods. This process involves laser-treating nickel alloy-grade UNS 6230 plates to create a regular macro-relief on their surface. These treated plates are then placed in a sand mold, and molten non-alloy steel (S235JRG2) is poured into the mold to create bimetallic layered castings. The experimental procedure focuses on optimizing the melt-to-solid phase ratios and pouring temperatures to achieve a uniform microstructure and strong mechanical properties in the bimetals. The produced bimetallic castings are suitable for applications in the oil refining and chemical industries and heavy machinery sector. The quantitative results indicate that the optimized process parameters lead to a high-quality transition zone with minimal defects, characterized by the diffusion of alloying elements from the nickel alloy to the steel. The microstructure, chemical, and phase compositions were evaluated using XRD and SEM with EDS, confirming the formation of a robust metallurgical bond. Key findings include a significant improvement in the hardness and strength of the transition layer, with the optimal pouring temperature being 1600 °C. The resulting bimetallic materials demonstrate an improved performance in demanding industrial environments. Full article
Show Figures

Figure 1

1 pages, 170 KiB  
Retraction
RETRACTED: Mohan et al. Laser Welding of UNS S33207 Hyper-Duplex Stainless Steel to 6061 Aluminum Alloy Using High Entropy Alloy as a Filler Material. Appl. Sci. 2022, 12, 2849
by Dhanesh G. Mohan, Jacek Tomków and Sasan Sattarpanah Karganroudi
Appl. Sci. 2024, 14(14), 6077; https://doi.org/10.3390/app14146077 - 12 Jul 2024
Viewed by 976
Abstract
The Applied Sciences Editorial Office retracts the article, “Laser Welding of UNS S33207 Hyper-Duplex Stainless Steel to 6061 Aluminum Alloy Using High Entropy Alloy as a Filler Material” [...] Full article
14 pages, 5705 KiB  
Article
Effect of Secondary Phase on Passivation Layer of Super Duplex Stainless Steel UNS S 32750: Advanced Safety of Li-Ion Battery Case Materials
by Byung-Hyun Shin, Seongjun Kim, Jinyong Park, Jung-Woo Ok, Dohyung Kim and Jang-Hee Yoon
Materials 2024, 17(11), 2760; https://doi.org/10.3390/ma17112760 - 5 Jun 2024
Cited by 2 | Viewed by 1425
Abstract
Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and [...] Read more.
Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 μm to 20 μm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer. Full article
Show Figures

Figure 1

19 pages, 8413 KiB  
Article
Photocatalytic Activity and Antibacterial Properties of Mixed-Phase Oxides on Titanium Implant Alloy Substrates
by Haden A. Johnson, Darby Donaho, Aya Ali, Amisha Parekh, Randall S. Williamson, Mary E. Marquart, Joel D. Bumgardner, Amol V. Janorkar and Michael D. Roach
Coatings 2024, 14(5), 595; https://doi.org/10.3390/coatings14050595 - 9 May 2024
Viewed by 1510
Abstract
Titanium alloys are commonly used for implants, but the naturally forming oxides are bioinert and not ideal for bacterial resistance or osseointegration. Anodization processes are a modification technique that can crystallize the oxides, alter oxide surface topography, and introduce beneficial chemistries. Crystalline titanium [...] Read more.
Titanium alloys are commonly used for implants, but the naturally forming oxides are bioinert and not ideal for bacterial resistance or osseointegration. Anodization processes are a modification technique that can crystallize the oxides, alter oxide surface topography, and introduce beneficial chemistries. Crystalline titanium oxides are known to exhibit photocatalytic activity (PCA) under UVA light. Anodization was used to create mixed-phase oxides on six titanium alloys including commercially pure titanium (CPTi), Ti-6Al-4V (TAV), Ti-6Al-7Nb (TAN), two forms of Ti-15Mo (TiMo-β and TiMo-αβ), and Ti-35Nb-7Zr-5Ta (TNZT). Combined EDS and XPS analyses showed uptake of the electrolyte and substrate alloying elements into the oxides. The relative oxide PCA was measured using methylene blue degradation assays. CPTi and TAN oxides exhibited increased PCA compared to other alloys. Combined XRD and EBSD oxide phase analyses revealed an unfavorable arrangement of anatase and rutile phases near the outermost surfaces, which may have reduced PCA for other oxides. The relative Staphylococcus aureus attachment to each oxide was also assessed. The CPTi and TiMo-αβ oxides showed significantly reduced S. aureus attachment after 1 h of UVA compared to un-anodized CPTi. Cell culture results verified that the UVA irradiation did not negatively influence the MC3T3-E1 attachment or proliferation on the mixed-phase oxides. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

17 pages, 7665 KiB  
Article
Heat-Affected Zone Microstructural Study via Coupled Numerical/Physical Simulation in Welded Superduplex Stainless Steels
by Leonardo Oliveira Passos da Silva, Tiago Nunes Lima, Francisco Magalhães dos Santos Júnior, Bruna Callegari, Luís Fernando Folle and Rodrigo Santiago Coelho
Crystals 2024, 14(3), 204; https://doi.org/10.3390/cryst14030204 - 21 Feb 2024
Cited by 6 | Viewed by 2060
Abstract
Superduplex stainless steels (SDSS) are known for their combination of good mechanical properties and excellent corrosion resistance, enabled by the microstructural balance between austenite and ferrite and an amount of alloying elements. Their application in welded components is, however, limited by the possibility [...] Read more.
Superduplex stainless steels (SDSS) are known for their combination of good mechanical properties and excellent corrosion resistance, enabled by the microstructural balance between austenite and ferrite and an amount of alloying elements. Their application in welded components is, however, limited by the possibility of the precipitation of intermetallic phases and microstructural misbalance, which might hinder their properties, especially in the heat-affected zone (HAZ). This work introduces a methodology that relies simultaneously on physical and numerical simulations to study the HAZ in a UNS S32750 SDSS. Dimensions of the fusion zone and thermal cycles were calibrated for a numerical model using preliminary welding trials. Numerically simulated cycles for each heat input (HI) were physically reproduced in a Gleeble® simulator, and the heat-treated samples were characterized and compared with real specimens welded using the same parameters. Thermal curves resulting from the numerical simulations were successfully replicated by the Gleeble®, indicating adequate application of the desired HI. The hardness and microstructural results from simulated and welded specimens were also found to be quite similar. Therefore, the proposed methodology showed itself adequate not only for the study of duplex stainless steels, but also of materials with similar thermal and mechanical properties, including the extrapolation of welding parameters. Full article
Show Figures

Figure 1

15 pages, 11066 KiB  
Article
Identification of Expanded Austenite in Nitrogen-Implanted Ferritic Steel through In Situ Synchrotron X-ray Diffraction Analyses
by Bruna C. E. Schibicheski Kurelo, Carlos M. Lepienski, Willian R. de Oliveira, Gelson B. de Souza, Francisco C. Serbena, Rodrigo P. Cardoso, Julio C. K. das Neves and Paulo C. Borges
Metals 2023, 13(10), 1744; https://doi.org/10.3390/met13101744 - 14 Oct 2023
Cited by 6 | Viewed by 1732
Abstract
The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive insights into the formation and decomposition of expanded austenite through in situ structure analyses during thermal treatments of ferritic steels. [...] Read more.
The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive insights into the formation and decomposition of expanded austenite through in situ structure analyses during thermal treatments of ferritic steels. To achieve this objective, we employed the Plasma Immersion Ion Implantation (PIII) technique for nitriding in conjunction with in situ synchrotron X-ray diffraction (ISS-XRD) for microstructural analyses during the thermal treatment of the samples. The PIII was carried out at a low temperature (300–400 °C) to promote the formation of metastable phases. The ISS-XRD analyses were carried out at 450 °C, which is in the working temperature range of the ferritic steel UNS S44400, which has applications, for instance, in the coating of petroleum distillation towers. Nitrogen-expanded ferrite (αN) and nitrogen-expanded austenite (γN) metastable phases were formed by nitriding in the modified layers. The production of the αN or γN phase in a ferritic matrix during nitriding has a direct relationship with the nitrogen concentration attained on the treated surfaces, which depends on the ion fluence imposed during the PIII treatment. During the thermal evolution of crystallographic phase analyses by ISS-XRD, after nitriding, structure evolution occurs mainly by nitrogen diffusion. In the nitrided samples prepared under the highest ion fluences—longer treatment times and frequencies (PIII 300 °C 6 h and PIII 400 °C 3 h) containing a significant amount of γN—a transition from the γN phase to the α and CrN phases and the formation of oxides occurred. Full article
Show Figures

Graphical abstract

14 pages, 6760 KiB  
Article
Effects of Heterogenization Treatment on the Hot-Working Temperature and Mechanical Properties of Al-Cu-Mg-Mn-(Zr) Alloys
by Ming-Che Wen, Yuan-Da Hsu, Mien-Chung Chen, Wen-Chen Yang and Sheng-Long Lee
Materials 2023, 16(12), 4256; https://doi.org/10.3390/ma16124256 - 8 Jun 2023
Cited by 2 | Viewed by 1340
Abstract
This study investigated the effects of a minor Zr addition (0.15 wt%) and heterogenization treatment (one-stage/two-stage) on the hot-working temperature and mechanical properties in Al-4.9Cu-1.2Mg-0.9Mn alloy. The results indicated that the eutectic phases (α-Al + θ-Al2Cu + S-Al2CuMg) dissolved [...] Read more.
This study investigated the effects of a minor Zr addition (0.15 wt%) and heterogenization treatment (one-stage/two-stage) on the hot-working temperature and mechanical properties in Al-4.9Cu-1.2Mg-0.9Mn alloy. The results indicated that the eutectic phases (α-Al + θ-Al2Cu + S-Al2CuMg) dissolved after heterogenization, retaining θ-Al2Cu and τ1-Al29Cu4Mn6 phases, while the onset melting temperature increased to approximately 17 °C. A change in the onset melting temperature and evolution of the microstructure is used to assess an improvement in hot-working behavior. With the minor Zr addition, the alloy exhibited enhanced mechanical properties due to grain growth inhibition. Zr-added alloys show 490 ± 3 MPa ultimate tensile strength and 77.5 ± 0.7 HRB hardness after T4 tempering, compared to 460 ± 2.2 MPa and 73.7 ± 0.4 HRB for un-added alloys. Additionally, combining minor Zr addition and two-stage heterogenization resulted in finer Al3Zr dispersoids. Two-stage heterogenized alloys had an average Al3Zr size of 15 ± 5 nm, while one-stage heterogenized alloys had an average size of 25 ± 8 nm. A partial decrease in the mechanical properties of the Zr-free alloy was observed after two-stage heterogenization. The one-stage heterogenized alloy had 75.4 ± 0.4 HRB hardness after being T4-tempered, whereas the two-stage heterogenized alloy had 73.7 ± 0.4 HRB hardness after being T4-tempered. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 2328 KiB  
Article
Correction of Phase Balance on Nd:YAG Pulsed Laser Welded UNS S32750 Using Cobalt Electroplating Technique
by Eli J. Da Cruz Junior, Bruna B. Seloto, Vicente A. Ventrella, Francisco M. F. A. Varasquim, Andrea Zambon, Irene Calliari, Claudio Gennari and Alessio G. Settimi
Crystals 2023, 13(2), 256; https://doi.org/10.3390/cryst13020256 - 2 Feb 2023
Cited by 5 | Viewed by 2260
Abstract
Super-duplex stainless steel (SDSS) shows high mechanical and corrosion resistance because of the balanced structure of austenite and ferrite. However, maintaining this phase ratio after welding is a challenge. The use of austenite stabilizing components is recommended to balance the microstructure. The addition [...] Read more.
Super-duplex stainless steel (SDSS) shows high mechanical and corrosion resistance because of the balanced structure of austenite and ferrite. However, maintaining this phase ratio after welding is a challenge. The use of austenite stabilizing components is recommended to balance the microstructure. The addition of alloying elements presents a challenge because of the characteristics of Nd:YAG pulsed laser welding. An approach, which has proven to be effective, is to use metal electroplating to prepare the surfaces of the mechanical SDSS components that will be welded, therefore promoting the phase balance in the fusion zone. While the effects of metals such as nickel as an austenite stabilizer are well recognized, cobalt’s effects require more research. The present work investigated the influence of the use of cobalt addition in the joining process by preliminary electroplating on UNS S32750 SDSS Nd: YAG pulsed laser welding, specifically regarding microstructure and microhardness. Three conditions were investigated, changing the thickness of the deposited cobalt layer. The addition of cobalt modified the morphology and increased the volume fraction of austenite. An austenite volume fraction of around 48% was obtained using a 35 μm thick cobalt coating. The microhardness was affected by austenite/ferrite proportions. The microhardness dropped from about 375 HV to 345 HV as the cobalt layer’s thickness rose, being similar to that of the base metal. The effect of cobalt as an austenite stabilizer was observed, and the cobalt electroplating technique was effective to correct the phase balance on UNS S32750 laser welding. Full article
Show Figures

Figure 1

5 pages, 1248 KiB  
Proceeding Paper
Wear Behavior of Coated Tools When Milling S32101 Duplex Stainless Steel
by Francisco J. G. Silva, Vitor F. C. Sousa, Raúl D. S. G. Campilho and Ricardo Alexandre
Mater. Proc. 2022, 8(1), 45; https://doi.org/10.3390/materproc2022008045 - 27 May 2022
Cited by 2 | Viewed by 1426
Abstract
The growing demand for metals with high performance and optimal mechanical properties, especially in highly corrosive environments under high-temperature conditions, has led to the increased use of duplex stainless steels. Its applications are increasingly diverse, from the petrochemical industry to thermal and energy [...] Read more.
The growing demand for metals with high performance and optimal mechanical properties, especially in highly corrosive environments under high-temperature conditions, has led to the increased use of duplex stainless steels. Its applications are increasingly diverse, from the petrochemical industry to thermal and energy production facilities. Many of the components used in duplex stainless steel must undergo machining operations. However, this type of alloy is within the group of alloys considered difficult to machine. Effectively, in addition to the high mechanical strength characteristic of this alloy, the adhesion of this alloy to cutting tools is well known, leading to premature wear phenomena, which generates the excessive consumption of tools, with the consequent problems of economic and environmental sustainability. This study aims to evaluate the behavior improvement presented by tools coated with TiAlN and TiAlSiN when milling an alloy widely used in industrial terms: the UNS S32101 alloy. Full article
(This article belongs to the Proceedings of MATERIAIS 2022)
Show Figures

Figure 1

30 pages, 8153 KiB  
Article
Investigations on the Wear Performance of Coated Tools in Machining UNS S32101 Duplex Stainless Steel
by Vitor F. C. Sousa, Francisco J. G. Silva, Ricardo Alexandre, Gustavo Pinto, Andresa Baptista and José S. Fecheira
Metals 2022, 12(6), 896; https://doi.org/10.3390/met12060896 - 25 May 2022
Cited by 4 | Viewed by 2311
Abstract
Due to their high mechanical property values and corrosion resistance, duplex stainless steels (DSSs) are used for a wide variety of industrial applications. DSSs are also selected for applications that require, especially, high corrosion resistance and overall good mechanical properties, such as in [...] Read more.
Due to their high mechanical property values and corrosion resistance, duplex stainless steels (DSSs) are used for a wide variety of industrial applications. DSSs are also selected for applications that require, especially, high corrosion resistance and overall good mechanical properties, such as in the naval and oil-gas exploration industries. The obtention of components made from these materials is quite problematic, as DSSs are considered difficult-to-machine alloys. In this work, the developed wear during milling of the UNS S32101 DSS alloy is presented, employing four types of milling tools with different geometries and coatings. The influence of feed rate and cutting length variations on the tools’ wear and their performance was evaluated. The used tools had two and four flutes with different coatings: TiAlN, TiAlSiN and AlCrN. The cutting behavior of these tools was analyzed by collecting data regarding the cutting forces developed during machining and evaluating the machined surface quality for each tool. After testing, the tools were submitted to SEM analysis, enabling the identification of the wear mechanisms and quantification of flank wear, as well as identifying the early stages of the development of these mechanisms. A comparison of all the tested tools was made, determining that the TiAlSiN-coated tools produced highly satisfactory results, especially in terms of sustained flank wear. Full article
(This article belongs to the Special Issue Machining: State-of-the-Art 2022)
Show Figures

Figure 1

31 pages, 10406 KiB  
Article
A Methodology for Tribo-Mechanical Characterization of Metallic Alloys under Extreme Loading and Temperature Conditions Typical of Metal Cutting Processes
by Afonso V. L. Gregório, Tiago E. F. Silva, Alcino P. Reis, Abílio M. P. de Jesus and Pedro A. R. Rosa
J. Manuf. Mater. Process. 2022, 6(2), 46; https://doi.org/10.3390/jmmp6020046 - 13 Apr 2022
Cited by 5 | Viewed by 3328
Abstract
The present paper proposes a combined tribo-mechanical methodology for assessing friction under conditions representative of metal cutting, without resorting to machining process monitoring. The purpose is to withdraw the size effect’s contribution due to tool edge radius to the well-known overestimation of the [...] Read more.
The present paper proposes a combined tribo-mechanical methodology for assessing friction under conditions representative of metal cutting, without resorting to machining process monitoring. The purpose is to withdraw the size effect’s contribution due to tool edge radius to the well-known overestimation of the friction coefficient. Comparative numerical analysis of several tribological tests led us to conclude that the ring compression test is one of the most suitable for reproducing the frictional conditions at the chip–tool interface. Two distinct metallic alloys were selected to demonstrate the application of the proposed methodology (UNS L51120 lead alloy and 18Ni300 maraging steel in conventional and additively manufactured conditions). The results help to better explain the influences of process parameters on the friction coefficient value under high temperature and high strain rate conditions. Results showed a typical increase in the coefficient of friction of up to 20% due to both temperature and strain rate parameters for 18Ni300. The results are of interest because they allow considering potential sources of error in the numerical simulation of metal cutting when the same friction coefficient value is considered for a wide range of cutting parameters. Full article
(This article belongs to the Special Issue Advances in Modelling of Machining Operations)
Show Figures

Figure 1

Back to TopTop